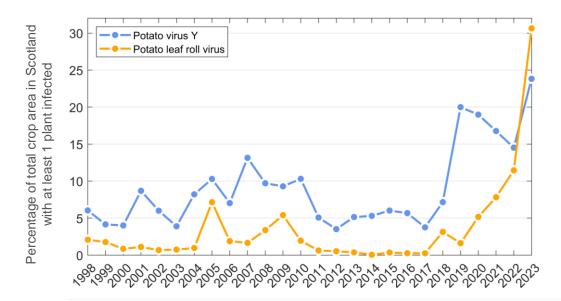


Analysing and predicting potato pests & diseases

Using data science and AI to strengthen the resilience of our potato industry

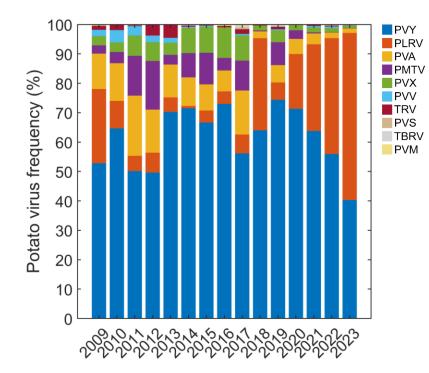
Peter Skelsey

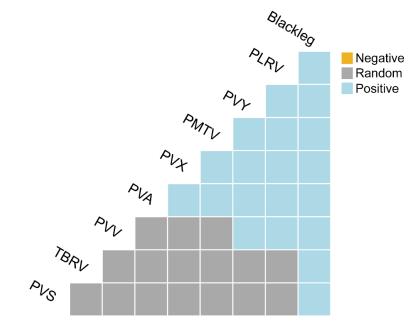

Potato pests and diseases - the problem

- Scottish potato sector is worth approx. £2bn per annum
 - Potato viruses: a threat to our global reputation as a producer of high-quality seed
 Potato cyst nematodes: a soil pest that could collapse the seed industry by 2050
 Late blight: fungicide resistant / aggressive strains in Europe threaten our crops
- We are using data science and AI to guide management and inform policy

The potato virus problem

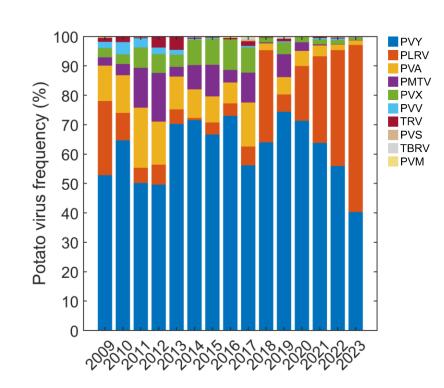
- Incidence of potato viruses has been increasing over the last 5 years
- The industry has expressed a need for a national evidence-based IPM strategy
 - This includes data analyses & models to inform decision-making


Potato virus data


- Scottish Seed Potato Classification Scheme, SASA
- Every growing seed crop inspected 2-3 times a season
- Data on 10 different potato viruses from over 100,000 crops (1998-2023)
 - Never been analysed before!

Describing and analysing potato virus data

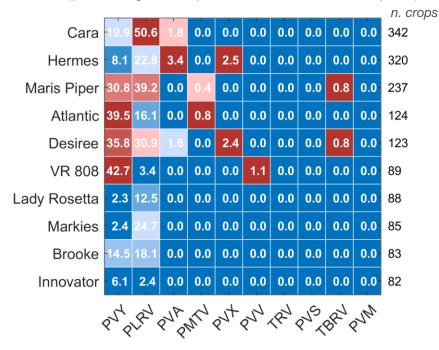
RESAS SRP 2022-2027, project JHI-A1-1: Epidemiology of key pests & diseases

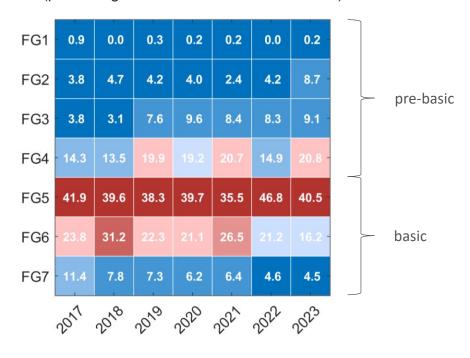

Co-occurrence analysis (showing +/- species pair associations)

The James Hutton Institute

Describing and analysing potato virus data

RESAS SRP 2022-2027, project JHI-A1-1: Epidemiology of key pests & diseases

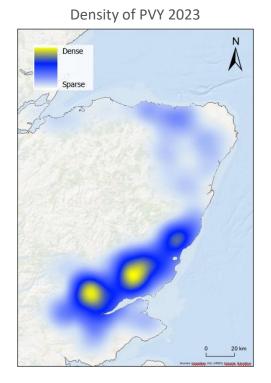

The James Hutton Institute


Numbe	r of infecte	d seed lots	(and %) of a	all infections			
Single infection		Double infection		Triple infection		Quadruple infection	
PVY	3549 (61.97)	PVY– PLRV	285 (4.98)	PVY– PVA– PMTV	7 (0.12)	PVY-PVA- PLRV-PVV	2 (0.03)
PLRV	767 (13.39)	PVY– PVA	89 (1.55)	PVY– PVA–PVV	7 (0.12)	PVY-PVA- PVX-PVV	1 (0.02)
PVA	331 (5.78)	PVY– PMTV	62 (1.08)	PVY– PLRV– PVX	5 (0.09)		
PMTV	202 (3.53)	PVY– PVX	37 (0.65)	PVY– PLRV– PMTV	3 (0.05)		
PVX	155 (2.71)	PVA– PVX	32 (0.56)	PVY– PVA– PLRV	3 (0.05)		
TRV	51 (0.89)	PVA– PVV	17 (0.30)	PVY– PLRV– TBRV	2 (0.03)		
PVV	31	PLRV-	11	PVY-	2		

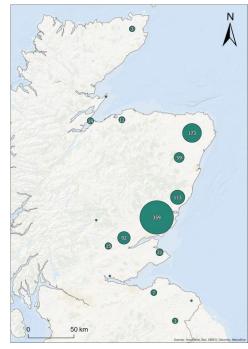
Describing and analysing potato virus data

Variety-specific incidence rate 2023 (percentage of crops with at least 1 infected plant)

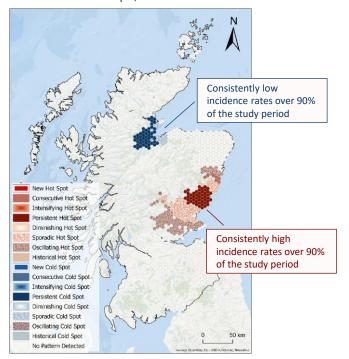
PVY incidence by field generation (percentage of total faults attributed to FG)

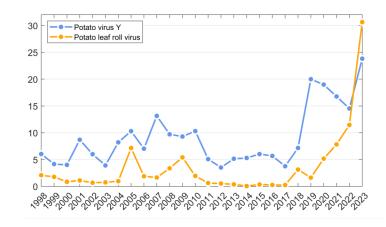


The James Hutton Institute


* colour-coded by column (virus)

Mapping potato virus data – getting an overview of the situation

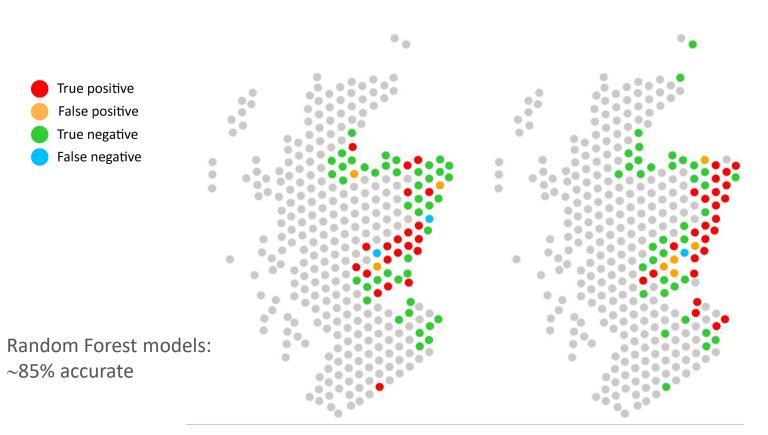




Spacetime patterns of PVY in seed crops, 2009-2023

Implications for policy and the Seed Potato Classification Scheme

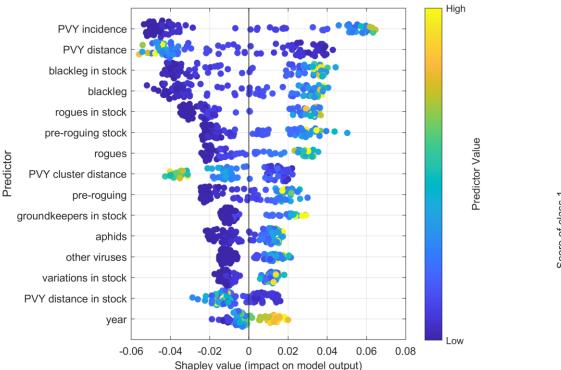
- Ware crops compulsory use of certified seed & increased crop separation distances
- Field generations revisit the virus tolerances set in the SSPCS
- Seedborne infection improved post-harvest tuber-testing to flush virus out
- Varieties restrictions on poorly-performing varieties
- Region-specific rules e.g., an extra inspection or incentives in hot-spot areas

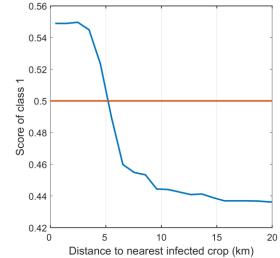

Forecasting potato virus risk – new AI-based national warning systems

- Leveraged funding, PHC Project, 2024 "Potato virus forecasts: developing new models to guide sustainable management of potato crops in Scotland"
- Stakeholder focus group wanted a 'green alert' / 'red alert' system
- Data 25 years of national virus levels, 25 years of national aphid vector counts
- Modelling task will virus levels next year be lower or higher than the average season?
- Tested > 25 different AI algorithms:

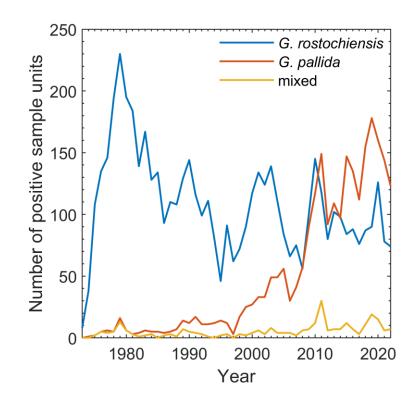
Performance of AI models for predicting virus risk

Virus & Algorithm	True negative rate	False negative rate	True positive rate	False positive rate	Accuracy
PVY: Support Vector Machine	98%	4%	96%	2%	97%
PLRV: Decision Tree	97%	5%	95%	3%	96%




Forecasting potato virus risk – new AI-based local warning systems

Forecasting potato virus risk – PVY local model interpretation



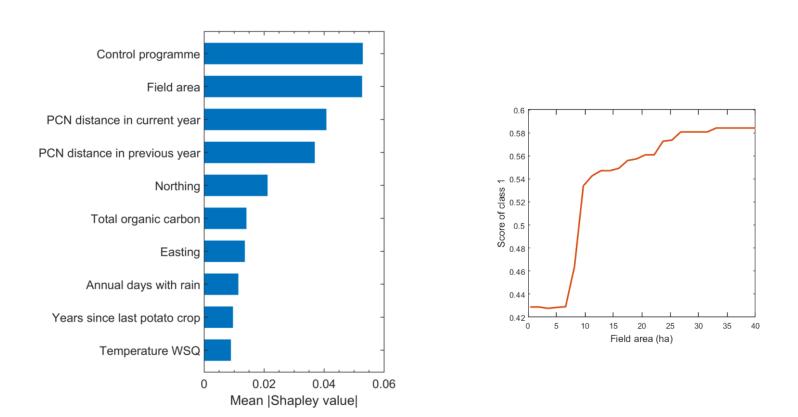
Potato cyst nematodes - statutory PCN testing data

- Seed potatoes can only be grown on land that is PCN-free
- PCN is already present in ~25k ha of Scottish soils
- The cysts can survive for many years, and the amount of infested land is doubling every 6-7 years
- Recent predictions suggest PCN will cause the end of the seed industry by 2050
- Analysing the statutory soil testing data 1973-2022 (~100k sample units)

Potato cyst nematodes – mapping and modelling

Spacetime patterns of *G. rostochiensis*

ale a dart Up Trend - 99% Confidence Up Trend - 95% Confidence Up Trend - 90% Confidence No Significant Trend Down Trend - 90% Confidence Down Trend - 95% Confidence Down Trend - 99% Confidence


Moving north due to climate change

Performance of an AI model to predict whether a soil sample will be positive or negative for PCN

Random forest model	Balanced accuracy		
Training results	93% (2%)		
Test results	91% (5%)		
Final model	97%		

= a new tool for industry

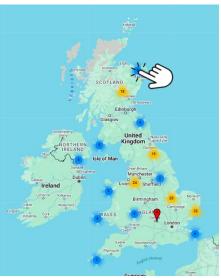
Potato cyst nematodes – model interpretation

Potato cyst nematodes – new funding for an AI model

Leveraged SG / PHC call-down funding 2024

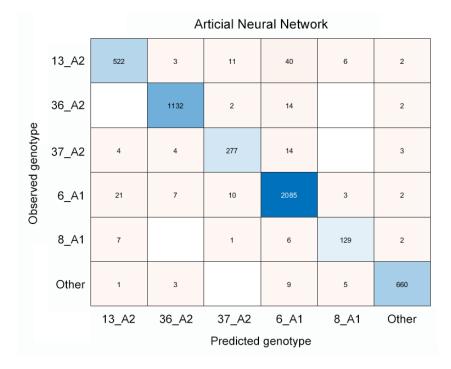
 Project title: "Developing new AI models to predict PCN species presence / absence in Scottish soils"

Implications for industry / policy


- Develop spatial, species-specific management strategies
- Model could help reduce costs of testing
- Make predictions for ware areas
- Increase sustainability of our potato industry

Potato late blight – Fight Against Blight campaign

- Running since 2004 (PCL / AHDB Potatoes), now operated by Hutton
- Blight scouts submit samples of suspected outbreaks:
 - Monitoring pathogen populations (genotyping)
 - Virulence to new blight resistant cultivars
 - Sensitivity to key fungicides
 - Sensitivity to environmental conditions
 - Comparing to European populations (EuroBlight database)
- Results are fed back to the industry to keep them informed
- Can we predict late blight genotypes?



Blight services at JHI

Potato late blight – predicting the genotype of outbreaks

Developed an AI model to predict the genotype of potato late blight outbreaks
 = 98% accurate

Implications for industry / policy

- Faster than sampling
- Provide predictions for crops that weren't sampled
- Inform growers which fungicides to use & when to use their premium products
- Inform growers of their chances of resistance failing

Thank you for listening ...

Rural & Environmental Science and Analytical Services

