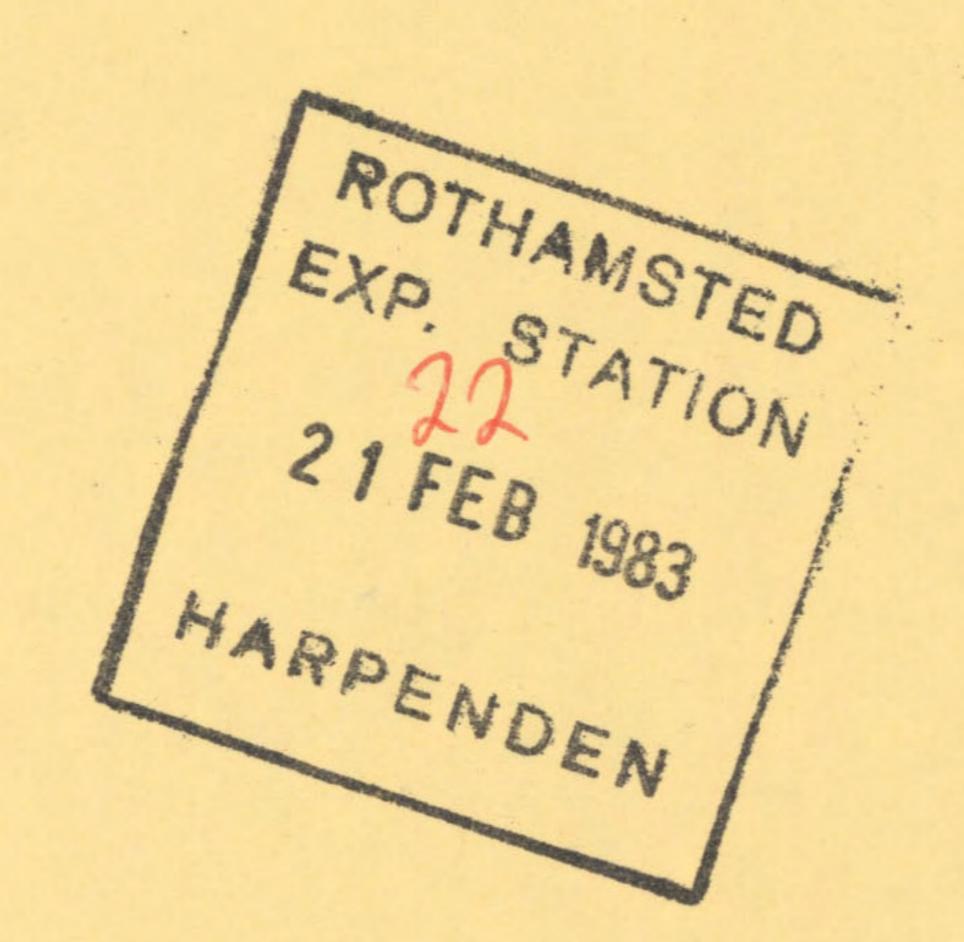


TECHNICAL REPORT No. 68


THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: WL 49818, WL 82830, WL 83627, WL 83801 AND DPX 5648

DPX 5648 is sulfometuron-methyl, WL 83627 is 3-(3-methyl-4-isopropylphenyl)-1,1-dimethylurea WL49818, WL 82830 & WL 83801 are confidential (Shell)

W G Richardson, T M West and C Parker

December 1982

Price - £4.00

Agricultural Research Council Weed Research Organization, Begbroke Hill, Yarraton, Oxford, OX5 1PF

CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
METHODS AND MATERIALS	2
RESULTS	
WL 49818	6
Confidential	
WL 82830	17
Confidential	
WL 83627	28
3-(3-methyl-4-isopropylphenyl)-1,1-dimethylurea	
WL 83801	39
Confidential	
DPX 5648	50
Methyl 2-(4,6-dimethylpyrimidin-2-ylureido)sulphonylbenzoate	
ACKNOWLEDGEMENTS	62
REFERENCES	62
APPENDIX	63

NOTE

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the ARC Weed Research Organization are fully acknowledged. The correct bibliographic reference is:-

RICHARDSON, W.G., WEST, T.M. and PARKER, C. The activity and pre-emergence selectivity of some recently developed herbicides: WL 49818, WL 82830, WL 83627, WL 83801 and DPX 5648. Technical Report Agricultural Research Council Weed Research Organization, 1982, 68, pp 67.

THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: WL 49818, WL 82830, WL 83627, WL 83801 AND DPX 5648

W.G. Richardson*, T.M. West* and C. Parker**

Agricultural Research Council Weed Research Organization Begbroke Hill, Yarnton, Oxford, OX5 1PF, UK

SUMMARY

In a series of pot experiments in the glasshouse, five herbicides were examined for pre-emergence selectivity as soil surface sprays on 66 temperate and tropical crop and weed species. Wheat, barley, maize, rice and sorghum were each treated with seed dressings of safeners to investigate possible protection from herbicide injury. The route of entry was examined in a separate test on six selected species. Persistence of the herbicides in the soil was examined over a period of 36 weeks.

WL 49818, active mainly pre-emergence, controlled a wide range of weeds, including many important temperate and tropical annual grasses while dwarf bean, cereals (wheat, barley, maize and rice) and several other crops such as brassicas were tolerant.

WL 82830, similar in its pattern of effects to WL 49818, was however much more active. It controlled a wide range of mainly grass weeds while showing potential selectivity in certain legume (dwarf bean and chickpea) and brassica (rape and radish) crops and also barley when the latter was treated with the safener, naphthalic anhydride (NA).

WL 83627 was typical of many other substituted urea herbicides, with high soil activity, mainly pre-emergence on many annual weeds, including Alopecurus myosuroides but also Veronica persica. Most cereals were tolerant (wheat, barley, oat, maize, sorghum and millet). An appreciable safening effect was found on barley with NA.

WL 83801 acted as a powerful herbistat on the majority of crop and weed species tested, exerting its effect via the soil. Carrot showed outstanding tolerance at doses where certain weeds were controlled and many more suppressed.

DPX 5648 was highly active post- and pre-emergence. Nearly all plant species were severely damaged or killed. A moderate safening effect with NA was obtained on barley and wheat.

Persistence in the soil was moderate to long for all five herbicides relative to the standard cyanazine (short persistence) and simazine (long persistence).

INTRODUCTION

The pre- and post-emergence activities and selectivities of new herbicides are investigated at WRO on a large number of pot-grown crop and weed species, at the same time obtaining experience of the type of effects produced by each compound. Persistence in the soil is also monitored and these data, in conjunction with crop susceptibilities, are useful in considering subsequent

^{*} Herbicide Group

cropping of treated land. The limitations of these investigations are that only one crop variety or source of weed species is used; they are grown in one particular soil type, at only one depth of sowing and without interspecific competition. Consequently the results should only be used as a guide for further work, as plant responses in pot experiments can be very different from those in the field.

This report gives pre-emergence selectivity data on these five new herbicides. Results of activity experiments are also included to provide information on levels of phytotoxicity, type and route of action.

METHODS AND MATERIALS

Activity experiment (AE) This was carried out in the glasshouse on six selected species as described previously (Richardson and Dean, 1973). Four annual species were raised from seeds and two perennials from rhizome fragments. Herbicides were applied by four different methods:

- i) a post-emergence spray to the foliage only, avoiding contact with the soil,
- ii) post-emergence to the soil only, as a drench avoiding foliar contact,
- iii) pre-emergence to the soil surface,
 - iv) pre-emergence with thorough incorporation to 5 cm depth before planting.

Table 1. Plant data for activity experiments

		No. per		Depth	Stage of growth			
Species	Cultivar /source	pot at spraying		of plan- ting	Spraying	Assessment		
		pre-	post-	(cm)	post-em	pre-em	post-em	
Dwarf bean (Phaseolus vulgaris)	The Prince	3	2	2	2 uni- foliate leaves	2½ tri- foliate leaves	2½ tri- foliate leaves	
Kale (Brassica oleraceae acephala)	Marrowstem	10	5	0.5	1½ leaves	4½ leaves	4 leaves	
Polygonum amphibium	WRO Clone 1	6	4	1	6-6½ leaves	8 leaves	8-9 leaves	
Perennial ryegrass (Lolium perenne)	s 23	12	5	0.5	3 leaves	8-9 leaves, tillering	10-16 leaves, tillering	
Avena fatua	WRO 1978	10	5	1	$2\frac{1}{2}-3$ leaves	$4\frac{1}{2}-8\frac{1}{2}$ leaves, some tillering	6-10 leaves, tillering	
Agropyron repens	WRO Clone 1	6	5	1	2-3 leaves	5½-9 leaves, tillering	6-10 leaves, tillering	

Table 2. Soil and environment conditions

Experiment type	Activity experiment	Pre-emergence selectivity test			
Date of spraying	23.9.81	16 & 17.12.81			
Main assessment completed	29.10.81	12.1.81			
Organic matter (%)	4.1	4.1			
Clay content (%)	15.0	15.	0		
pH (water; 1:2 soil/water)	7.0	7.0			
Ammonium sulphate (g/kg)	1.0	1.0			
Superphosphate (g/kg)	2.0	2.0			
Potassium sulphate (g/kg)	1.2	1.2			
DDT (5% dust) (g/kg)	0.4	0.4			
Hydrated Mg ₂ SO ₄ (g/kg)	0.8	0.	8		
Temperature (°C)		Temperate	Tropical		
Mean	17	15	21		
Maximum	28	21	29		
Minimum	11	2 1			
Relative humidity (%)					
Mean	62	64	55		
Maximum	96	90	75		
Minimum	30	40	44		

Pre-emergence selectivity experiment

Techniques for the selectivity experiment were as described by Richardson and Dean (1973), all herbicides being applied as surface pre-emergence treatments. Species were sown as detailed in Appendix 1, each being replicated twice for every treatment. To improve growth of rice, the nitrogen fertilizer was omitted from the soil (for this species only).

Radish (Raphanus raphanistrum) was included for ease of propagation and may be regarded as a crop or weed. To improve establishment of certain species, the following treatments were applied:— seeds of Chrysanthemum segetum and Chenopodium album were kept in 0.1 M potassium nitrate for 48 hours in the light; tubers of Cyperus esculentus and bulbs of Oxalis latifolia were kept at 2°C for six weeks prior to planting. Dwarf bean seeds were selected by testing their electrical conductivity, after soaking for one hour in water, discarding those whose conductivity was greater than 10 mhos. Seeds of fenugreek were inoculated by pipetting a 10 ml infusion of Rhizobium meliloti Dang (Rothamsted Catalogue No 2012) directly onto the soil beneath plants which had reached the cotyledon stage.

To protect from soil-borne pathogens, all seeds (except wheat, barley, oat, perennial ryegrass, fenugreek, A. fatua, B. sterilis, C. segetum, G. aparine and most perennials) were pre-treated with one of the following:- thiram, captan, thiram + benlate (for onion only), bromophos + captan + thiabendazole (pea only), aldrin (cotton only). Maize seeds were purchased already treated with captan A + teraquinone. The seeds of kale, radish, swede, dwarf bean, white clover and S. arvensis were treated with thiram, a 6% gum arabic solution

being used prior to dressing, to give better adhesion. In addition, 'Cheshunt Compound' (3 g litre -1) fungicide solutions were applied to certain species as soil drenches and sprays respectively, to protect against fungal diseases. Root fragments of <u>Cirsium arvense</u> were washed in a 2 ml litre -1 colloidal copper solution.

A series of treatments were included for wheat, barley, maize, rice and sorghum in which seeds were treated with safeners to investigate possible protection from herbicide injury. Wheat, barley, maize and rice seeds were treated with NA (1,8-naphthalic anhydride) at 0.5% w/w a.i. of seeds, while sorghum seeds were acquired from Ciba-Geigy already dressed with cyometrinil (CGA 43089). Metolachlor, which is commercially recommended for sorghum treated with cyometrinil, was included as a standard for comparison.

Herbicides were applied using a laboratory sprayer embodying an 8002E Spraying Systems Tee Jet operated at a pressure of 207 kPa (30 lb/in²) and moving at 0.54 m/s,30 cm above the soil. Subsequent watering was from overhead. During the experiment, plants were raised in the glasshouse, normal daylight being supplemented by mercury vapour or high pressure sodium lighting to provide 14 or 12 hour photoperiods for temperate and tropical species respectively.

Assessment and processing of results

Results were processed as described by Richardson and Dean (1973). Survivors were counted and scored for vigour on a 0-7 scale where 0 = dead and 7 = as in untreated control. Certain species showed variable germination and results were not fed into the computer. However, observations were possible on some treatments and are referred to in the text. Such species were pigeon pea, cowpea, soyabean, cotton, sesamum and Oxalis latifolia. Polygonum aviculare, Phalaris paradoxa and groundnut failed to germinate. To improve growth, dwarf bean was germinated under tropical conditions and then transferred to the temperate glasshouse. Conversely, Phalaris minor was raised under temperate conditions until emergence, then transferred to the tropical glasshouse.

Pairs of histograms are presented for each treatment, the upper representing plant survival and the lower vigour score, both calculated as percentages of untreated controls. Each 'x' represents a 5% increment in the pre-emergence experiment but 7% in the activity experiments. A '+' indicates a value in excess of 100%; 'R' indicates a result based on one replicate only and 'M' represents a missing treatment.

A table of observed selectivities, using the criteria specified, is presented for each herbicide, along with comments to highlight salient points.

Several species, notably the perennials, were kept for an extra period to observe later effects or the degree of recovery from injury and these final observations are referred to in the text.

Persistence in the soil

This was monitored, by bioassay, in conjunction with the pre-emergence selectivity experiment. Square pots (7 cm wide x 6 cm deep) containing soil were sprayed directly with the herbicides. All pots were then transferred to the temperate glasshouse together with untreated controls and watered as necessary, from overhead. Soil moisture before watering was 11%.

de la companya de la

For each bioassay three replicate pots per treatment were selected and a sensitive species (perennial ryegrass) was sown 0.5 cm deep disturbing the soil as little as possible. Plants were harvested three or four weeks after sowing at a predetermined growth stage, the number and fresh weight of shoots being recorded. Bioassays were repeated at six to eight week intervals for one year, unless the herbicides had disappeared before then. Herbicides are considered to have disappeared when shoot fresh weights of the test plants are 80% or more as compared with the controls. Results are presented graphically for each herbicide and comments are made in the text. Standard treatments of cyanazine (short persistence) and simazine (moderate to long persistence) were included for comparison (see page 61). Average temperature during this period was 15°C (minimum 2°C, maximum 34°C) and relative humidity 60% (minimum 25%, maximum 90%).

WL 49818

Code number

WL 49818

Chemical name

Confidential

Structure

Confidential

Source

Shell Biosciences Laboratory Sittingbourne Research Centre

Sittingbourne Kent ME9 8AG

Information available and suggested uses

Suggested for grass weed control in sugar beet, legumes, brassica crops and cotton, pre-emergence at 1.0 to 4.0 kg a.i./ha.

Formulation used

40% w/v a.i. emulsifiable concentrate

Spray volume

386 1/ha

RESULTS

Full results are given in the histograms on pages 9-16 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.0	dwarf bean	Chrysanthemum segetum Stellaria media Veronica persica Cirsium arvense + species below
1.0	species above + wheat ± safener (NA) barley oat pea carrot tomato chickpea kenaf	Rumex obtusifolius Oryza rufipogon Bromus pectinatus Cyperus esculentus

(Table continued overleaf)

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.25	species above + barley + safener (NA) field bean lucerne rape kale radish lettuce maize ± safener (NA) rice ± safener (NA)	Festuca rubra Alopecurus myosuroides Poa annua Poa trivialis Holcus lanatus Eleusine indica Snowdenia polystachya Echinochloa crus-galli Rottboellia exaltata Digitaria sanguinalis Phalaris minor

Comments on results

Activity experiment

The foliar spray caused minor, non-lethal, effects, more so on broad-leaved than on grass species. The latter were more susceptible to soil drench treatments, though again, effects were non-lethal. Pre-emergence application was the most active form of treatment, particularly on the grasses, perennial ryegrass and Agropyron repens. Surface treatments were more toxic to perennial ryegrass than when the herbicide was incorporated into the soil. However the reverse was true for the two perennial species, Polygonum amphibium and A. repens and also dwarf bean. However, there was little difference between surface and incorporated treatments for kale and Avena fatua. This should be taken into consideration in the pre-emergence selectivity test where the herbicide was surface applied.

Symptoms

The foliar spray inhibited growth of broad-leaved species, new leaves often being deformed. Chlorosis was seen on kale and dwarf bean but with P. amphibium there was increased reddening. Some extra tillering of A. repens occurred, these tillers being slightly retarded. With soil drenches, growth was inhibited, new leaves again being deformed and sometimes grass leaves were trapped. P. amphibium showed yellowing of foliage whereas new leaves of perennial ryegrass and A. fatua had a darker green colour. High doses preemergence resulted in failure of most grasses and some broad-leaved species to emerge from the soil. At lower doses severe inhibition of shoots and buds and consequent deformities occurred. With certain broad-leaved species (notably brassicas) abnormally large cotyledons were seen and there was a proliferation of new buds. Leaves were often strap-shaped or narrow, somewhat reminiscent of symptoms caused by phenoxyalkanoic herbicides such as 2,4-D. Some species showed pale or chlorotic foliage, others a more intense green colouration. Necrosis usually developed later from leaf tips or margins.

Persistence in the soil

Using perennial ryegrass as the sensitive test species WL 49818 was still detectable 36 weeks after spraying, indicating a relatively long period of soil persistence. Shoot fresh weights were reduced by 24, 54 and 99% from doses of 0.25, 1.0 and 4.0 kg/ha respectively.

Pre-emergence selectivity among temperate species

Five of the seven annual grass weeds were controlled at the lowest dose of 0.25 kg/ha, including Alopecurus myosuroides, the two Poa species, Festuca rubra and Holcus lanatus. Avenua fatua, Bromus sterilis and Agropyron repens, however, were resistant especially the latter. Certain broad-leaved weeds were controlled at higher doses; Rumex obtusifolius at 1.0 kg/ha, Chrysanthemum segetum, Stellaria media, Veronica persica and Cirsium arvense at 4.0 kg/ha. Several others were resistant even at the high dose, notably the perennials, Allium vineale and Tussilago farfara.

Dwarf bean was the most tolerant crop, recovering from a temporary lack of vigour to pod normally. The cereals (wheat, barley and oat) tolerated 1.0 kg/ha. Although they were much reduced in vigour at 4.0 kg/ha they made a good recovery, especially wheat. There were no marked safening effects of NA, but barley showed a little more sensitivity at 1.0 kg/ha. Pea and carrot were the only other crops to tolerate 1.0 kg/ha the latter being reduced in vigour by only 29% at 4.0 kg/ha and eventually making a full recovery. Field bean, lucerne, lettuce and three brassica crops (rape, kale and radish) withstood 0.25 kg/ha, rape being reduced in vigour by only 29% at 1.0 kg/ha. Perennial ryegrass, onion and white clover were very sensitive.

The potential control of A. myosuroides and possibly Veronica persica in cereals are interesting features of WL 49818. In this respect it is worth comparing it with other conventional pre-emergence treatments such as the ureas (isoproturon, chlortoluron) and tri-allate, none of which control V. persica. If WL 49818 is active and selective in higher organic soils then it may be worth testing in direct drilling and minimum tillage situations where the ureas have sometimes given inadequate control of blackgrass. The quicker action of this herbicide (at or near emergence) as opposed to the slower effect of the ureas may also prove advantageous. If incorporation into the soil is unnecessary (as suggested from the results with ryegrass) it would be interesting to compare WL 49818 with tri-allate. In this respect, granular formulations of the herbicide(s) may be worth testing.

Selectivity among tropical species

Most annual grass weeds were killed by 0.25 kg/ha and good selectivity against these was confirmed in three of the four broad-leaved crops for which results are presented ie kenaf, tomato and chickpea which tolerated 1 kg/ha. Other legumes cowpea, soyabean and pigeon pea also appeared to tolerate 1 kg/ha. Cotton was almost certainly unharmed at 0.25 kg/ha and perhaps also at 1 kg/ha. Further work would appear well justified in all these larger crops. Jute and sesamum however were more sensitive. The major cereals, maize and rice showed only mild symptoms at 0.25 kg/ha while sorghum was a little more seriously damaged. The safeners NA and cyometrinil had only very slight protective effects.

Broad-leaved weeds and Cyperus species were almost unharmed at 1 kg/ha but C. esculentus was suppressed for almost six months by a dose of 4 kg/ha.

ACTIVITY EXPERIMENT

WL 49818

		0.25 kg/ha	1.0 kg/ha	4.0 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX +
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
MALIE	P	XXXXXXXXXXXXXXX +	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXX	XXXXXXXXXXXX	XXXXXXXXXXXX
	Ι	XXXXXXXXXXXXXXXX	XXXXXXXXXXX	XXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXXXXXX	X	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Ι	XXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX +	XXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0

Key: F = post-emergence, foliar application

S = post-emergence, soil drench
P = pre-emergence, surface film
I = pre-planting, incorporated

UNTREATED xxxxxxxxxxxxxx no. of survivors
CONTROL xxxxxxxxxxxxxx vigour of survivors

SPECIES		WL 49818 0.25 kg/ha		WL 49818 1.0 kg/ha		WL 49818 4.0 kg/ha
WHEAT	107	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	93	XXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXX
(1)	100	XXXXXXXXXXXXXXX	86	XXXXXXXXXXXX	64	XXXXXXXXXX
WHEAT + S	88	XXXXXXXXXXXXX	110	xxxxxxxxxxxxx +	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(2)	100	XXXXXXXXXXXXXX	93	XXXXXXXXXXXXX	71	XXXXXXXXXXX
BARLEY	100	XXXXXXXXXXXXXXX	87	XXXXXXXXXXXX	100	XXXXXXXXXXXXXXX
(3)	100	XXXXXXXXXXXXXXX	86	XXXXXXXXXXXX	57	XXXXXXXXX
BARLEY + S	100.	XXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXX	94	XXXXXXXXXXXXXX
(4)	93	XXXXXXXXXXXXXX	71	XXXXXXXXXXX	57	XXXXXXXXXX
OAT	96	XXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXX
(5)	93	XXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	64	XXXXXXXXXXX
PER RYGR	21	XXXX	0		0	
(6)	36	XXXXXX	0		0	
ONION	85	XXXXXXXXXXXXX	40	XXXXXXX	9	XX
(8)	71	XXXXXXXXXXX	43	XXXXXXXX	14	XXX
DWF BEAN	104	xxxxxxxxxxxxxxxxx +	104	xxxxxxxxxxxxxxxxxx +	91	XXXXXXXXXXXXXX
(9)	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX
FLD BEAN	105	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	90	XXXXXXXXXXXXX	75	XXXXXXXXXXX
(10)	100	XXXXXXXXXXXXXXX	79	XXXXXXXXXXXX	50	XXXXXXXXX
PEA	60	XXXXXXXXXX	120	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	80	XXXXXXXXXXXX
(11)	100	XXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	57	XXXXXXXXXX
W CLOVER	80	XXXXXXXXXXXX	7	X	0	
(12)	43	XXXXXXXX	7	X	0	
LUCERNE	78	XXXXXXXXXXXX	78	XXXXXXXXXXXX	103	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
(13)	86	XXXXXXXXXXXX	64	XXXXXXXXXXX	43	XXXXXXXX

田
田
M
RC
H
-EMERGENCE
田
IS
SELI
ECI
H
<
H
K
日
S
H

SPECIES		WL 49818 0.25 kg/ha		WL 49818 1.0 kg/ha		WL 49818 4.0 kg/ha
RAPE	96	XXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXX	108	VVVVVVVVVVVVVVVVVVVVV
(14)	93	XXXXXXXXXXXXXX	71	XXXXXXXXXXXX	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	102	XXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(15)	93	XXXXXXXXXXXXXXX	64	XXXXXXXXXXX	36	XXXXXX
SWEDE	97	XXXXXXXXXXXXXX	83	XXXXXXXXXXXXX	88	XXXXXXXXXXXXXX
(17)	79	XXXXXXXXXXXX	50	XXXXXXXXX	29	XXXXXX
CARROT	92.	XXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXX
(18)	100	XXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXX	71	XXXXXXXXXXX
LETTUCE	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(20)	86	XXXXXXXXXXXXX	57	XXXXXXXXX	36	XXXXXXX
FENUGREEK	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(21)	71	XXXXXXXXXXX	50	XXXXXXXXX	29	XXXXXX
SUG BEET	84	XXXXXXXXXXXXX	77	XXXXXXXXXXXX	95	XXXXXXXXXXXXXXX
(22)	79	XXXXXXXXXXXX	57	XXXXXXXXX	29	XXXXXX
BETA VUL	59	XXXXXXXXXX	123	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	54	XXXXXXXXXX
(23)	79	XXXXXXXXXXXX	57	XXXXXXXXX	36	XXXXXXX
BROM STE	90	XXXXXXXXXXXXXX	85	XXXXXXXXXXXXX	85	XXXXXXXXXXXXX
(24)	79	XXXXXXXXXXXX	57	XXXXXXXXX	43	XXXXXXXX
FEST RUB	0		0		0	
(25)	0		0		0	
AVE FATU	68	XXXXXXXXXXX	74	XXXXXXXXXXXX	79	XXXXXXXXXXXXX
(26)	86	XXXXXXXXXXXXX	79	XXXXXXXXXXXX	57	XXXXXXXXXX
ALO MYOS	12	xx	6	X	0	
(27)	43	XXXXXXXX	14	XXX	0	

DON NAME	_					
POA ANN	0		0		0	
(28)	U		0		0	
POA TRIV	3	X	0		0	
(29)	21	XXXX	0		0	
SIN ARV	97	XXXXXXXXXXXXXXX	121	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- 88	VVVVVVVVVVVVVVVVV
(30)	71	XXXXXXXXXXX	50	XXXXXXXXX	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPH RAP	92	XXXXXXXXXXXXXX	92	XXXXXXXXXXXXXX	78	VVVVVVVVVVVVVVV
(31)	1000	XXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG	55	XXXXXXXXXX	109	VVVVVVVVVVVVVVVVVVVVVVV	^	
(32)	100	XXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
TRIP MAR	66	XXXXXXXXXXX	84	VVVVVVVVVV	70	
(33)	93	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SEN VULG	95	XXXXXXXXXXXXXXX	114	V/V/T/T/T/T/T/T/T/T/T/T/T/T/T/T/T/T/T/T	OF	
(34)	100	XXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL LAPA	122	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117		447	
(35)	100		117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXX	57	XXXXXXXXX
GAL APAR	74	XXXXXXXXXXXX	79	XXXXXXXXXXXX	40	XXXXXXX
(38)	100	XXXXXXXXXXXXXXX	71	XXXXXXXXXXX	43	XXXXXXXX
CHEN ALB	74	XXXXXXXXXXXX	81	XXXXXXXXXXXX	57	XXXXXXXXXX
(39)	71	XXXXXXXXXXX	57	XXXXXXXXX	36	XXXXXXX
STEL MED	119	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	128	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(40)	86	XXXXXXXXXXXXX	50	XXXXXXXX	29	XXXXXX
VER PERS	82	XXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
1 12 1	E7		40			

XXXXXXXX

WL 49818

1.0 kg/ha

WL 49818 4.0 kg/ha

WL 49818

0.25 kg/ha

SPECIES

(42)

57

XXXXXXXXXX

400
H
H
20
H
6.3
PRE-
H
1-1
3
H
[+1
T
0
42
I
1
4
0
 -
-
H
[A]
N E
E SE
E SEI
E SEL
E SELE
E SELE
E SELEC
E SELECT
E SELECT
E SELECTI
E SELECTIV
E SELECTIV
E SELECTIVI
E SELECTIVIT
E SELECTIVITY
E SELECTIVITY
E SELECTIVITY
E SELECTIVITY TEST

SPECIES		WL 49818 0.25 kg/ha		WL 49818 1.0 kg/ha		WL 49818 4.0 kg/ha
RUM OBTU	102	XXXXXXXXXXXXXXX	70	XXXXXXXXXXX	83	XXXXXXXXXXXXX
(44)	43	XXXXXXXX	29	xxxxx	29	XXXXXX
HOLC LAN	0		0		0	
(45)	0		0		0	
AG REPEN	89	XXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXX
(47)	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXX	86	XXXXXXXXXXXX
ALL VIN	93	XXXXXXXXXXXXXX	97	XXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXX
(49)	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX	71	XXXXXXXXXXX
CIRS ARV	92	XXXXXXXXXXXXX	115	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(50)	100	XXXXXXXXXXXXXXX	79	XXXXXXXXXXXX	0	
TUS FARF	133	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX	133	XXXXXXXXXXXXXXXX
(51)	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXX
MILLET	7	x	0		0	
(55)	7	X	0		0	
MAIZE + S	100	XXXXXXXXXXXXXXX	87	XXXXXXXXXXXXX	0	
(56)	86	XXXXXXXXXXXXX	50	XXXXXXXX	0	
MAIZE	91	XXXXXXXXXXXXXX	52	XXXXXXXXX	0	
(57)	86	XXXXXXXXXXXXX	36	XXXXXXX	0	
SORG + S	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXX	0	
(58)	71	XXXXXXXXXXX	50	XXXXXXXX	0	
SORGHUM	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	47	XXXXXXXX	0	
(59)	79	XXXXXXXXXXXX	36	XXXXXXX	0	

CDECTEC		WL 49818		WL 49818		WL 49818
SPECIES		0.25 kg/ha		1.0 kg/ha		4.0 kg/ha
TOMATO	109	xxxxxxxxxxxxx +	82	XXXXXXXXXXXX	75	XXXXXXXXXXXX
(60)	100	XXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	64	XXXXXXXXXX
CHICKPEA	92	XXXXXXXXXXXXX	100	XXXXXXXXXXXXXX	50	XXXXXXXX
(63)	93	XXXXXXXXXXXXXX	86	XXXXXXXXXXXX	50	XXXXXXXX
JUTE	183	xxxxxxxxxxxx +	91	xxxxxxxxxxxx	78	xxxxxxxxxxx
(67)	64	XXXXXXXXXXX	36	XXXXXXX	14	XXX
KENAF	105	xxxxxxxxxxxxxxxxxxxxxxx +	120	XXXXXXXXXXXXXX	67	xxxxxxxxxx
(68)	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX	64	XXXXXXXXXX
ORYZA	94	XXXXXXXXXXXXXX	28	XXXXXX	19	XXXX
(71)	86	XXXXXXXXXXXXX	36	XXXXXX	36	XXXXXXX
RICE	96	XXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	21	XXXX
(72)	86	XXXXXXXXXXXXX	64	XXXXXXXXXX	43	XXXXXXXX
RICE + S	111	xxxxxxxxxxxxxxxxx +	106	xxxxxxxxxxxxx +	28	XXXXXX
(73)	86	XXXXXXXXXXXXX	79	XXXXXXXXXXXX	50	XXXXXXXX
ELEU IND	0		0		0	
(74)	0		0		0	
ECH CRUS	0		0		0	
(75)	0		0		0	
ROTT EXA	0		0		0	
(76)	0		0		0	
DIG SANG	0		0		0	
(77)	0		0		0	
AMAR RET	53	XXXXXXXXX	81	XXXXXXXXXXXX	61	XXXXXXXXXX
(78)	86	XXXXXXXXXXXXX	71	XXXXXXXXXXX	71	XXXXXXXXXXX

20
i-red
[-]
E
II
EM
.2
h
~
ERGE
44
H
1
4
CE
12
1
F-7
3
CO
H
H
F.
H
O
EC
1 4
H
H
1
7
-
1
. 7
K
17
H
-
CD
. 4
-

SPECIES		WL 49818 0.25 kg/ha		WL 49818 1.0 kg/ha		WL 49818 4.0 kg/ha
SOL NIG	46	XXXXXXXX	208	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	46	XXXXXXXX
(81)	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX	71	XXXXXXXXXXX
BROM PEC	45	XXXXXXXX	0		0	
(82)	64	XXXXXXXXXX	0		0	
SNO POL	0		0		0	
(83)	0		0		0	
PHAL MIN	0		0		0	
(84)	0		0		0	
CVD ECCII	57		21			
CYP ESCU	57	XXXXXXXXX	21	XXXX	0	
(85)	86	XXXXXXXXXXXXX	57	XXXXXXXXX	0	
CYP ROTU	98	XXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXX +	77	XXXXXXXXXXXX
(86)	100	XXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	79	XXXXXXXXXXXXX

PERSISTENCE OF WL 49818 species: perennial ryegrass 0.25 kg/ha 1.0 kg/ha L L L S J J 4.0 kg/ha

TIME OF SOWING weeks after treatment

WL 82830

Code number WL 82830

Chemical name Confidential

Structure Confidential

Source

Shell Biosciences Laboratory Sittingbourne Research Centre

Sittingbourne Kent ME9 8AG

Information available and suggested uses

Suggested for grass and broad-leaved weed control in dicotyledonous crops, pre-emergence at 0.5 to 1.0 kg a.i./ha.

Formulation used 40% w/v a.i. emulsifiable concentrate

Spray volume 386 1/ha

RESULTS

Full results are given in the histograms on pages 20-27 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.0	None	None listed as no crops tolerant
1.0	kenaf	Rumex obtusifolius Agropyron repens Amaranthus retroflexus Bromus sterilis Chrysanthemum segetum Senecio vulgaris Chenopodium album Stellaria media + species below
0.25	species above + barley + safener (NA) dwarf bean rape radish tomato	Festuca rubra Avena fatua Alopecurus myosuroides Poa annua Poa trivialis Galium aparine Veronica persica Holcus lanatus Cirsium arvense Oryza rufipogon Eleusine indica

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.25		Echinochloa crus-galli Rottboellia exaltata Digitaria sanguinalis
		Bromus pectinatus
		Snowdenia polystachya Phalaris minor

Comments on results

Activity experiment

The foliar spray caused minor, non-lethal effects, with broad-leaved species being more sensitive than grasses. With the exception of dwarf bean, soil drenches were more effective than foliar sprays, this difference being most marked with the grasses. However, pre-emergence treatments were the most active mode of application especially on grasses. Surface pre-emergence sprays to grasses were much more toxic than when incorporated into the soil. Differences between these two types of treatment were much less marked with broad-leaved species. These features should be borne in mind when considering results of the pre-emergence selectivity test, where the herbicide was applied to the soil surface only. The overall pattern of activity was similar to that found with the previous herbicide, WL 49818. However, WL 82830 possesses a much higher level of activity.

Symptoms

These were identical to those caused by the previous herbicide WL 49818. However, the majority of species were much more sensitive to WL 82830.

Persistence in the soil

The test species, perennial ryegrass indicated relatively long soil persistence. Doses of 0.25, 1.0 and 4.0 kg/ha reduced shoot fresh weights by 94, 99 and 100%, 36 weeks after spraying.

Pre-emergence selectivity among temperate species

All annual grass weeds were killed or controlled by the lowest dose of 0.25 kg/ha with the exception of B. sterilis. However, more than 50% of plants of the latter species were killed and vigour of survivors was reduced by 36%. Although only three broad-leaved weeds were controlled at 0.25 kg/ha, these included Galium aparine, Veronica persica and Cirsium arvense. Many other broad-leaved weeds were resistant, notably the two crucifers (Sinapis arvensis and Raphanus raphanistrum) as were three of the perennials A. repens, A. vineale and T. farfara.

Dwarf bean was the most tolerant crop, recovering from initial stunting and chlorosis to pod normally after treatment at 1.0 kg/ha. Two of the brassica crops (rape and radish) were tolerant to 0.25 kg/ha. The cereals (wheat, barley and oat) were sensitive at this dose but barley was safened by the NA seed dressing. Perennial ryegrass, pea and white clover were very sensitive.

The possible control of annual grasses, <u>G. aparine</u> and <u>V. persica</u> in dwarf bean and rape is interesting, deserving further testing. However, the weakness on the other, mainly broad-leaved weeds means that mixing with other herbicides may be necessary. The safening effect on barley warrants further investigation,

initially in pots. Although the weed and crop spectra of activity and selectivity were broadly similar to the previous herbicide WL 49818, WL 82830 was generally much more active and gave better control of certain important weeds such as Avena fatua and Galium aparine.

Selectivity among tropical species

Annual grass weeds were all killed at the lowest dose of 0.25 kg/ha and the cereals were also sensitive, rice and maize killed and sorghum seriously damaged (the safeners provided only a minor degree of protection).

Among the broad-leaved crops, kenaf and tomato were the most tolerant. Cotton also appeared undamaged at the lowest dose and further work in these crops will be worthwhile. The legumes, however, were more sensitive to WL 82830 (relative to the Malvaceae and Solanaceae) than they were to WL 49818 and selectivity could only be achieved at doses below 0.25 kg/ha.

Cyperus spp and the broad-leaved weeds were again quite resistant.

ACTIVITY EXPERIMENT

BELLEVILLE BENEFIT BEN

WL 82830

THE STATES AND GENERAL TRANSPORTED FOR A SELECTION OF THE PROPERTY OF THE PARTY OF

		0.25 kg/ha	1.0 kg/ha	4.0 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX +	XXXXXXXXX
			VVVVVVVVVVV	XXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX +
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX	XXXXXXX
RYEGRASS	P	0	0	0
	Ι	XXXXXXX	XXX	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P	XXX	0	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX	XXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXX	0	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX	0

Key: F = post-emergence, foliar application

S = post-emergence, soil drench

P = pre-emergence, surface film

I = pre-planting incorporated

UNTREATED xxxxxxxxxxxxxx no. of survivors
CONTROL xxxxxxxxxxxxxx vigour of survivors

PRE-EMERGENCE	
PRE-EMERGENCE SELECTIVITY TEST	21 -

SPECIES		WL 82830 0.25 kg/ha		WL 82830		WL 82830
				1.0 kg/ha		4.0 kg/ha
WHEAT	73	XXXXXXXXXXXX	13	XXX	_	
(1)	64	XXXXXXXXXXX	36	XXXXXXX	0	
				AAAAAA	0	
WHEAT + S	73	XXXXXXXXXXXXX	0		_	
(2)	57	XXXXXXXXX	0		0	
					0	
BARLEY	100	XXXXXXXXXXXXXXXX	0		0	
(3)	71	XXXXXXXXXXX	0		0	
BARLEY + S	94	XXXXXXXXXXXXXXX	25	XXXXX	0	
(4)	86	XXXXXXXXXXXXX	29	XXXXXX	0	
OAT	45	XXXXXXXX	6	X	0	
(5)	64	XXXXXXXXXXX	21	XXXX	0	
DED DICE						
PER RYGR	0		0		0	
(6)	0		0		0	
ONION	01					
(8)	81	XXXXXXXXXXXXX	18	XXXX	9	XX
, ,	57	XXXXXXXXX	43	XXXXXXXX	7	X
DWF BEAN	104					
(9)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13	XXX
	,,,	XXXXXXXXXXXXXXX	71	XXXXXXXXXXX	14	XXX
FLD BEAN	90	VVVVVVVVV				
(10)	50	XXXXXXXXXXXXXXXX	15	XXX	0	
	30	XXXXXXXXX	14	XXX	0	
PEA	0		_			
(11)	0		0		0	
			0		0	
W CLOVER	20	XXXX	27			
(12)	14	XXX	4.4	XXXXX	0	
			14	XXX	0	
LUCERNE	98	XXXXXXXXXXXXXXXX	103	VVVVVV		
(13)	79	XXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXX
			04	XXXXXXXXXXX	36	XXXXXX

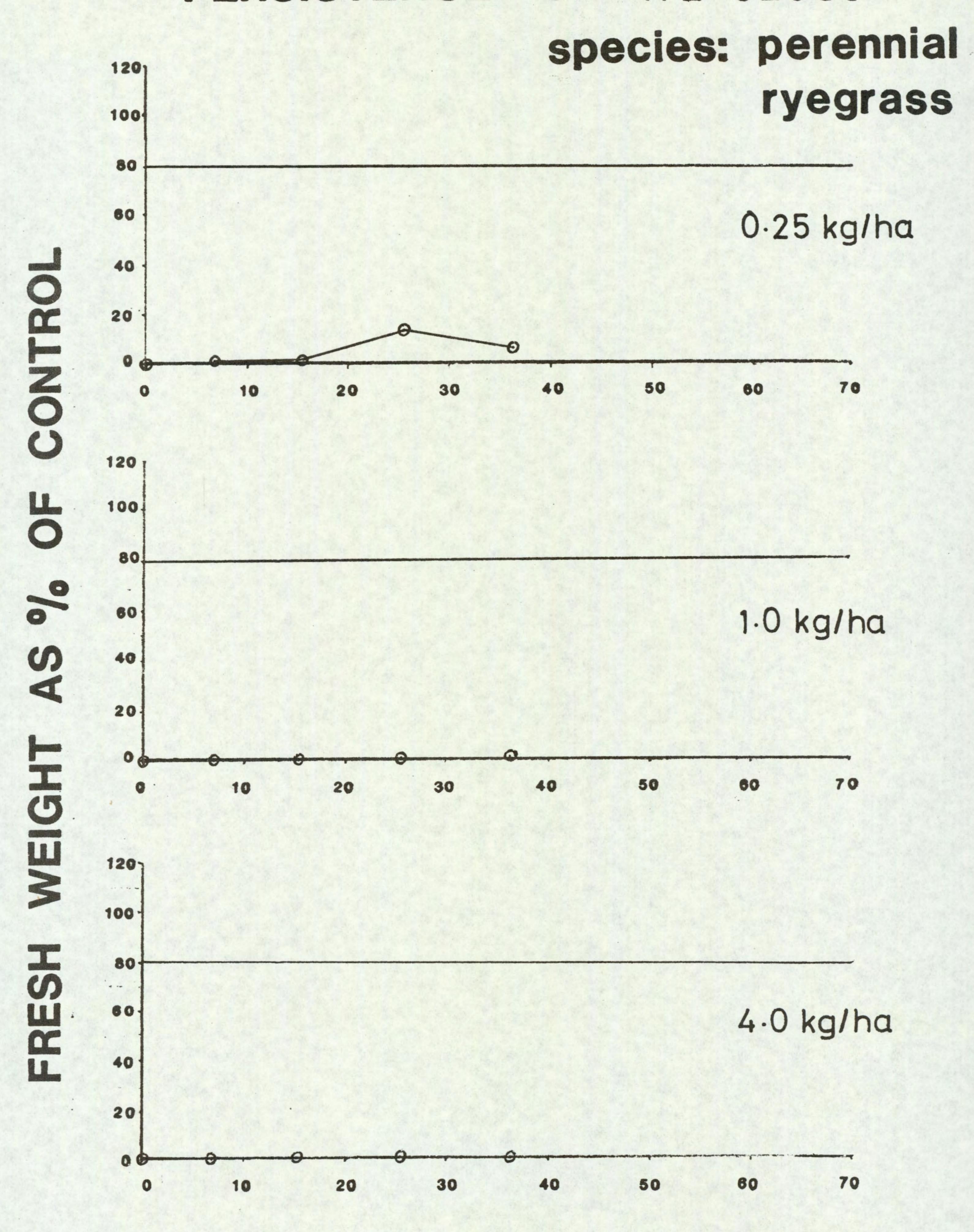
- 22 -

SPECIES		WL 82830		WL 82830		WL 82830
		0.25 kg/ha		1.0 kg/ha		4.0 kg/ha
RAPE	113	xxxxxxxxxxxxx +	91	XXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXX
(14)	86	XXXXXXXXXXXXX	57	XXXXXXXXX	36	XXXXXXX
KALE	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120	xxxxxxxxxxxxx +	111	XXXXXXXXXXXXXXX
(15)	64	XXXXXXXXXX	43	XXXXXXXX	29	XXXXXX
SWEDE	92	XXXXXXXXXXXXX	106	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(17)	71	XXXXXXXXXXX	57	XXXXXXXXX	36	XXXXXX
CARROT	104	xxxxxxxxxxxxx +	6	X	0	
(18)	57	XXXXXXXXX	14	XXX	0	
LETTUCE	96	XXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX
(20)	57	XXXXXXXXX	29	XXXXXX	14	XXX
FENUGREEK	106	xxxxxxxxxxxxx +	94	XXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX
(21)	43	XXXXXXXX	29	XXXXXX	29	XXXXXX
SUG BEET	84	XXXXXXXXXXXXX	99	XXXXXXXXXXXXXXX	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(22)	71	XXXXXXXXXXX	43	XXXXXXXX	29	XXXXXX
BETA VUL	32	XXXXXX	102	XXXXXXXXXXXXXXX	123	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(23)	57	XXXXXXXXX	57	XXXXXXXXX	43	XXXXXXXX
BROM STE	45	XXXXXXXX	4	X	0	
(24)	64	XXXXXXXXXX	7	X	0	
FEST RUB	0		0		0	
(25)	0		0		0	
AVE FATU	23	XXXXX	0		0	
(26)	29	XXXXXX	0		0	
ALO MYOS	0		0		_	
(27)	0		0		0	

-	
1	
1	
RE	
-	
III	
-	
П	
F-3	
-	
:<	
F-7	
had	
'AJ	
-	
-	
44	
-	
7	
1 4	
1-1	
FA	
~ -	
F-1	
-	
-	
-	
1 4	
5	
-	
_	
-	
-	
-	
_	
7	
-	
-	
V	
-	
-	
0	
"	
-	
4	

SPECIES		WL 82830 0.25 kg/ha		WL 82830 1.0 kg/ha		WL 82830 4.0 kg/ha
POA ANN	0		0		0	
(28)	0		0		0	
POA TRIV	0		0		0	
(29)	0		0		0	
SIN ARV	88	XXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXX
(30)	79	XXXXXXXXXXXX	64	XXXXXXXXXX	36	XXXXXXX
RAPH RAP	97	XXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXX
(31)	86	XXXXXXXXXXXXXX	64	XXXXXXXXXXX	43	XXXXXXXX
CHRY SEG	164	XXXXXXXXXXXXXXXXXXXXX +	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(32)	43	XXXXXXXX	29	XXXXXX	0	
TRIP MAR	66	XXXXXXXXXXX	102	XXXXXXXXXXXXXXX	18	XXXX
(33)	36	XXXXXXX	43	XXXXXXXX	7	x
SEN VULG	121	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	140	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(34)	36	XXXXXXX	29	XXXXXX	14	XXX
POL LAPA	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(35)	86	XXXXXXXXXXXXX	71	XXXXXXXXXXX	43	XXXXXXXX
GAL APAR	23	XXXXX	11	XX	0	
(38)	50	XXXXXXXX	36	XXXXXXX	0	
CHEN ALB	92	XXXXXXXXXXXXXX	77	XXXXXXXXXXXX	80	XXXXXXXXXXXXX
(39)	43	XXXXXXXX	29	XXXXXX	29	XXXXXX
STEL MED	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	99	XXXXXXXXXXXXXXX
(40)	50	XXXXXXXXX	29	XXXXXX	21	XXXX
VER PERS	55	XXXXXXXXX	55	XXXXXXXXX	0	
(42)	21	XXXX	7		0	

PRE-EMERGENCE
SELECTIVITY
TEST


SPECIES		WL 82830 0.25 kg/ha		WL 82830 1.0 kg/ha		WL 82830 4.0 kg/ha
RUM OBTU (44)	102 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
HOLC LAN (45)	0		0		0	
AG REPEN (47)	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9 29	XX XXXXXX	0	
ALL VIN (49)	85 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 21	XXXXX
CIRS ARV (50)	0		0		0	
TUS FARF (51)	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17 14	XXX
MILLET (55)	0		0		0	
MAIZE + S (56)	50 43	XXXXXXXXXX	0		0	
MAIZE (57)	0		0		0	
SORG + S (58)	80 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7 14	X XXX	0	
SORGHUM (59)	87 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	

- 25

SPECIES		WL 82830 0.25 kg/ha		WL 82830 1.0 kg/ha		WL 82830 4.0 kg/ha
TOMATO	95	XXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXX	102	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
(60)	93	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXXX	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHICKPEA	67	VVVVVVVVVVV	17		^	
(63)	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	0	
				AAAAA		
JUTE	130	xxxxxxxxxxxxx +	13	XXX	0	
(67)	43	XXXXXXXX	7	x	0	
KENAF	127	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
(68)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ODWA						
ORYZA	0		0		0	
(71)	0		0		0	
RICE	0					
(72)	0		0		0	
					0	
RICE + S	0		0		0	
(73)	0		0		0	
ELEU IND						
(74)	0		0		0	
	0		0		0	
ECH CRUS	0		0		0	
(75)	0		0		0	
ROTT EXA	0		0		0	
(76)	0		0		0	
DIG SANG						
(77)	0		0		0	
	0		0		0	
AMAR RET	66	VVVVVVVVVVVV	60		4.4	
(78)	64	XXXXXXXXXXXX	60	XXXXXXXXXX	44	XXXXXXXX
	04	XXXXXXXXXXX	29	XXXXXX	29	XXXXXX

SPECIES		WL 82830 0.25 kg/ha		WL 82830 1.0 kg/ha		WL 82830 4.0 kg/ha
SOL NIG	185	xxxxxxxxxxxxx +	138	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	162	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(81)	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXX	36	XXXXXX
BROM PEC	0		0		0	
(82)	0		0		0	
SNO POL	0		0		0	
(83)	0		0		0	
PHAL MIN	0		0		0	
(84)	0		0		0	
CYP ESCU	79	XXXXXXXXXXXX	64	XXXXXXXXXXX	57	XXXXXXXXXX
(85)	93	XXXXXXXXXXXXXXX	50	XXXXXXXXX	43	XXXXXXXXX
CYP ROTU	98	XXXXXXXXXXXXXXXX	77	XXXXXXXXXXXX	84	VVVVVVVVVVVVVV
(86)	86	XXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

PERSISTENCE OF WL 82830

TIME OF SOWING weeks after treatment

WL 83627

Code number

WL 83627

Chemical name

3-(3-methyl-4-isopropylphenyl)-1,1-dimethylurea

Structure

Source

Shell Biosciences Laboratory
Sittingbourne Research Centre
Sittingbourne
Kent ME9 8AG

Information available and suggested uses

Suggested for broad-spectrum selective weed control pre- and post-emergence in small grain cereals at 1.0 to 3.0 kg a.i./ha.

Formulation used

50% w/w a.i. wettable powder

Spray volume

386 1/ha

RESULTS

Full results are given in the histograms on pages 31-38 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.0	None	None listed as no crops tolerant
1.0	barley + safener (NA) maize ± safener (NA) sorghum ± safener (cyometrinil)	Alopecurus myosuroides Raphanus raphanistrum Polygonum lapathifolium Veronica persica Tussilago farfara
0.25	species above + wheat ± safener (NA) barley oat field bean pea fenugreek* millet chickpea kenaf	Beta vulgaris Festuca rubra Poa annua Poa trivialis Sinapis arvensis Chrysanthemum segetum Tripleurospermum maritimum Senecio vulgaris Chenopodium album Stellaria media

^{*} but note stand reduction

(Table continued overleaf)

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.25		Rumex obtusifolius Holcus lanatus Cirsium arvense Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Amaranthus retroflexus Solanum nigrum Snowdenia polystachya Phalaris minor

Comments on results

Activity experiment

Although the foliar spray was damaging at higher doses, particularly on kale and dwarf bean, applications to the soil resulted in greatest activity. The soil drench, post-emergence and the pre-emergence surface spray were the most effective forms of treatment. The pre-emergence spray tended to be more phytotoxic than when the herbicide was incorporated into the soil, this difference being seen more with the smaller-seeded species, particularly kale. This should be borne in mind when considering the results of the present selectivity test where application was to the surface.

Symptoms

These were typical of herbicides, such as ureas and triazines, which inhibit photosynthesis. Scorch symptoms appeared with the foliage spray and chlorosis developed. Chlorosis was the first symptom to develop with soil treatments, and was followed by necrosis. Germination was unaffected by preemergence treatments.

Persistence in the soil

The sensitive test species, perennial ryegrass was reduced 93, 99 and 100% (shoot fresh weight basis) by doses of 0.25, 1.0 and 4.0 kg/ha, respectively, 36 weeks after spraying, thus indicating a relatively long period of persistence in the soil.

Pre-emergence selectivity among temperate species

A wide range of annual broad-leaved and grass weeds were susceptible.

In the broad-leaved range, all composite, cruciferous and polygonaceous weeds were controlled as well as <u>Veronica persica</u>, <u>Chenopodium album</u>, <u>Stellaria media</u>, <u>Solanum nigrum</u>, <u>Beta vulgaris</u> and the two perennials <u>Cirsium arvense</u> and <u>Tussilago farafara</u>. <u>Galium aparine</u>, however, was resistant. <u>Most annual grasses</u> were controlled, including <u>Alopecurus myosuroides</u>, but <u>Avena fatua and Bromus sterilis</u> were resistant.

Crop tolerance was confined to the cereals (wheat and barley) and certain legumes (pea, field bean and fenugreek). Safening effects were found on the two cereals, especially barley. At final assessment 10 weeks after spraying, the shoot fresh weight of wheat treated at 1.0 kg/ha was 60% of untreated control whereas with the safener (NA) it was 80% of untreated. The condition of barley

treated at this dose had deteriorated considerably after the main assessment such that shoot fresh weights at harvest were only 19% of control. With the NA safener, however, shoot fresh weights were 93% of control. Onion, white clover, kale, swede and sugar beet were very sensitive.

The potential control of a wide spectrum of weeds in wheat and barley, notably A. myosuroides and V. persica, is of considerable interest, deserving comparative testing with herbicides such as isoproturon and chlortoluron. A possible advantage could be control of Veronica species which are known to be quite resistant to these other ureas. The resistance of Galium aparine is a disadvantage, common to all three herbicides however and may necessitate studies in mixture with other herbicides to control this species. The increase in tolerance conferred on barley by the NA safener could also be of value. This safening effect has been verified in a follow up pot test, again being better with barley than with wheat (Richardson et al, unpublished data). Another selectivity of potential interest is the control of a wide range of weeds including Solanum nigrum in pea, which deserves further investigation.

Selectivity among tropical species

Several crops tolerated 0.25 kg/ha but some annual weeds including Echinochloa crus-galli were not adequately controlled at this dose. At 1 kg/ha maize and sorghum were tolerant but Rottboellia exaltata was still not controlled. At 4 kg/ha there was only a mild protective effect from NA on maize, surprising in view of the more significant protection of barley reported above. Sorghum was not protected at all by cyometrinil. Rice was susceptible even to 0.25 kg/ha (and not protected by NA) but millet was only a little retarded at 1 kg/ha and selectivity could be expected against a number of grass and broad-leaved weeds in this crop.

The susceptibility of <u>Phalaris minor</u> suggests useful selectivity against this species in wheat.

Cyperus spp were only temporarily affected by 4 kg/ha and in general, the tropical uses of this compound would appear very limited.

ACTIVITY EXPERIMENT

WL 83627

		0.25 kg/ha	1.0 kg/ha	4.0 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXX	XXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0
	S	XXXXXXX	0	0
KALE	P	XXX	0	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	1	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXX	0	0
RYEGRASS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX	0
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXX	XXXXX	0
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX	0
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX XX	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX

Key: F = post-emergence, foliar application

S = post-emergence, soil drench P = pre-emergence, surface film

I = pre-planting, incorporated

UNTREATED xxxxxxxxxxxxxx no. of survivors
CONTROL xxxxxxxxxxxxxx vigour of survivors

SPECIES		WL 83627 0.25 kg/ha		WL 83627 1.0 kg/ha		WL 83627 4.0 kg/ha
WHEAT	100	XXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXX
(1)	93	XXXXXXXXXXXXXX	79	XXXXXXXXXXXX	57	XXXXXXXXXX
WHEAT + S	102	XXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXX
(2)	100	XXXXXXXXXXXXXXX	79	XXXXXXXXXXXX	57	XXXXXXXXX
BARLEY	94	XXXXXXXXXXXXXX	87	XXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX
(3)	100	XXXXXXXXXXXXXXX	64	XXXXXXXXXX	50	XXXXXXXXX
BARLEY + S	100.	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXX
(4)	100	XXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXX	79	XXXXXXXXXXXX
OAT	102	XXXXXXXXXXXXXXX	89	XXXXXXXXXXXXX	89	XXXXXXXXXXXXX
(5)	86	XXXXXXXXXXXXX	36	XXXXXXX	14	XXX
PER RYGR	55	XXXXXXXXX	4	X	0	
(6)	64	XXXXXXXXXXX	21	XXXX	0	
ONION	0		0		0	
(8)	0		0		0	
DWF BEAN	91	XXXXXXXXXXXXXX	91	XXXXXXXXXXXXX	0	
(9)	71	XXXXXXXXXXX	21	XXXX	0	
FLD BEAN	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(10)	93	XXXXXXXXXXXXXX	64	XXXXXXXXXXX	0	
PEA	80	XXXXXXXXXXXX	80	XXXXXXXXXXXX	80	XXXXXXXXXXXX
(11)	86	XXXXXXXXXXXXX	79	XXXXXXXXXXXX	14	XXX
W CLOVER	0		0		0	
(12)	0		0		0	
LUCERNE	21	XXXX	0		0	
(13)	29	XXXXXX	0		0	

SPECIES		WL 83627 0.25 kg/ha		WL 83627 1.0 kg/ha		WL 83627 4.0 kg/ha
RAPE	74	XXXXXXXXXXXX	6	X	0	
(14)	64	XXXXXXXXXX	7	X	0	
KALE	5	X	0			
(15)	14	XXX	0		0	
SWEDE	_					
(17)	21	XXXXX	0		0	
					U	
CARROT	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(18)	79	XXXXXXXXXXXX	0		0	
LETTUCE	25	XXXXX	0		0	
(20)	50	XXXXXXXXX	0		0	
FENUGREK	33	XXXXXXX	0			
(21)	86	XXXXXXXXXXXXX	0		0	
SUG BEET	0		•			
(22)	0		0		0	
			0		0	
BETA VUL	5		0		0	
(23)	14	XXX	0		0	
BROM STE	90	XXXXXXXXXXXXXX	72	XXXXXXXXXXX	54	VVVVVVVVVVVVVV
(24)	86	XXXXXXXXXXXXX	71	XXXXXXXXXXXX	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
THOM DITT						
FEST RUB	8	XX	0		0	
(25)		X	0		0	
AVE FATU	62	XXXXXXXXXX	62	XXXXXXXXXX	79	XXXXXXXXXXXX
(26)	86	XXXXXXXXXXXXX	50	XXXXXXXX	29	XXXXXX
ALO MYOS	49	XXXXXXXXX	6	X	0	
(27)	43	XXXXXXXX	7	X	0	
					U	

PRE-EMERGENCE SELECTIVITY TEST

SPECIES WL 83627 0.25 kg/ha 1.0 kg/ha	WL 83627 4.0 kg/ha
POA 23 xxxxx 0	
(28) 36 xxxxxxx 0	0
POA TRIV 3 x	0
(29) 21 xxxx 0	0
SIN ARV 3 x	
(30) 21 xxxx 0	0
RAPH RAP 92 xxxxxxxxxxxxxxx 5 x	0
(31) 57 xxxxxxxxxx 14 xxx	0
CHRY SEG 0	0
(32) 0	0
TRIP MAR 6 x	2 xx
(33)	4 xxx
SEN VULG 13 xxx 3 x	6 xxx
(34) 29 xxxxxx 7 x	7 x
POL LAPA 78 xxxxxxxxxxxxxx 13 xxx	0
(35) 79 xxxxxxxxxxxxx 29 xxxxxx	0
GAL APAR 85 xxxxxxxxxxxxxxxx 108 xxxxxxxxxxxxxx + 7	9 xxxxxxxxxxxx
(38) 93 xxxxxxxxxxxxxxxx 79 xxxxxxxxxx 7	
CHEN ALB 2 x	3 x
(39) 14 xxx 7 x	7 x
STEL MED 25 xxxxx	0
(40)	
VER PERS 55 xxxxxxxxxxxx 0	
(42) 36 xxxxxxx 0	

SPECIES		WL 83627 0.25 kg/ha		WL 83627 1.0 kg/ha		WL 83627 4.0 kg/ha
RUM OBTU	0		0		0	
(44)	0		0		0	
HOLC LAN	15	XXX	0		0	
(45)	7	X	0		0	
AG REPEN	97	XXXXXXXXXXXXXX	106	xxxxxxxxxxxxxxxx +	62	XXXXXXXXXX
(47)	86	XXXXXXXXXXXXX	50	XXXXXXXXX	29	XXXXXX
ALL VIN	97	XXXXXXXXXXXXXX	93	XXXXXXXXXXXXX	85	XXXXXXXXXXXXX
(49)	100	XXXXXXXXXXXXXXX	71	XXXXXXXXXXX	57	XXXXXXXXX
CIRS ARV	23	XXXXX	0		0	
(50)	7	X	0		0	
TUS FARF	117	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	83	XXXXXXXXXXXX	50	XXXXXXXX
(51)	79	XXXXXXXXXXXX	21	XXXX	14	XXX
MILLET	93	XXXXXXXXXXXXXX	93	XXXXXXXXXXXXXX	33	XXXXXX
(55)	86	XXXXXXXXXXXX	71	XXXXXXXXXXX	36	XXXXXX
MAIZE + S	87	xxxxxxxxxxxx	100	XXXXXXXXXXXXXX	87	XXXXXXXXXXXXX
(56)	86	XXXXXXXXXXXXX	86	XXXXXXXXXXXX	71	XXXXXXXXXXX
MAIZE	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	xxxxxxxxxxxxxxxxx +	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(57)	100	xxxxxxxxxxxx	93	XXXXXXXXXXXXXX	57	XXXXXXXXX
SORG + S	107	xxxxxxxxxxxxx +	100	XXXXXXXXXXXXXXX	80	XXXXXXXXXXXX
(58)	100	XXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXX	50	XXXXXXXX
SORGHUM	107	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXX	107	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
(59)	100	XXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXX	64	XXXXXXXXXXX

Click here to continue