

TECHNICAL REPORT No.80

THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: IMAZAQUIN, ISOXABEN, METSULFURON-METHYL, ACLONIFEN AND ORBENCARB

W G Richardson and T M West ROTHAMSTED EXP. STATION

December 1984

The second secon

*

5

17 JUN 1985 HARPENT

Price - £6.50

Agricultural and Food Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford, OX5 IPF

ISSN 0511 4136 ISBN 0 7084 0317 4

CONTENTS

SUMMARY

INTRODUCTION

METHODS AND MATERIALS

- --- Him -- - ---

.

IMAZAQUIN

2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl) quinoline-3-carboxylic acid

ISOXABEN N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl] 14 -2,6-dimethoxybenzamide

METSULFURON-METHYL Methyl 2-[3-(4-methoxy-6-methyl-1,3,5-triazin- 25 2-yl) ureidosulphonyl]benzoate 25

ACLONIFEN

2-chloro-6-nitro-3-phenoxy-aniline

Page

2

5

ORBENCARB

S-o-chlorobenzyl diethylthiocarbamate

ACKNOWLEDGEMENTS

REFERENCES

APPENDIX

*

.

NOTE

The content of this publication, in whole or in part, may be quoted or

reproduced provided the authors and the AFRC Weed Research Organization are fully acknowledged. The correct bibliographic reference is :-

RICHARDSON, W.G., and WEST, T.M. The activity and pre-emergence selectivity of some recently developed herbicides: imazaquin, isoxaben, metsulfuron-methyl, aclonifen, and orbencarb. Technical Report Agricultural and Food Research Council Weed Research Organization, 1984, 80, pp 57. THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: IMAZAQUIN, ISOXABEN, METSULFURON-METHYL, ACLONIFEN, AND ORBENCARB.

W. G. Richardson*, and T. M. West* Agricultural and Food Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford OX5 1PF, UK.

SUMMARY

In a series of pot experiments in the glasshouse, five herbicides were examined for pre-emergence selectivity as soil surface sprays on 47 temperate crop and weed species. Wheat, barley and maize were each treated with seed dressings of the safener 1,8 naphthalic anhydride (NA) to investigate possible protection from herbicide injury. The route of entry was examined in a separate test on six selected species. Persistence of the herbicides in the soil was examined over a period of 44 weeks.

Imazaquin controlled a wide range of annual and perennial broad-leaved and grass weeds while dwarf and field beans were tolerant. Herbicidal effects on wheat, barley and maize were reduced by NA at lower doses.

All four cereals were tolerant to isoxaben at doses which controlled many annual broad-leaved weeds, including all composites and crucifers but more interestingly Veronica persica, Viola arvensis and even Galium aparine.

Metsulfuron-methyl was extremely active, controlling mostly broad-leaved weeds while all four cereals were tolerant.

Aclonifen controlled a wide range of annual broad-leaved and grass weeds including Alopecurus myosuroides, Veronica persica and Viola arvensis. Crop tolerance was high and included all four cereals, carrot and many leguminous species.

Orbencarb controlled A. myosuroides, Veronica persica and Galium aparine in an otherwise narrow annual weed spectrum. Tolerance was found in cereals, legume and brassica crops.

Persistence in the soil was short to moderate for metsulfuron-methyl, aclonifen and orbencarb, moderately long for imazaquin and long for isoxaben, relative to the standard cyanazine (short persistence) and simazine (long persistence).

INTRODUCTION

*

*

The pre- and post-emergence activities and selectivities of new herbicides are investigated at WRO on a large number of pot-grown crop and weed species and at the same time experience of the type of effects produced by each compound is obtained. Persistence in the soil is also monitored and these data in conjunction with crop susceptibilities, are useful in considering subsequent cropping of treated land. The limitations of these investigations are that only one crop variety or source of weed species is used; they are grown in one particular soil type, at only one depth of sowing and without interspecific competition. Consequently the results should only be used as a guide for further work, as plant responses in pot experiments can be very different from those in the field.

* Herbicide Group

This report gives pre-emergence selectivity data on five new herbicides. Results of activity experiments are also included for isoxaben and orbencarb to provide information on levels of phytotoxicity, type and route of action. Those for imazaquin, metsulfuron-methyl and aclonifen were reported previously (Richardson et al., 1984; Richardson & West, 1984).

METHODS AND MATERIALS

Activity experiment (AE) This was carried out in the glasshouse on six selected species as described previously (Richardson and Dean, 1973). Four annual species were raised from seeds and two perennials from rhizome fragments. Herbicides were applied by four different methods.

- i) a post-emergence spray to the foliage only, avoiding contact
- with the soil, ii) post-emergence to the soil only, as a drench avoiding foliar contact,
- iii) pre-emergence to the soil surface,
- iv) pre-emergence with thorough incorporation to 5 cm depth before planting.

Table 1. Plant data for activity experiments

No.per potDepth ofStage of growthSpeciesCultivarat sprayingplantingSprayingAssessment/source(Cm)

	/source			(Cm)			
		pre-	post		pre-em	pre-em p	ost-em
Dwarf bean (Phaseolus vulgaris)	Master- piece	3 to 4	2	2.0	2 uni- foliate leaves	foliate leaves	2 to 3 tri- foliate leaves
Kale							
(Brassica oleracea acephala)	Marrowstem	10	5	0.5	2 to 2.5 leaves	4 to 5 leaves	4 to 5 leaves
Polygonum amphibium	WRO Clone 1	6	4 to 5	1.0	4.5 to 5.5	6 to 8 leaves	9 to 10 leaves
Perennial ryegrass (Lolium perenne)	S23	15	8 to 10	0.5	2 to 3 leaves	4 to 5 leaves, tiller- ing	2 to 6 tillers
Avena fatua	WRO 1978 WRO 1980	10 to 12	5	1.0	2.5 to 3 leaves	3.5 to 4.5 leaves, 0 to 2 tillers	2 tillers
Elymus repens	WRO Clone 1	6	4 to 5	1.0	2.5 to 3 leaves	3.5 to 5 leaves, 0 to 3 tillers	tillers

Soil and environment conditions Table 2.

Experiment type

Activity expt. 1 isoxaben

an entrance of a second state and the second state of the a merule state and a second state of the second state

The state of the s

Activity expt. 2 orbencarb

Pre-emergence selectivity

15

The state and the second second to state a state bridge to the state of the state o

a the a state of the state of a state of the state of the

19

Date of spraying	13.10.82	20.5.83	13.12.83
Main assessment completed	16.11.82	21.6.83	3.2.84
Organic matter (%)	2.2	2.2	2.2
Clay content (%)	15.0	15.0	15.0
pH (water; 1:2 soil/water)	7.5	7.5	7.5
Ammonium sulphate (g/kg)			0.4
Superphosphate (g/kg)	2.0	2.0	0.8
Potassium sulphate (g/kg)	-		0.4
Vitax QS fertilizer (g/kg)	2.5	2.5	
Fritted trace elements (g/kg) -	-	0.08
Hydrated Mg SO (g/kg)	0.8	0.8	0.3

Temperature (C)

Mean

Maximum	26	33	22	
Minimum	12	11	6	
Relative humidity (%)				
Mean	60	60	64	
Maximum	85	90	88	
Minimum	32	20	33	

Pre-emergence selectivity experiment

Techniques for the selectivity experiment were as described by Richardson and Dean (1973), all herbicides being applied as surface pre-emergence treatments. Species were sown as detailed in Appendix 1, each being replicated twice for every treatment.

Radish (Raphanus raphanistrum) was included for ease of propagation and may be regarded as a crop or weed. To improve establishment, seeds of Chenopodium album were kept in 0.1 M potassium nitrate for 48 hours in the light.

To protect from soil-borne pathogens, all seeds (except wheat, barley, oat, perennial ryegrass, C. segetum, G. aparine, Viola arvensis and most perennials) were pre-treated with one of the following:- thiram, captan, thiram + benlate (for onion only), bromophos + captan + thiabendazole (pea only). A. fatua seeds were dressed with 'Harvesan' organo-mercury. Maize seeds were purchased already treated with captan A + teraquinone. The seeds of kale, radish, swede and dwarf bean, were treated with thiram, a 6% gum arabic solution being used prior to dressing, to give better adhesion. In addition, 'Cheshunt Compound' (3 g litre) fungicide solutions were applied to certain species as soil drenches or sprays to protect against fungal diseases. Root fragments of Cirsium arvense were washed in a 2 ml litre colloidal copper solution.

A series of treatments were included for wheat, barley and maize in which seeds were treated with the safener (1,8-naphthalic anhydride) at 0.5% w/w a.i. of seeds.

4

Herbicides were applied using a laboratory sprayer embodying an 8002E Spraying Systems Tee Jet operated at a pressure of 207 kPa (30 lb/in) and moving at 0.54 m/s, 30 cm above the soil. Subsequent watering was from overhead. During the experiment, plants were raised in the glasshouse, normal daylight being supplemented by mercury vapour lighting to provide 14 hour photoperiods.

Assessment and processing of results

Results were processed as described by Richardson and Dean (1973). Survivors were counted and scored for vigour on a 0-7 scale where 0 = dead and 7= as in untreated control. Certain species showed variable germination and these results were ignored. However, vigour scores were taken for Polygonum lapathifolium and Phalaris paradoxa and these are included in the selectivity tables and referred to in the text where appropriate. Polygonum aviculare, Solanum nigrum and Holcus lanatus failed to germinate.

Pairs of histograms are presented for each treatment, the upper representing plant survival and the lower vigour score, both calculated as percentages of untreated controls. Each 'x' represents a 5% increment in the pre-emergence selectivity experiment but 7% in the activity experiments. A '+' indicates a value in excess of 100%; 'R' indicates a result based on one replicate only and 'M' represents a missing treatment.

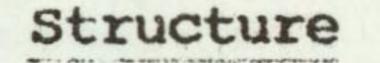
A table of observed selectivities, using the criteria specified, is presented for each herbicide, along with comments to highlight salient points.

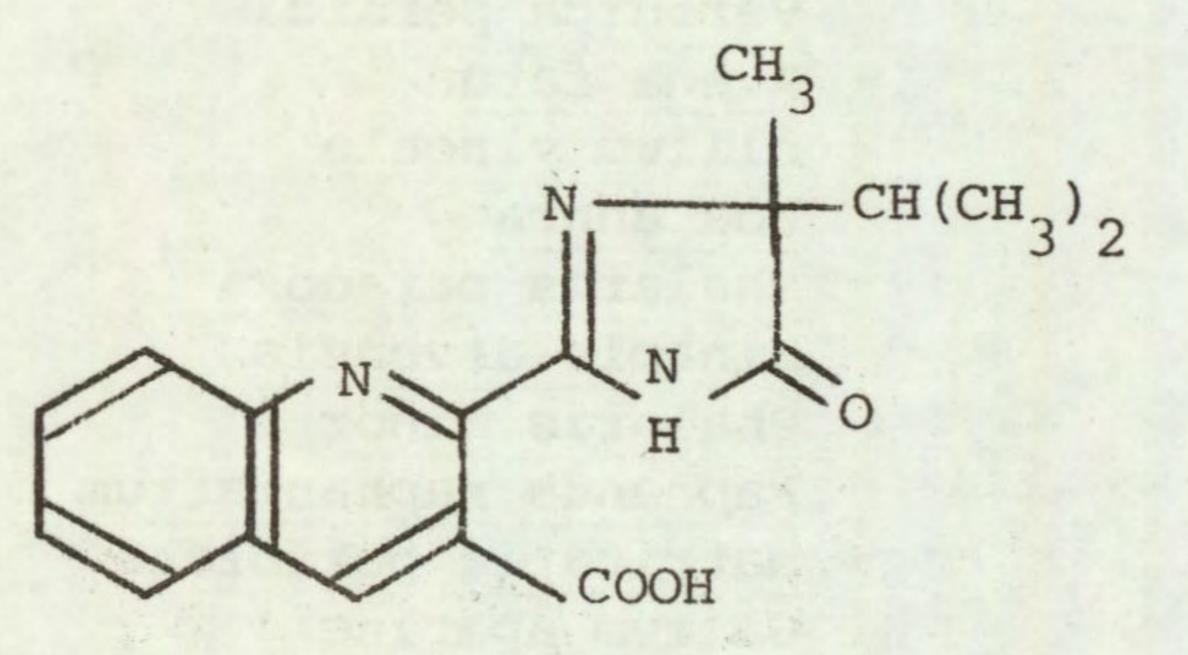
Several species, notably the perennials, were kept for an extra period to observe later effects or the degree of recovery from injury and these final observations are referred to in the text.

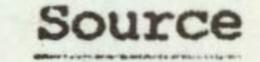
Persistence in the soil

This was monitored, by bioassay, in conjunction with the pre-emergence selectivity experiment. Pots (7.5 cm diameter) containing soil were sprayed directly with the herbicides. All pots were then transferred to the temperate glasshouse together with untreated controls and watered as necessary from overhead.

.


For each bloassay three replicate pots per treatment were selected and sensitive species (perennial ryegrass and turnip) were sown 0.5 cm deep, disturbing the soil as little as possible. Plants were harvested three or four weeks after sowing at a pre-determined growth stage, the number and fresh weight of shoots being recorded. Bioassays were repeated at six to eight week intervals for 44 weeks, unless the herbicides had disappeared before then. Herbicides are considered to have disappeared when shoot fresh weights of the test plants are 80% or more as compared with the controls. Results are presented graphically for each herbicide and comments are made in the text. Standard treatments of cyanazine (short persistence) and simazine (moderate to long persistence) were included for comparison (see page 52). Average temperature during this period was 15°C (minimum 2°C, maximum 34°C) and relative humidity 60% (minimum 25%, maximum 90%).


Imazaquin


Code number I

Imazaquin

Chemical name 2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl) quinoline-3-carboxylic acid

Cyanamid International Limited Fareham Road

Gosport Hants PO13 OAS UK

Information available and suggested uses

Broad-spectrum weed control in soyabean pre-plant incorporated, pre- and post-emergence; beans and cowpeas pre-emergence; lucerne, clover, tobacco post-emergence. Addition of a non-ionic surfactant is recommended at 0.1 to 0.5% v/v final concentration for post-emergence applications.

Formulation used Water dispersible granules 70% w/w a.i.

Spray volume 373 1/ha

RESULTS

Full results are given in the histograms on pages 8-13 and potential selectivities are summarised in the following table.

RATE CROPS: vigour reduced (kg a.i./ha) by less than 15% WEEDS: number or vigour reduced by 70% or more

0.4 None

0.1

None listed as no crops tolerant

dwarf bean field bean

Bromus sterilis Veronica persica Avena fatua Allium vineale Poa annua Phalaris paradoxa Sinapis arvensis Phalaris minor Raphanus raphanistrum Matricaria perforata Galium aparine + species below

0.025 as above + barley + safener (NA) Beta vulgaris Festuca rubra Alopecurus myosuroides Poa trivialis Chrysanthemum segetum Senecio vulgaris Chenopodium album Stellaria media Rumex obtusifolius Elymus repens Cirsium arvense Tussilago farfara Convolvulus arvensis

pea

State and a comparison of the second state and the second state of the second state and the second state of the second state o

lucerne
fenugreek
maize + safener (NA)

A COLOR OF THE REAL PROPERTY AND A COLOR OF THE REAL PROPERTY A COLOR OF THE REAL PROPERTY A COLOR OF THE REAL PROPERTY AND A COLOR OF THE REAL PROPERTY AND A COLOR OF THE REAL PROPERTY A C

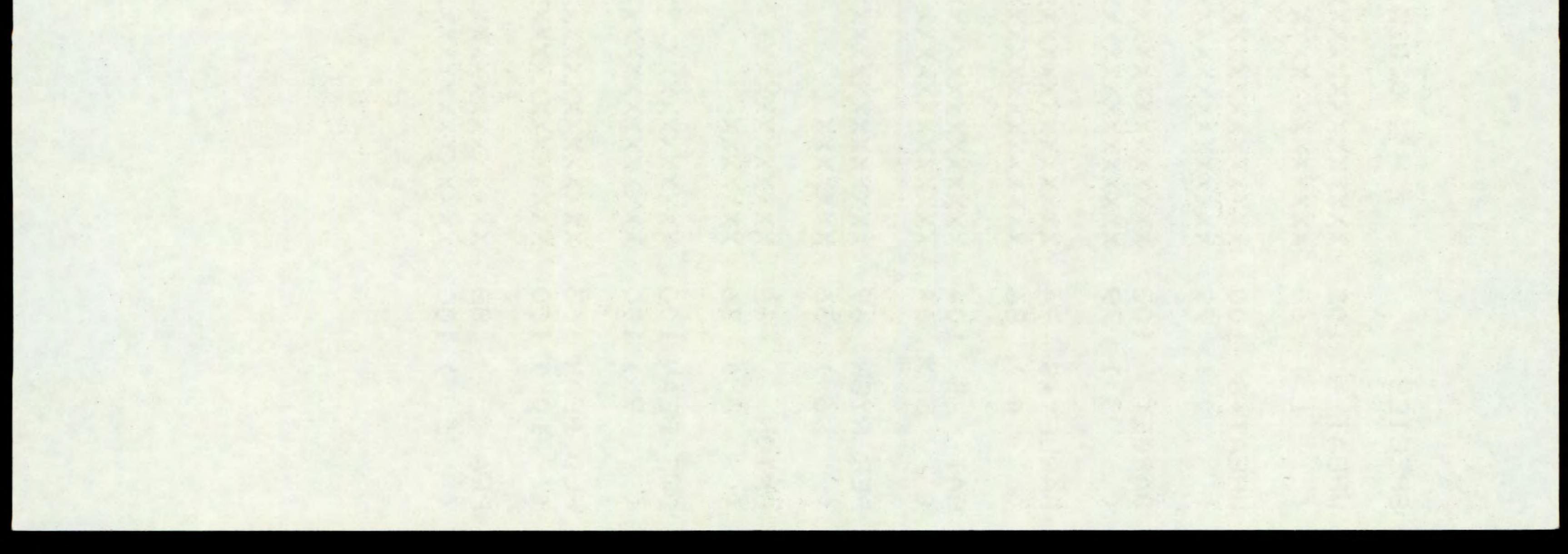
not in histograms

Comments on results

The activity, post-emergence selectivity and symptoms produced on susceptible species were described previously (Richardson, et al. 1984). Activity was greater with soil applications, particularly pre-emergence, but with little difference between surface and incorporated treatments. A pronounced chlorosis and inhibition of growth usually preceded necrosis and death of tissues. At higher doses, plants often failed to emerge from the soil or died back soon after. Cessation of growth after reaching the cotyledon stage was a striking feature with broad-leaved species.

Persistence in the soil

A moderate to long period of persistence in the soil was apparent, using turnip as the test species. Although 0.025 kg/ha was undetected 44 weeks after treatment, 0.1 and 0.4 kg/ha were still reducing shoot fresh weights by 92 and 96% respectively at this same date.


Pre-emergence selectivity

Thirteen weeds were controlled at the lowest dose of 0.025 kg/ha. These included perennial species (Elymus repens, Cirsium arvense, Tussilago farfara) as well as annual broad-leaved and grass species. A further eleven species were controlled at 0.1 kg/ha, notably the annuals, but also Allium vineale.

7

Dwarf bean and field bean were the two most tolerant crops, withstanding 0.1 kg/ha and being reduced in vigour by only 29 and 36% respectively at 0.4 kg/ha. Three other leguminous species, pea, lucerne and fenugreek, tolerated 0.025 kg/ha. Onion, white clover, brassicas, (rape, kale, swede), carrot, sugar beet and perennial ryegrass were sensitive. The safener, NA improved the tolerance of the three cereals, wheat, barley and maize such that the two latter species were tolerant to 0.025 kg/ha. Even at 0.1 kg/ha, vigour of all three was improved considerably by NA, but no safening resulted at 0.4 kg/ha.

The potential control of such a wide range of weeds, including many of considerable importance in dwarf and field beans is impressive and deserves following up. The weed spectrum appears wider pre-emergence than in the earlier post-emergence trial with these crops (Richardson et al., 1984). However the possibility of spraying over such a long time interval from pre-emergence to post-emergence would be a distinct advantage. Further work with the safener, NA and possibly other safeners, and other crops would seem worthwhile, the results here suggesting the potential control of Alopecurus myosuroides, Avena fatua and Bromus sterilis as well as volunteer cereals and many other important weeds in cereals.

SPECIES

0.025 KG/HA

WHEAT	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(1)	64	XXXXXXXXXXXX	29	XXXXXX
WHEAT+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(2)	79	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX
BARLEY	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(3)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
BARLEY+S	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(4)	86	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(5)	64	XXXXXXXXXXXX	43	XXXXXXXXX
PER RYGR	69	XXXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(6)	36	XXXXXX	21	XXXX
ONION	62	XXXXXXXXXXX	66	XXXXXXXXXXXX
(8)	36	XXXXXX	29	XXXXXX
IWF BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
(9)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXX
FLD BEAN	63	XXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(10)	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
FEA	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX
(11)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX

IMAZAQUIN

.

-

0.1 KG/HA

0.4 KG/HA

XXXXXX	83	XXXXXXXXXXXXXXXX
	21	XXXX
XXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X	21	XXXX
XXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	29	XXXXXX
XXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
×	29	XXXXXX
XXXXXX+	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	29	XXXXXX
XXX	36	XXXXXX
	14	XXX
	18	XXXX
	21	XXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	71	XXXXXXXXXXXXX
XXXXXX+	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	64	XXXXXXXXXXXX
X	71	XXXXXXXXXXXXX
XXX	43	XXXXXXXXX

PRE-

EMERGENCE

SELECTIVITY

TEST

...

SFEC	IES	\$		0.025
W CL	OVE	R	123	XXXXXXXXXXXX
(12)	43	XXXXXXXX
LUCE	ERNE		121	XXXXXXXXXXXXX
(13)	93	XXXXXXXXXXXXX
R'AF'E	-		97	XXXXXXXXXXXX
<	14)	43	XXXXXXXX
KALE			92	XXXXXXXXXXXXX
(15	>	36	XXXXXXX
SWEI	DE		86	XXXXXXXXXXXXX
(17)	43	XXXXXXXX
CARF	TOS		92	XXXXXXXXXXXXX
(18)	36	XXXXXXX
LETT	FUCE	-	93	XXXXXXXXXXXX
(20)	71	XXXXXXXXXXXXX
FENL	JGRE	EK	115	XXXXXXXXXXXXX
(21)	93	XXXXXXXXXXXXX
SUG	BER	ET	60	XXXXXXXXXXX
٢.	22)	29	XXXXXX
BETA	A VI	JL	56	XXXXXXXXXX
(.	23)	29	XXXXXX

IMAZAQUIN

.

1.3

*

KG/HA		0.1 KG/H
XXXXXXX+	123	XXXXXXXXXXXXXX
	14	XXX
XXXXXXX+	116	XXXXXXXXXXXXX
XXXXXX	57	XXXXXXXXXX
XXXXXX	78	XXXXXXXXXXXXX
	21	XXXX
XXXXX	92	XXXXXXXXXXXXX
	29	XXXXXX
XXXX	90	XXXXXXXXXXXXX
	29	XXXXXX
XXXXX	83	XXXXXXXXXXXXX
	21	XXXX
XXXXXX	101	XXXXXXXXXXXXXX
X	50	XXXXXXXXX
XXXXXX+	104	XXXXXXXXXXXXXX
XXXXXX	64	XXXXXXXXXXXXX
	60	XXXXXXXXXXX
	14	XXX .
	32	XXXXXX
	21	XXXX

A		0.4 KG/HA
XXXXX+	68 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX+	74 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX	. 64 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX	58 14	XXXXXXXXXXXX XXX
XXXXXX	34 21	XXXXXXX XXXX
XXXXXX+	104 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	40 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

2. . # * . . PRE-XXX EMERGENCE XXXXXX SELECTIVITY . 9

TEST

I the set of the set

* *

SPECIES

0.025

BRO	M 51	TE	82	XXXXXXXXXXXXX
<	24	>	36	XXXXXX
FEST	T RL	JB	57	XXXXXXXXXX
(25)	21	XXXX
AVE	FAT	ru	121	XXXXXXXXXXXXX
<	26)	50	XXXXXXXXX
ALO	MYC	S	52	XXXXXXXXX
(27)	21	XXXX
FOA	ANN	1	78	XXXXXXXXXXXX
(28)	36	XXXXXXX
POA	TRI	V	73	XXXXXXXXXXXX
(29)	14	XXX
				XXXXXXXXXXXX
(30)	36	XXXXXXX
RAPH	+ RA	F	92	XXXXXXXXXXXX
(31)	36	XXXXXXX
CHRY	SE	G	97	XXXXXXXXXXXX
(32)	29	XXXXXX
MAT	FER	F	83	XXXXXXXXXXXX
(33)	36	XXXXXXX

IMAZAQUIN

KG/HA	/HA	KG
-------	-----	----

0.1 KG	1
--------	---

XXXX	55	XXXXXXXXXXX	5	X
	14	XXX	7	X
	16	XXX	49	XXXXXXXXX
	14	XXX	14	XXX
XXXXXXX+	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXX
	29	XXXXXX	21	XXXX
	46	XXXXXXXX	17	XXX
	14	XXX	14	XXX
XXXX	62	XXXXXXXXXXX	59	XXXXXXXXXXX
	29	XXXXXX	14	XXX
XXX	49	XXXXXXXXXX	16	XXX
	14	XXX	14	XXX
XXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17	XXX
	14	XXX	14	XXX
XXXXX		XXXXXXXXXXXXX	56	XXXXXXXXXX
	29	XXXXXX	21	XXXX
XXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72	XXXXXXXXXXXXX
	29	XXXXXX	14	XXX
XXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX
	14	XXX	14	XXX

HA

0.4 KG/HA

 Image: Network
 10
 XXXXX+

PRE-

.

SPEC	IES			0.025
SEN	VUL	3	0	
(34)	0	
GAL	AF'AF	2 9	8	XXXXXXXXXXXX
<	38) 5	50	XXXXXXXXX
CHEN	AL	8 9	99	XXXXXXXXXXXX
				XXXXXX
STEL	ME	0 11	.8	XXXXXXXXXXXX
(40) 2	21	XXXX
VER	PERS	5 8	37	XXXXXXXXXXXX
(42) 4	43	XXXXXXXX
VIA	RVE	6	53	XXXXXXXXXXXX
(43) 5	50	XXXXXXXXX
RUM	OBT	Jé	57	XXXXXXXXXXXX
(44) 2	29	XXXXXX
EL R	EPE	V 3	37	XXXXXX
(47) 2	29	XXXXXX
ALL	VIN	9	76	XXXXXXXXXXXX
(49) :	36	XXXXXXX
CIRS	AR	v s	50	XXXXXXXXX
				XXXX

IMAZAQUIN

*

0.1 KG/HA KG/HA 0 0 XXXXXXXX XXXXXXXXXXXXXXXX 81 29 XXXXXX XXXXXXXX XXXXXXXXXXXXXXXX 84 XXXXXX 29 XXXXXXXXXXXXXXX XXXXXXX+ 127 14 XXX XXXXX XXXXXXXXXXXX 62 XXXX 21 XXXXXXXXXXXXXXX 95 XXXXXXX 36 XXXXXXXXXXXXXXX 78 XXXX 21 0 0 38 XXXXXXXX XXXXXXX XXXXXX 29 0

	0.4	KG/H

	~	
	0	
	0	
XX	63	XXXXXXXXXXXX
	21	XXXX
XXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		XXX
XXXXX+	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		XXX
	50	XXXXXXXXX
		XXX
XXXXX	39	XXXXXXX
		XXXXXX
XX	122	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		XXX
	0	
	0	
	6	×
	7	Ŷ
	~	
	0	

.

XXXX XXXXXX+ XXXXXX+

PRE-EMERGENCE SELECTIVITY TEST

SPECIES

25	XXXXX
14	XXX
18	XXXX
1.4	XXX
1.00	XXXXXXXXXXXXXXXXXXX
86	XXXXXXXXXXXXXXXXXX
1.00	XXXXXXXXXXXXXXXXXXX
64	XXXXXXXXXXXXX
98	XXXXXXXXXXXXXXXXXXXX
79	XXXXXXXXXXXXXXXX
	14 18 14 100 86 100 64

IMAZAQUIN

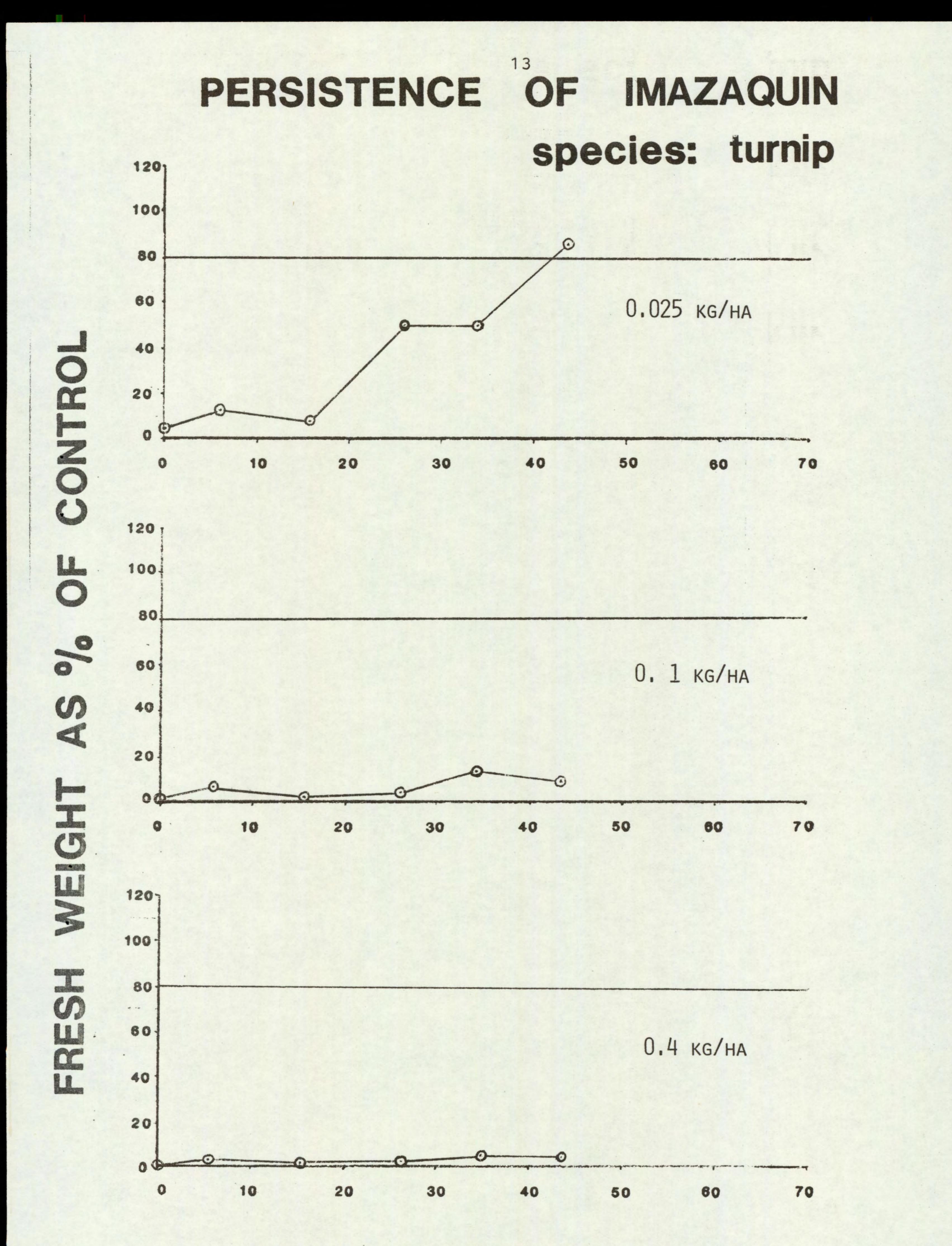
.

0.025 KG/HA

.

A		O.1 KG/HA
	12	XX
		X
	53	XXXXXXXXXX
		XXXXXX
XXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	79	XXXXXXXXXXXXXXXXX

100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
50	XXXXXXXXX
29	XXXXXX
43	XXXXXXXX
	50


0.4 KG/HA

1

	00	
	88 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	70 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	4 14	X XXX

XXXX

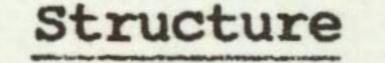
PRE EMERGEN CE SEL E H K TEST

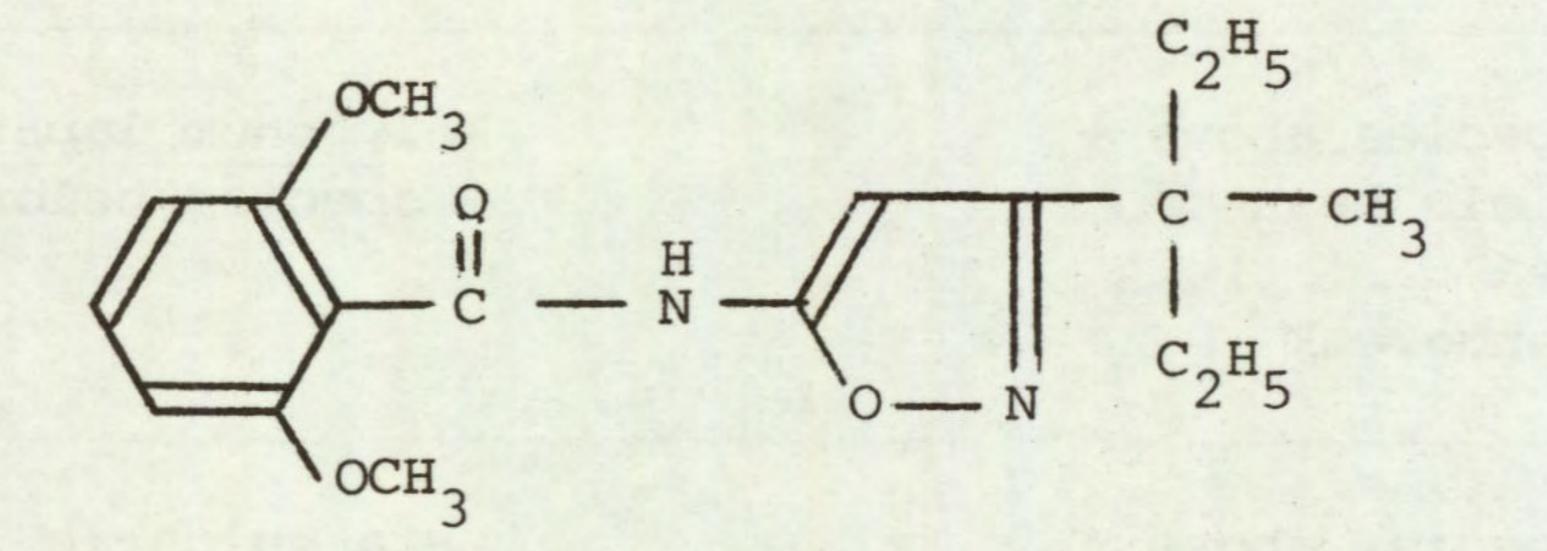
TIME OF SOWING weeks after treatment

Isoxaben BATE N. WINDOW, AND PARTIES. MINIMUM PRIMA

15

Code number EL 107


Trade name


Flexidor

Benzamizole Former common name

Chemical name

N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6dimethoxybenzamide

Source

Elanco Products Limited Kingsclere Road Basingstoke Hants RG21 2XA

Information available and suggested uses

Pre-emergence control of broad-leaved weeds in cereals

Formulation used

Suspension concentrate 50% w/w a.i.

Spray volume 373 1/ha.

RESULTS

-

*

Full results are given in the histograms on pages 18-24 and potential selectivities are summarised in the following table.

RATE CROPS: vigour reduced by (kg/a.i/ha) less than 15%

WEEDS: number or vigour reduced by 70% or more

0.64 wheat±safener (NA) barley±safener (NA) oat Festuca rubra Poa trivialis Raphanus raphanistrum Galium aparine Phalaris paradoxa + species below

maize±safener (NA)

0.16

species above +
field bean
pea
fenugreek

Polygonum lapathifolium + species below

0.04

species above +
perennial ryegrass
dwarf bean
lucerne

Beta vulgaris Sinapis arvensis Chrysanthemum segetum Matricaria perforata Senecio vulgaris Chenopodium album Stellaria media

Veronica persica Viola arvensis Rumex obtusifolius

+ not in histograms

Comments on results Activity experiment

The foliar spray caused only minor effects on the four annual species. The soil drench was more active but there were no lethal effects on any of the species. Greatest activity was found pre-emergence, especially on the smaller-seed, kale and ryegrass, both of which were much more sensitive to the surface, rather than the incorporated pre-emergence treatments. The reverse trend was found on the two perennial species, the incorporation being the more active form of treatment, but phytotoxicity was generally much less. The larger-seeded annuals (dwarf bean and Avena fatua) showed considerable

16

tolerance.

Symptoms on susceptible species

Symptoms on sprayed foliage were usually minor and transient, new leaves developing after spraying being healthy. The soil drench severely inhibited growth in the kale and ryegrass, new leaves appearing miniaturised in the former species while there was leaf trapping in the latter. Some chlorosis of leaves was seen in kale and Polygonum amphibium. Necrosis developed later in the latter species and ryegrass. At higher doses pre-emergence, plants often failed to emerge from the soil or died back soon after. At lower doses, some species appeared in miniaturised form, but did not survive. Several species ceased growth at the cotyledon leaf stage, these often being chlorotic before necrosis developed. Stem bases below cotyledons of brassicas were abnormally swollen. Some grasses tended to a prostrate habit and exhibited shortened, thickened secondary roots. Poa annua leaves appeared dart-like and were darker green in colour. With Elymus repens, onion leafing was apparent.

17

Persistence in the soil

A long period of persistence in the soil exists with izoxaben. Using turnip as the test species, doses of 0.04, 0.16 and 0.64 kg/ha were reducing shoot fresh weight by 92, 99 and 100% respectively, 44 weeks after treatment.

Pre-emergence selectivity

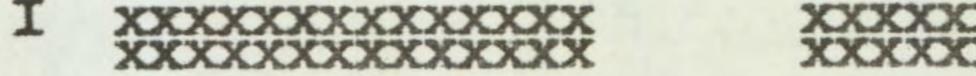
.

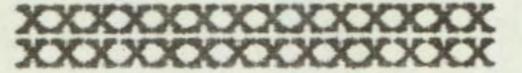
Ten annual broad-leaved weeds were controlled at the lowest dose of 0.04 kg/ha. These included all three composites (Chrysanthemum segetum, Matricaria perforata, Senecio vulgaris) but more importantly, Viola arvensis and Veronica persica. At 0.16 kg/ha, Polygonum lapathifolium was controlled and a further five annual species at the highest dose of 0.64 kg/ha, including Galium aparine and three grasses (Poa trivialis, Phalaris paradoxa, Festuca rubra). Most other grasses, (Avena fatua, Alopecurus myosuroides, Bromus sterilis) and all perennials were resistant.

All four cereals (wheat, barley, oat, maize) tolerated the highest dose of 0.64 kg/ha. At 0.16 kg/ha three leguminous crops (field bean, pea, fenugreek) were tolerant. Two other legumes, dwarf bean and lucerne withstood 0.04 kg/ha as did perennial ryegrass.

The control of a wide spectrum of broad-leaved weeds is possible in cereals, most interestingly Veronica persica and Viola arvensis, two problem weeds of recent years. Also, the potential control of Galium aparine in cereals deserves further investigation. The tolerance of several legumes and perennial ryegrass may also be worth additional study. In all of these crops, the lack of grass weed control would be a disadvantage, such that mixture studies will be needed.

.


-


18

ACTIVITY EXPERIMENT

ISOXABEN

	0.025 kg/ha	0.125 kg/ha	0.625 kg/ha
	F XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BEAN	P XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	F XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	8
	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	X
	F XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
POLYGONUM	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
PERENNIAL	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
•	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELYMUS	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX

. .

•

.

•

•

KEY: F = post-emergence, foliar application
S = post-emergence, soil drench
P = pre-emergence, surface film
I = pre-planting, incorporated

SPECIES

0.04

WHEA	TF		96	XXXXXXXXXXXXX
<	1)	100	XXXXXXXXXXXXX
WHEA	AT+	3	94	XXXXXXXXXXXXX
(2)	100	XXXXXXXXXXXXX
BARL	.EY		102	XXXXXXXXXXXXX
(3)	100	XXXXXXXXXXXXXX
BARL	EY-	+S	100	XXXXXXXXXXXXXX
<	4	>	100	XXXXXXXXXXXXXXX
DAT			104	XXXXXXXXXXXXXX
<	5)	100	XXXXXXXXXXXXXX
PER	RYC	SR'	93	XXXXXXXXXXXXXX
<	6)	93	XXXXXXXXXXXXXXX
ONIC	N		66	XXXXXXXXXXXX
(8)	79	XXXXXXXXXXXXXXX
DWF	BEA	M	100	XXXXXXXXXXXXXX
< .	9)	100	XXXXXXXXXXXXXXXX
FLD	REA	N	79	XXXXXXXXXXXXXXX
<	10)	93	XXXXXXXXXXXXXXXXX
PEA			141	XXXXXXXXXXXXXXXXX
(11)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

-				
XXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX+	1.04	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	73	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4	X
XXXXXX	71	XXXXXXXXXXXXX	21	XXXX
<	40	XXXXXXXX	0	
XXXX	50	XXXXXXXXXX	0	
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	71	XXXXXXXXXXXXX	50	XXXXXXXXXX
XXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
XXXXXX+	106	XXXXXXXXXXXXXXXXXXXXXXXX	53	XXXXXXXXXX
XXXXXXX	93	XXXXXXXXXXXXXXXXXXXX	14	XXX

1 × 1

.

KG/HA

*

.

.

.

.

ISOXABEN

0.16 KG/HA

0.64 KG/HA

.

....

PRE EMERGENCE SELECTIV TTY TEST

19

SPECIES

WC	LOVE	ER	27	XXXXX
(12)	21	XXXX
LUC	ERNE		95	XXXXXXXXXXXX
(13)	93	XXXXXXXXXXXX
RAF	E		59	XXXXXXXXXXX
			50	XXXXXXXXX
KAL	E		60	XXXXXXXXXXX
				XXXXXXXXXXXX
SWE	DE		34	XXXXXX
				XXXXXX
CAR	ROT		50	XXXXXXXXX
)	64	XXXXXXXXXXXXX
LET	TUCE	-	17	XXX
				XXXXXXXXXXXXX
FEN	UGRE	EK	76	XXXXXXXXXXXX
				XXXXXXXXXXXXX
SUG	BER	ET	39	XXXXXXX
				XXXXXXXX
BET	AU	ال	27	XXXXX
				XXXXXXXXXXXXX

0.04 KG/HA

ISOXABEN 0.16 KG/HA

	0	
XXXXXX	11	XX
XXXXXX		XXXXXX
		XXX
	43	XXXXXXXXX
		XXXXXXX
XXXX	36	XXXXXXX
		X
	7	X
	0	
<	0	
	34	
X	57	XXXXXXXXXXX
XXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	9	XX
	14	XXX
	8	XX
X	29	XXXXXX

.

0.64 KG/HA

0	
521	XXXX
57	×
14 29	XXX XXXXXX
00	
0	
17 21	XXX XXXX
65 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
47	X X
821	XX XXXX

XXXXXXXX XXXXXXX

.

.

. .

PRE-EMERGENCE SELECTIVITY TEST

1.00

......

.

.

20

.

BROM STE	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(24)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FEST RUB	49	XXXXXXXXX
(25)	86	XXXXXXXXXXXXXXXXX
AVE FATU	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(26)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS	115	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(27)	100	XXXXXXXXXXXXXXXXX
POA ANN	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(28)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA TRIV	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(29)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SIN ARV	27	XXXXX
(30)	57	XXXXXXXXXXX
RAPH RAP		XXXXXXXXXXX
(31)	57	XXXXXXXXXX
CHRY SEG	63	XXXXXXXXXXXXX
(32)	29	XXXXXX
MAT PERF	29	XXXXXX
(33)	29	XXXXXX

.

1

SFECIES

0.04 KG/HA

BROM STE	109	XXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(24)	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FEST RUB	49	XXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(25)	86	XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
AVE FATU	107	XXXXXXXXXXXXXXXXXXXXXXXXXX	114	XXXXXXXXXXXXXXXXXXXXXXXXXXX	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(26)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS	115	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(27)	100	XXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FOA ANN	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
(28)	100	XXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	43	XXXXXXXXX
POA TRIV	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	0	
(29)	71	XXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
SIN ARV	27	XXXXX	0		0	
(30)	57	XXXXXXXXXXX	0		0	
RAPH RAP	61	XXXXXXXXXXXX	36	XXXXXXX	0	
(31)	57	XXXXXXXXXXX	36	XXXXXXX	0	
CHRY SEG	63	XXXXXXXXXXXXX	34	XXXXXXX	0	
(32)	29	XXXXXX	14	XXX	. 0	
MAT PERF	29	XXXXXX	0		0	
(33)	29	XXXXXX	0		0	

.

ISOXABEN

all the strate

1

1

The state and the

0.16 KG/HA

0.64 KG/HA

The second and the

.

.

10

12

XXXXXX+ XXXXXXX

XXXXXX+ XXXXXX

XXXXXX XX

PRE EMERGENCE SELECTIVITY TEST

A Course of the second

e sala

1

.

21

**

SPECIES

0.04 KG/HA

				KG/IM		
SEN VULG		XXXX XXXX	0		00	
GAL AFAR		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX
				AAAAAAAA	7.4	XXX
CHEN ALB			0		0	
(39)	0		0		0	
STEL MED	0		0		~	
(40)	0		õ		0	
					~	
VER PERS	0		0		0	
(42)	0		0		0	
VI ARVE	8	XX	0		~	
(43)	21	XXXX	õ		0	
					~	
RUM OBTU			0		0	
(44)	0		0		0	
EL REPEN	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(47)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
					1.00	~~~~~~~~~
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXXX
(49)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXX
CIRS ARV	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1-7	
(50)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXXXXXXXXXXXX
			04	~~~~~	50	XXXXXXXXXX

ISOXABEN

0.16 KG/HA

0.64 KG/HA

PRE-EMERGENCE SEL ECTIVITY TEST

22

XXXXX+ XXXXX

SPECIES		0.0
TUS FARF	100	XXXXXXXXXXX
(51)	1.00	XXXXXXXXXXX
CONV ARV	53	XXXXXXXXXXX
(52)	100	XXXXXXXXXXX
MAIZE+S	1.00	XXXXXXXXXXX
(56)	100	XXXXXXXXXXX
MAIZE	1.00	XXXXXXXXXXX
(57)	100	XXXXXXXXXXXX
FHAL MIN	101	XXXXXXXXXXX
(84)	100	XXXXXXXXXXX

+11

ISOXABEN

04 KG/HA 0.16 XXXXXXXXXX XXXXXXXXXXXXX 100 XXXXXXXXXX XXXXXXXXXXXXX 100 XXXXXXX 35 XXXXXXXXXX 79 XXXXXXXXXX XXXXXXXXXXXXX 100 XXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXX 100 XXXXXXXXXX XXXXXXXXXXXXX 100 XXXXXXXXXX XXXXXXXXXXXXX 80 XXXXXXXXXXXX XXXXXXXXXX 71

24

13.52

1

54

-14

.

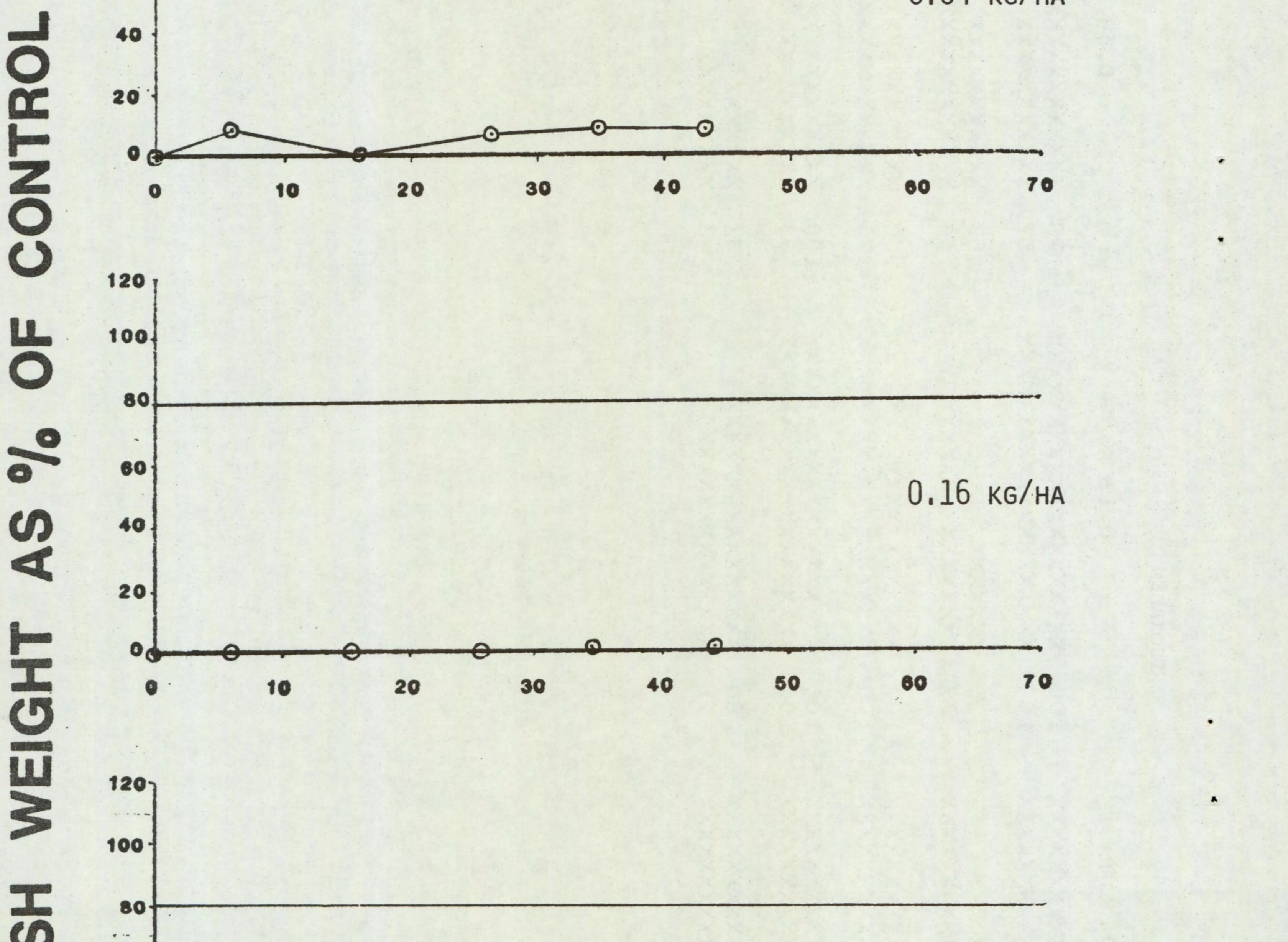
KG/HA		0.64 KG/HA
XXXXXXXX	75	XXXXXXXXXXXXXX
XXXXXXXX	57	XXXXXXXXXX
	53	XXXXXXXXXX
XXXX	64	XXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	33	XXXXXX
XXX	43	XXXXXXXXX

.

.

XXXXXXXX XXXXXXXX

XXXXXXXXX XXXXXXXX


PRE EMERGENCE SEL EC TEST

.23

A Contraction of the second se

PERSISTENCE ²⁴OF ISOXABEN species: turnip

0.04 KG/HA

0.64 KG/HA . TIME OF SOWING weeks after treatment


METSULFURON-METHYL

Code number

DPX-T 6376

Chemical name

Methyl 2-[3-(4-methoxy-6-methyl-1,3,5-triazin-2-y]) ureidosulphonyl]benzoate

COOCH OCH_ SO_NHCNH N CH₂

Source

Du Pont (UK) Ltd Wedgwood Way Stevenage SG1 4QN Herts. U.K.

Information available and suggested uses

Control of broad-leaved weeds in cereals.

Formulation used Water dispersible granules 70% w/w a.i.

Spray volume

373 1/ha.

RESULTS

.

Full results are given in the histograms on pages 28-33 and potential selectivities are summarised in the following table.

RATE Crops: vigour reduced by (kg a.i./ha) 15% or less

WEEDS: number of vigour reduced by 70% or more

0.008 wheat±safener (NA) barley±safener (NA)

Beta vulgaris Festuca rubra

maize±safener (NA) oat

Poa annua Poa trivialis Sinapis arvensis Chenopodium album Viola arvensis Elymus repens Convolvulus arvensis + species below

0.002

as above + dwarf bean field bean* pea rape radish

Chrysanthemum segetum Matricaria perforata Senecio vulgaris Veronica persica Allium vineale Cirsium arvense Tussilago farfara + species below

0.0005 as above + lucerne swede carrot sugar beet

Stellaria media Rumex obtusifolius

* but note some stand reduction

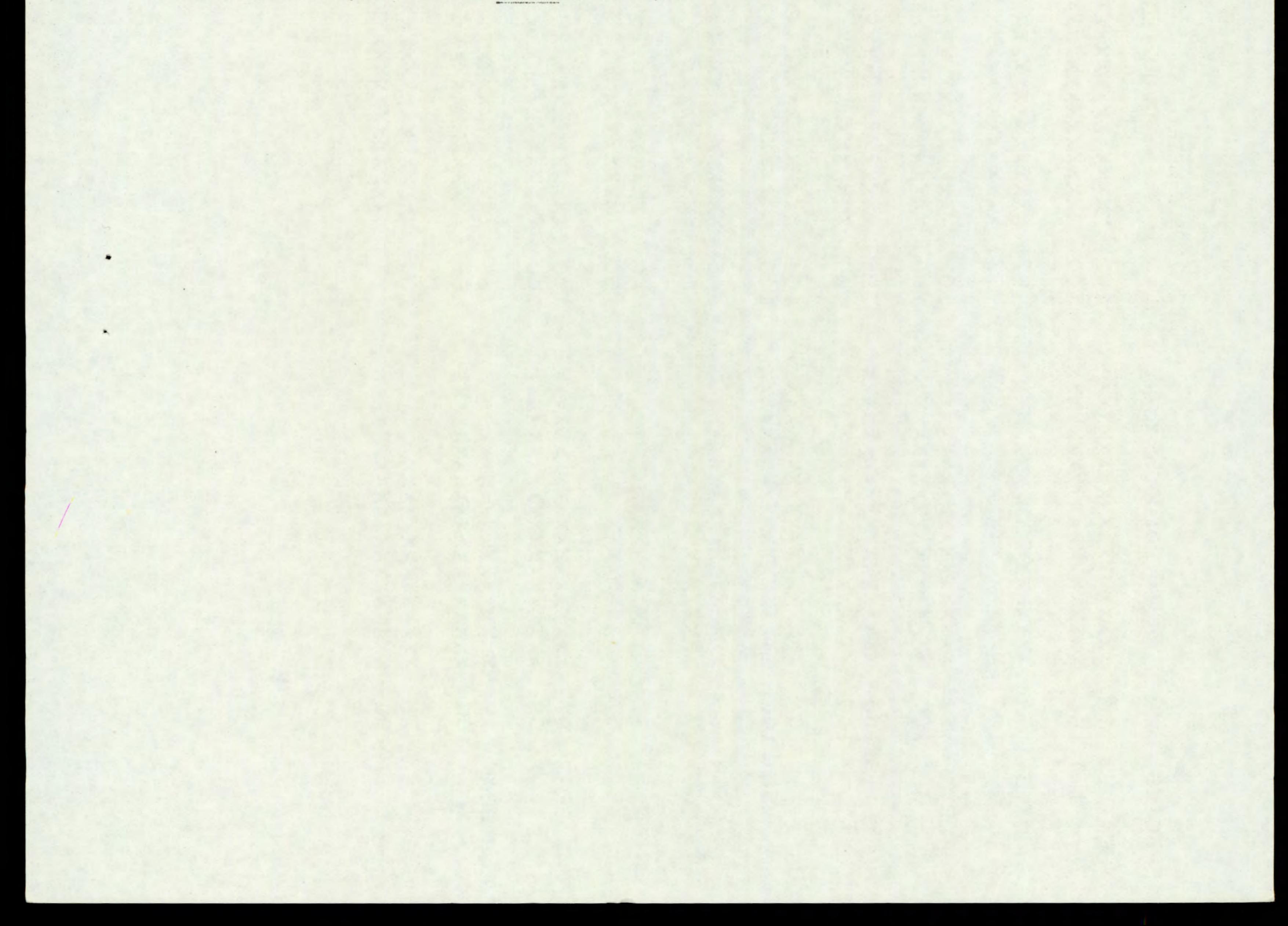
Comments on results

The activity, post-emergence selectivity and symptoms produced on susceptible species were described in a previous report (Richardson et al., 1984). Symptoms were similar to those caused by chlorsulfuron, its chemical analogue, also described previously (Richardson et al. 1980). Metsulfuron-methyl was found to be one of the most active herbicides yet tested. It possesses considerable soil activity, particularly pre-emergence, with surface treatments being generally more active than when incorporated into the soil. A pronounced yellowing accompanied severe inhibition of growth prior to necrosis and die-back. However, in some species, notably Polygonaceae other colour effects such as an enhanced red pigmentation were often seen. A powerful inhibition of root systems is common, grass shoots consequently assuming a dart-like appearance, with needle-shaped leaves, reminiscent of symptoms caused by other root-inhibiting herbicides. At higher doses plants often failed to emerge from the soil or died back soon after.

Persistence in the soil

Metsulfuron-methyl persistence in the soil appears to be much less than for the related chlorsulfuron (Richardson et al. 1981). Using turnip as test species, the dose of 0.002 kg/ha could not be detected 7 weeks after treatment. The high dose of 0.008 kg/ha could not be detected 44 weeks after treatment.

Pre-emergence selectivity


.

Annual broad-leaved weeds were particularly susceptible. Stellaria media and Rumex obtusifolius were controlled even at the lowest dose of 0.0005 kg/ha (0.5 g/ha). At 0.002 kg/ha all five of the composite species were controlled including the perennials, Cirsium arvense and Tussilago farfara. Veronica persica and Allium vineale were controlled at this dose. A further nine weeds were suceptible to the highest dose of 0.008 kg/ha, including four of the grasses (Poa annua, Poa trivialis, Festuca rubra, and E. repens). More

importantly, Viola arvensis was controlled at this dose. Galium aparine was outstandingly resistant, while Raphanus raphanistrum and all other grasses (Bromus sterilis, Avena fatua, Phalaris spp.) were not controlled.

All four cereals, wheat, barley, oat and maize tolerated the highest dose of 0.008 kg/ha such that it was not possible to determine safening with NA. Surprisingly, large-seeded legumes (peas and beans) tolerated 0.002 kg/ha as did radish. Onion and white clover were sensitive.

The wide-spectrum of control of annual broad-leaved weeds in wheat, barley and oat, corresponds to that found in the earlier post-emergence trial (Richardson et al., 1984a). Control of Viola arvensis and Veronica persica in wheat and barley is an important advantage over urea herbicides, for example, but the resistance of Galium aparine is a disadvantage, common to all of these herbicides. Some further examination of potential use in other crops e.g. maize and legumes is required, however, as such tolerance was not experienced in earlier work (Richardson et al., 1984).

SFECIES

WHE	AT		96	XXXXXXXXXXXXX
(1)	100	XXXXXXXXXXXXX
WHE	4T+9	5	94	XXXXXXXXXXXX
<	2)	100	XXXXXXXXXXXXX
BAR	EY		89	XXXXXXXXXXXXX
(3)	100	XXXXXXXXXXXXX
BARL	EY-	+S	1.00	XXXXXXXXXXXX
<	4)	100	XXXXXXXXXXXXX
DAT			104	XXXXXXXXXXXX
(5)	100	XXXXXXXXXXXXX
FER	RYC	SR	85	XXXXXXXXXXXX
(6	>	71	XXXXXXXXXXXXX
ONIC	NC		71.	XXXXXXXXXXXX
(8)	57	XXXXXXXXXXX
IWF	BEA	N	100	XXXXXXXXXXXX
<	9	>	100	XXXXXXXXXXXXX
FLD	BEA	N	79	XXXXXXXXXXXXX
<	10)	100	XXXXXXXXXXXXX
FEA			71	XXXXXXXXXXXX
				XXXXXXXXXXXXX

	METSULF	URON-METHYL
0.0005 KG/HA		0.002 KG/HA
XXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX+	104	XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	65	XXXXXXXXXXXX
XXXXXXX	57	XXXXXXXXXXX
XXXXXX	40	XXXXXXX
XXXX	50	XXXXXXXXXX
XXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	63	XXXXXXXXXXXX
XXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	PRE
XXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	MER
XXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	EMERGENO
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	E
XXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	SELE
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ECT
XXXXXXX+	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	IVI
XXXXXXXX	86	XXXXXXXXXXXXXXXXX	ITY
X	41	XXXXXXX	TES
	29	XXXXXX	H
	31	XXXXXX	
	21	XXXX	
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXX	79	XXXXXXXXXXXXXXXX	
X	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXX	57	XXXXXXXXXXX	
XXXXXXX+	106	XXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXX	50	XXXXXXXXXX	

*

•

0.008 KG/HA

SFECIES	0.0005 KG/HA		·0.002 KG/HA	0.0081
W CLOVER (12)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SWEDE (17)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BETA VUL	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	45 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

METSULFURON-METHYL

.

.

.

1

KG/HA

XXXXXXX

XXXXXX

XXXXXXX

XXXXX

PRE EMERGENCE SEL ECTIVITY TEST

29

.

XXXXX

XXXXXXX

SFECIES	0.0005 KG/HA		0.002
BROM STE 109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXX
(24) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXX
FEST RUB 105	XXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(25) 71	XXXXXXXXXXXXXX	50	XXXXXXXXXXX
AVE FATU 129 (26) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS 75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(27) 71	XXXXXXXXXXXXX		XXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(28) 71	XXXXXXXXXXXXX	43	XXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32	XXXXXX
(29) 43	XXXXXXXXX		XXXXXXXX
SIN ARV 110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXX
(30) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPH RAP 97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(31) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG 76	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63	XXXXXXXXXXXXX
(32) 43	XXXXXXXXX		XXXX
MAT PERF 68	XXXXXXXXXXXXX	ET, ET,	XXXXXXXXXX
(33) 43			XXX

METSULFURON-METHYL

2 KG/HA

0.008' KG/HA

XXXXXXX+	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX		
~~~~~	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	57	XXXXXXXXXX
	29	XXXXXX
XXXXXXX+	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	75	XXXXXXXXXXXXX
	36	XXXXXX
XXXXX	55	XXXXXXXXXX
	29	XXXXXX
	8	XX
x	7	X
XXXXXX	77	XXXXXXXXXXXX
XX	29	XXXXXX
XXXXXXX+	97	XXXXXXXXXXXX
XXXXXXX	43	XXXXXXXX
×	68	XXXXXXXXXXXX
	14	XXX
	29	XXXXXX
	14	XXX

.

XXXXXXXX+ XXXXXXX

XXXXXXXX XXXX

XXX

PRE-EMERGENCE SELECTIVITY TEST

30

XX

XXXXXX

X

SPECIES		. 0. 00		
SEN VUL	G 85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
		XXXXXXX		
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
( 38	) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
CHEN ALL	a 107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
( 39 )	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
STEL MEI	1 173	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
( 40 )	29	XXXXXX		
VER PERS	5 50	XXXXXXXXX		
( 42 )	36	XXXXXXX		
VI ARVE	95	XXXXXXXXXXXXX		
( 43 )	71	XXXXXXXXXXXXX		
RUM OBTL	44	XXXXXXXX		
( 44 )	29	XXXXXX		
EL REPEN	103	XXXXXXXXXXXXX		
( 47 )	100	XXXXXXXXXXXXX		
ALL VIN	83	XXXXXXXXXXXXX		
( 49 )		XXXXXXXXXXX		
CIRS ARV	117	XXXXXXXXXXXXX		
		XXXXXXXXXXXXXX		

# METSULFURON-METHYL

.

٠

005 KG/HA		0.002 KG/HA		0.008 KG/H
XXXXXX	0		0	
XXXXXXXXX+ XXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX+ XXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX+	136	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	118 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	0		0	
XXXXXXXXX	55 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32 21	XXXXXX XXXX
	133	XXXXXXXXXXXXXXXXXXXXXX XXXXXX	78 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX+		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	57 29	XXXXXXXXXXX XXXXXXX	19 14	XXXX XXX
XXXXXXXX+ XX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	

Click here to continue

KG/HA

.

XXXXXXX XXXXXXX

XXXXX

XXXXXXX+

PRE-EMERGENCE SELECTIVITY TEST