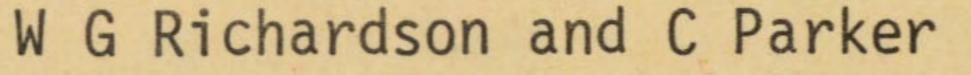


WEED RESEARCH ORGANIZATION


TO WERAIN ON FISPLAT RACK UNTIL!

THE ACTIVITY AND POST-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: HOE 22870, HOE 23408, FLAMPROP-METHYL, METAMITRON AND CYPERQUAT

HOE 22870 is clofop acid, HOE 23408 is diclofop-methyl

このこのであるのである シント アイナイ うまうなの だいいろう してたちなん

TECHNICAL REPORT No. 39

ROTHAMSTED EXP. STATION -7 SEP 1976 HARPENDEN

Price - £3.20

May 1976

Agricultural Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford, OX5 1PF

ISBN 0 7084 0031 0

METHODS AND MATERIALS

SUMMARY

INTRODUCTION

CONTENTS

2

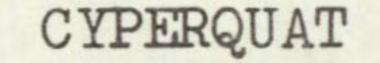
5

14

23

33

42


Page

RESULTS

HOE 22870

2-(4-(4'-chlorophenoxy)-phenoxy)-isobutyl propionate HOE 23408 2-(4-(2',4'-dichlorophenoxy)-phenoxy)-methylpropionate FLAMPROP-METHYL methyl (<u>+</u>)-2-[N-(3-chloro-4-fluorophenyl)benzamido]propionate METAMITRON

4-amino-3-methyl-6-phenyl-1,2,4-triazin-5-one

1-methyl-4-phenylpyridinium chloride

ACKNOWLEDGEMENTS

REFERENCES

Appendix 1

52 52 53

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the ARC Weed Research Organization are fully acknowledged. The correct bibliographical reference is:

RICHARDSON, W.G. and PARKER, C. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. <u>Technical</u> <u>Report Agricultural Research Council Weed Research Organization</u>, 1976, (39), pp. 56.

THE ACTIVITY AND POST-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: HOE 22870, HOE 23408, FLAMPROP-METHYL, METAMITRON AND CYPERQUAT

W.G. Richardson* and C. Parkert

Agricultural Research Council Weed Research Organization Begbroke Hill, Yarnton, Oxford OX5 1PF

SUMMARY

Five herbicides were examined for their early post-emergence selectivity on 61 temperate and tropical crop and weed species. The route of action for two of these herbicides, flamprop-methyl and cyperquat, was determined on six selected species in a separate test.

HOE 22870 was found to control <u>Alopecurus myosuroides</u> and certain tropical annual grass weeds in temperate cereals, onions and the majority of broad-leaved crops.

HOE 23408 exhibited a spectrum of activity similar to that of HOE 22870 but also controlled <u>Avena fatua</u>. The control of <u>A. myosuroides</u> however was not as efficient as with HOE 22870.

Flamprop-methyl exhibited potential control of certain grass weeds notably <u>A. fatua</u> in wheat, barley, perennial ryegrass and several broadleaved crops. This herbicide was also found to possess some activity through the soil.

The outstanding feature with metamitron was the very high tolerance of sugar beet at doses which provided excellent control of most annual weeds.

Cyperquat was found to have a high specificity for controlling Cyperus species while several temperate and tropical crops were tolerant.

INTRODUCTION

The pre- and post-emergence selectivities of new herbicides are investigated on a large number of pot-grown crop and weed species at WRO. The objectives are to discover selectivities, crop and weed susceptibilities and to obtain experience of the type of effects produced by each compound. Attention is drawn to the limitations of these investigations; e.g. use of only one crop variety or source of weed species and growth in one particular soil type at only one depth of sowing without intraspecific competition. Consequently the results should only be used as a guide for further work; plant responses in pot experiments can be very different to those in the field.

The present report gives indications of the post-emergence selectivity of five new herbicides. Results of activity experiments are included for flamprop-methyl and cyperquat to provide information on levels of phytotoxicity, type and route of action. Those for HOE 22870, HOE 23408 and metamitron were reported previously (Richardson et al., 1976).

* Herbicide Group

t ODM Tropical Weeds Group

METHODS AND MATERIALS

(a) Activity experiments

The activity experiments were carried out on six selected species as described previously (Richardson and Dean, 1974). Four annual species were raised from seeds and two perennials from rhizome fragments. Herbicides were applied by four different methods: (i) post-emergence to the foliage only avoiding contact with the soil, (ii) post-emergence to the soil only, as a drench avoiding foliage contact, (iii) pre-emergence to the soil surface, (iv) pre-emergence with thorough incorporation, before planting. Species data are summarised in Table 1 and soil and environmental conditions in Table 2.

- 2 -

Table 1. Plant data for activity experiments (AE)

Species	Cultivar/ source	No. per pot at spraying		Depth of plant- ing	Post- emergence stage at growth at	Stage of growth at assessment	
		pre-	post-	(cm)	spraying	pre-	post-
Dwarf bean (Phaseolus vulgaris)	-np	3	1-2	1.8	2 uni- foliate leaves	1-1½ tri- foliate leaves	1 ¹ / ₂ -2 tri- foliate leaves
Kale (Brassica oleracea acephala)	Marrow- stem	15	5	0.6	1 <u>1</u> -2 <u>1</u> leaves	2 ¹ / ₂ -4 ¹ / ₂ leaves	32-42 leaves
Polygonum amphibium	WRO Clone 1	6	3-4	1.2	2 ¹ / ₂ -7 leaves	31-8 leaves	6 ¹ / ₂ -11 leaves
Perennial ryegrass (Lolium perenne)	S 23	20	10	0.6	2-3 leaves	5-6 leaves, tillering	6-8 leaves, tillering
Avena fatua	WRO 69-5 (AE1) 72-3 (AE2)	10	4-5	1.2	2 1 -3 leaves	4-6 leaves, tillering	4 ¹ / ₂ -7 leaves, tillering
Agropyron repens	WRO Clone 31	6	3-5	1.2	2-3 ¹ leaves	41-6 leaves, tillering	6-7 leaves, tillering

-

(b) Post-emergence selectivity experiment

The technique for this experiment was as before (Richardson and Dean, 1974). Plants were raised in 8.9 cm diameter plastic pots in a sandy loam topsoil from a field at Begbroke Hill. Soil conditions are summarised in Table 2. Planting dates were staggered so that the majority of plants had reached the 2-4 leaf stage by the time of spraying. Temperate species were raised in the open and tropical species in the glasshouse. Environmental conditions during the course of the experiment are recorded in Table 2.

Table 2. Soil and environmental conditions

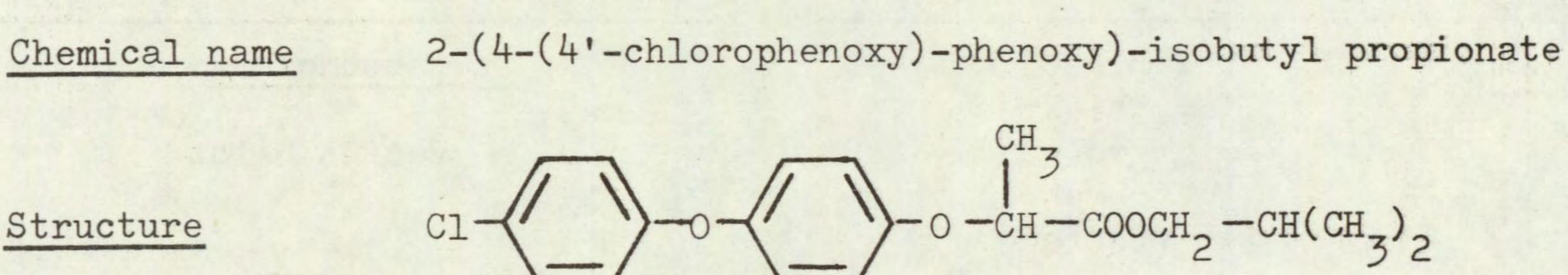
- 3 -

Experiment number, type and herbicide(s) included	AE 1 Cyperquat	AE 2 Flamprop- methyl	Post-emergence selectivity test HOE 22870 Metamitro HOE 23408 Cyperquat Flamprop-methyl		
Date of spraying	26.9.74	7.5.75	17.6 and	26.6.75	
Main assessment completed	6.11.74	6.6.75	15.7	.75	
Organic matter (%) Clay content (%) pH John Innes Base fertilizer (g/kg) DDT (5% dust) (g/kg) Fitted trace elements (g/kg) Epsom salts (g/kg)	2.8 16 7.7 5.0 0.5 0.25 1.0	4.2 13 7.0 5.0 0.5 0.25	4.2 13 7.0 4.0 0.5 0.25 1.0		
Temperature (°C)			Temperate	Tropical	
Mean Maximum Minimum Relative humidity (%)	17 23 10	19 30 14	17 25 5	25 34 18	
Mean Maximum Minimum	70 100 45	60 90 26	65 100 30	55 75 30	

Before spraying all species were thinned to constant number with a maximum of 9 plants per pot. Certain plant material was pre-treated to improve establishment. <u>Chenopodium album</u> seeds were soaked in 0.1 M potassium nitrate solution and kept in the light 3 days prior to planting. Seeds of <u>Polygonum aviculare</u> were kept moist at 2°C for 6 months before sowing. Tubers of <u>Cyperus esculentus</u> were stored moist at 4°C for 4 weeks prior to planting to break dormancy while bulbs of <u>Oxalis latifolia</u> were stored at 2°C for 4 weeks prior to heating at 45°C for 4 hours before planting. Perennial species were propagated vegetatively as denoted in Appendix 1.

To protect from soil-borne pathogens all seeds except <u>Chenopodium</u> <u>album</u>, <u>Polygonum aviculare</u> and the temperate cereals were pretreated with one of the following: thiram, benomyl (for onion), Harvesan organomercury (for <u>Avena fatua</u>) or ethylmercuric phosphate + dieldrin (for sugar beet). Temperate cereal seeds were purchased already treated with a mercurial seed dressing. Immediately after sowing a 2% solution of polyvinyl alcohol (Elvanol) was applied to the soil surface of pots of those species normally slow to germinate or which are susceptible to soil capping, to improve emergence. Stages of growth (exclusive of cotyledons) at spraying and at assessment are summarised in Appendix 1. After spraying the plants were protected from rainfall for 24 hours and then given an overhead watering to wash any residues off the foliage. The pots were then returned to their original position in the glasshouse or the open. Additional fertiliser in solution and insecticide and fungicide were applied to individual species as required.

- 4 -


Radish (Raphanus raphanistrum) was included for ease of propagation and may be regarded as a crop or weed. <u>Snowdenia polystachya</u> was treated at more than one stage of growth, each being given a different computer number i.e. 83 and 84 (see histograms and Appendix 1). Several species, notably the perennials, were kept for a period of several weeks to observe later effects on the degree of recovery from injury and these final observations are referred to in the text.

(c) Assessment and processing of results

Results were processed as before (Richardson and Dean, 1974). Survivors were counted and scored on a O-7 scale as previously, where O = dead and 7 = control.

Histograms are presented for each traatment and consist of a pair of figures; the upper figure represents mean plant survival and the lower, mean vigour score, both calculated as percentages of untreated controls. The same information is displayed as a histogram where each 'x' represents a 5% increment, but in the activity experiment histograms, each 'x' represents a 7% increment. A '+' indicates a value in excess of 100%; 'R' indicates a result based on one replicate only and 'M' represents a missing treatment.

A table of observed selectivities, using the criteria specified, are presented for each compound along with comments to highlight salient points.

Code number HOE 22870 Trade name -

HOE 22870

- 5 -

Source

Hoechst UK Limited Agricultural Department Hoechst House Salisbury Road Hounslow, Middlesex TW4 6JH

Information available and suggested uses

Suggested for control of a range of annual grass weeds including <u>Alopecurus myosuroides</u> in brassicas, carrots, winter and spring cereals (wheat, barley and oats), celery, field beans, lettuce, lucerne, onions, peas, potatoes, spinach and sugar beet, at 0.3-1.0 kg/ha after crop and weed emergence.

Formulation used 36% w/v a.i. emulsifiable concentrate

Spray volume

for activity experiment 305 1/ha for selectivity experiment 200 1/ha

RESULTS

Full histogram results are presented on pages 8-13 and potential selectivities are summarised in the following Table.

RATE kg a.i./ha	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
3.0	barley oat	Oryza punctata
	onion dwarf bean field bean pea white clover rape kale cabbage carrot parsnip lettuce sugar beet radish	+ species below

(Table continued overleaf)

RATE kg a.i./ha	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
3.0	pigeon pea chickpea groundnut soyabean tobacco sesamum tomato	<u>Oryza punctata</u> + species below
1.0	species above + wheat swede cotton jute kenaf	species below
0.33	species above + perennial ryegrass rice cowpea	Alopecurus myosuroides Eleusine indica Echinochloa crus-galli

Comments on results

The results of the activity experiment were reported earlier (Richardson et al., 1976) when it was found that HOE 22870 was highly active on certain grasses, especially as foliar or pre-emergence surface sprays. Symptoms were reminiscent of those caused by dinitrophenyl ethers except that a more systemic effect was found, including a powerful inhibition of the root systems.

Selectivity amongst temperate species

Alopecurus myosuroides was highly sensitive, being adequately controlled by 0.33 kg/ha. Some suppression of Poa species was also found. However Avena fatua was resistant as were all other weeds tested.

All broad-leaved crops were tolerant, only swede being slightly checked at 3.0 kg/ha. Barley and oat were tolerant at this dose, while wheat was later found to have recovered from minor initial effects. Onion also showed complete tolerance. Perennial ryegrass was sensitive at 1.0 and 3.0 kg/ha.

Some potential control of <u>A. myosuroides</u> may be expected in broadleaved and cereal crops. The residual effect in the soil, reported earlier (Richardson <u>et al.</u>, 1976), could also prove advantageous for controlling later germinating seedlings. The resistance of other grass weeds is a disadvantage and compatibility with other herbicides will need to be examined. The sensitivity of perennial ryegrass to HOE 22870 may be of interest, as this species has been known to cause problems in cereals in recent years. Also there is now a need for a herbicide to suppress this species in order to allow clovers to become better established in leys and grassland. HOE 22870 would appear to be a strong candidate for this purpose. It is one of the only herbicides which can selectively control <u>A. myosuroides</u> and ryegrass in a wide range of crops as a post-emergence foliar spray, although there are several which can do this pre-emergence. Furthermore, the results here suggest that the susceptibility of <u>A. myosuroides</u> is such that control of this species could be achieved even in perennial ryegrass. Recent work by Schwerdtle & Schumacher (1975) has also shown that <u>A. myosuroides</u> is still susceptible at relatively late growth stages.

- 7 -

The pattern of selectivity was generally similar to that tound preemergence (Richardson et al., 1976). Although <u>A. myosuroides</u> was slightly more sensitive post-emergence, <u>Poa</u> species were more sensitive preemergence, especially <u>P. trivialis</u>. Also <u>Veronica persica</u> was resistant post-emergence in contrast to its susceptibility pre-emergence.

Selectivity among tropical crops

The outstanding features of this compound and the related HOE 23408 are their remarkable safety on tropical legumes and several other broadleaved crops combined with very high activity on several of the major annual grasses. Eleusine and Echinochloa should be selectively controlled in all the broad-leaved crops tested and the safety in crops such as tobacco, jute, kenaf, pigeon pea, sesamum and tomato is particularly notable. Digitaria sanguinalis was considerably more tolerant, partly because it was at a rather more advanced stage of growth than other species at the time of spraying, but it is understood from the manufacturers that this species is more resistant in the field too. Preemergence results already published (Richardson et al., 1976) show that it can be controlled at that stage, and early post-emergence treatment might also be effective. Increased tolerance with age is shown by Snowdenia polystachya (a serious grass weed of cereals in Ethiopia) of which there were two sets in this experiment. The older set (computer code 84) being appreciably less affected than the younger set (83). Although the younger set was not apparently too well controlled at the time of the main assessment the plants were greatly weakened by damage to their adventitious root systems and the effects from 3 kg/ha became more severe subsequently and most plants would eventually have died. It appears possible that a dose of about 2 kg/ha would be selective against this weed in wheat but further testing is needed with both species being treated under the same conditions. Rottboellia was also severely weakened at 1 and 3 kg/ha and selective control should be possible in most broadleaved crops. Again root systems were affected and many plants collapsed at soil level.

HOE 22870 is slightly less active than HOE 23408 and higher doses might be needed in the field but it apparently has greater intrinsic safety on jute, kenaf and sesamum and might be particularly useful in those crops.

SPECIES		HOE 22870		HOE
		0.33 kg/ha		1.0
WHEAT (1)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	
BARLEY (2)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT (3)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PER RYGR (4)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	
ONION (8)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWF BEAN (9)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN (10)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER (12)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE (14)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE (15)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Ŧ

.

HOE 22870

kg/ha

XXXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXX ~

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXXX HOE 22870 3.0 kg/ha

100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
79	XXXXXXXXXXXXXXX
100	
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
00	XXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXX
10	
62	XXXXXXXXXXXX
29	XXXXXX
100	XXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXX
93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
86	XXXXXXXXXXXXXXXXXX

.

XXXXXXX XXX

XXXXXXX XXXX

XXXXXXX XXXXXXX

XXXXXXX XXXXXXX

XXXXXXX XXXXXX

XXXXXXX XXXXXXX

XXXXXXX XXXXXXX

XXXXXXX XXXXXXX

XXXXXXX XXXXXXX

XXXXXXX

1----POST EMERGENCE SELE(C TIVITY EXPERIMENT

SPECIES

CABBAGE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
(16)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
SWEDE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX
(17)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXX
CARROT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX
(18)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXX
PARSNIP	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXX
(19)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
LETTUCE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXX
(20)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXX
SUG BEET	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
(21)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXX
AVE FATU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(26)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX
ALO MYOS	69	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44	XXXXXXXXX	12	XX
(27)	29	XXXXXX	21	XXXX	7	x
POA ANN	69	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(28)	64	XXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX
POA TRIV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	62	XXXXXXXXXXXX
(29)	57	XXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXXXXX
SIN ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(30)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXX

×.

4

HOE 22870

0.33 kg/ha

HOE 22870

1.0 kg/ha

HOE 22870

w

.

3.0 kg/ha

XXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXX XXXXXXX

XXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXX XXXXXXXX

XXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXX XXXXXXX

XXXXXXXXXX XXX

XXXXXXXXXX XXXXXXXXXX

2 -ERG ENCE 5 F E IN

9

1.....

SPECIES

RAPH RAP	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
(31)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
TRIP MAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
(33)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXX
SEN VULG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxx
(34)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
POL LAPA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
(35)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
POL AVIC	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
(36)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
GAL APAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
(38)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
CHEN ALB	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
(39)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
STEL MED	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxx
(40)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
SPER ARV	100	xxxxxxxxxxxxxxxxxx	100	xxxxxx
(41)	100	XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
VER PERS	100	xxxxxxxxxxxxxxxxx	100	xxxxxx
(42)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
RUM OBTU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
(44)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX

HOE 22870

0.33 kg/ha

4

HOE 22870

1.0 kg/ha

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

HOE 22870

3.0 kg/ha

100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XSXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	xxxxxxxxxxxxxxxxx
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	xxxxxxxxxxxxxxxx
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	xxxxxxxxxxxxxxxxx
71	XXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

POST-EMERGENCE SELECT TT **XP** 民 1.1 IME NI

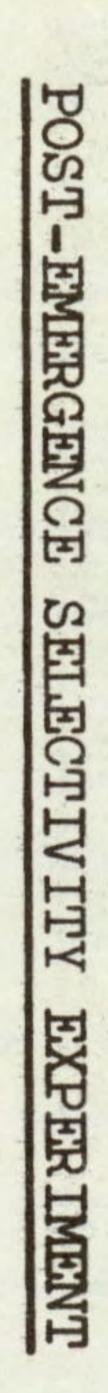
		HOE 22870		HOI
SPECIES		0.33 kg/ha		1.(
AG REPEN (47)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXX
AG STOLO (48)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE (58)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
SORGHUM (59)	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXX
RICE (60)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXX
PIGEON P (61)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXX
COWPEA (62)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXX
CHICKPEA (63)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXX
GRNDNUT (64)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXX
SOYABEAN (65)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXX
COTTON (66)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXX

DE 22870

•

.

0 kg/ha


HOE 22870

-

.

100 XXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXX 86 XXXXXXXXXXXXXXXXXX XXXXXXXXXXXX 0 0 83 XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX 43 XXXXXXXXX XXXXX 100 XXXXXXXXXXXXXXX 50 XXXXXXXXXX XXXXXXX 100 XXXXXXXXXXXXXX 100 XXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXX 79 XXXXXXXXXXXXXXXX XXXXXXXXXX 100 XXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXX 93 XXXXXXXXXXX 100 XXXXXXXXXXXXXXX 86 XXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXX 79 XXXXXXXXXXXXXXXXXX XXXXXXXXXXX

3.0 kg/ha

HOE 22870

SPECIES		0.33 kg/ha		1.0 kg/ha		3.0 kg/h
JUTE (67)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KENAF (68)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TOBACCO (69)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SESAMUM (70)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
томато (71)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OR PUNCT (73)	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELEU IND (74)	00		0 0		00	
ECH CRUS (75)	17 14	XXX XXX	0		0000	
ROTT EXA (76)	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DIG SANG (77)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	
AMAR RET (78)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

*

HOE 22870

HOE 22870

/ha

XXXXXXXXX XXXXX

XXXXXXXXX XXXXX

> XXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXXXX

XXXXXXXXX XXXXXX

XXXXX

XXXXXXXXX

XXXXXXXXX XX

XXXXXXXX XXXXX

.

1000

M OST TERGENCE SEL E (2)H -PER IMEN

H

12

ALL ALL

-

SPECIES

PORT OLE (79)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOL NIG (81)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SNOW POL (83)	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SNOW POL (84)	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ESCU (85)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU (86)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OXAL LAT (87)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

*

.

HOE 22870 0.33 kg/ha

HOE 22870

1.0 kg/ha

HOE	22870
3.0	kg/ha

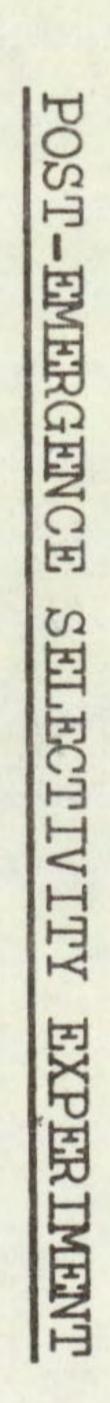
4

.

870

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXX

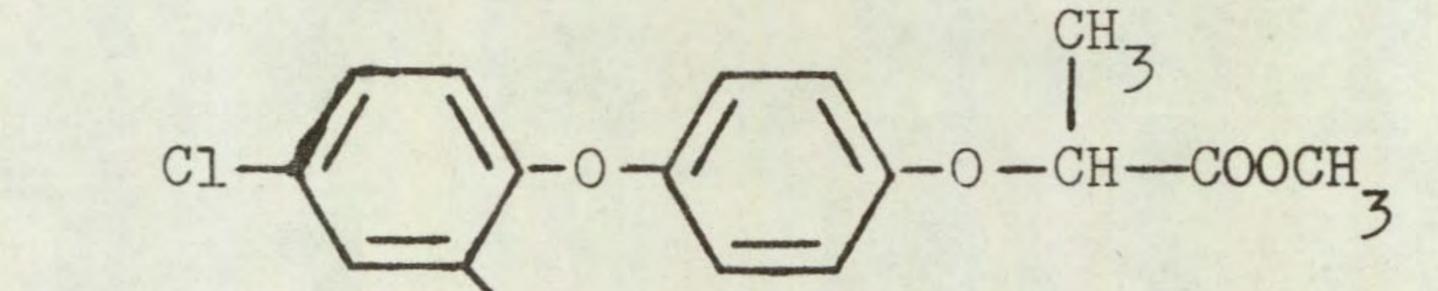

XXXXXXXX

XXXXXXXX

XXXXXXXX XXXXXXX

XXXXXXXX XXXXXXXXX

XXXXXXXX XX



13

HOE 23408

- 14 -

HOE 23408 Code number Trade name 2-(4-(2',4'-dichlorophenoxy)-phenoxy)-methylpropionate Chemical name

Source

Structure

Hoechst UK Limited Agricultural Department Hoechst House Salisbury Road Hounslow, Middlesex TW4 6JH

CI

Information available and suggested uses

Suggested for control of a range of annual grass weeds, including Avena fatua in brassicas, carrots, spring and winter cereals (barley and wheat), celery, field beans, lettuce, lucerne, onions, peas, potatoes, spinach and sugar beet at 0.5-1.5 kg/ha post-crop and weed emergence. It is also believed to be effective against Alopecurus myosuroides but not Poa annua.

Formulation used 36% w/v a.i. emulsifiable concentrate

for activity experiment 305 1/ha for selectivity experiment 200 1/ha

RESULTS

Spray volume

Full histogram results are presented on pages 17-22 and potential selectivities are summarised in the following Table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
kg a.i./ha	by 15% or less	reduced by 70% or more
3.0	wheat barley onion dwarf bean field bean pea white clover rape kale cabbage parsnip lettuce sugar beet radish	*Avena fatua Alopecurus myosuroides Poa trivialis Oryza punctata Snowdenia polystachya+ species below

but see text (Table continued overleaf)

RATE kg a.i./ha	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
3.0	pigeon pea groundnut soyabean	Avena fatua Alopecurus myosuroides Poa trivialis Oryza punctata Snowdenia polystachya + species below
1.0	species above + swede carrot chickpea cotton tobacco tomato	<u>Rottboellia exaltata</u> + species below
0.33	species above + oat rice cowpea kenaf	<u>Eleusine indica</u> Echinochloa crus-galli

- 15

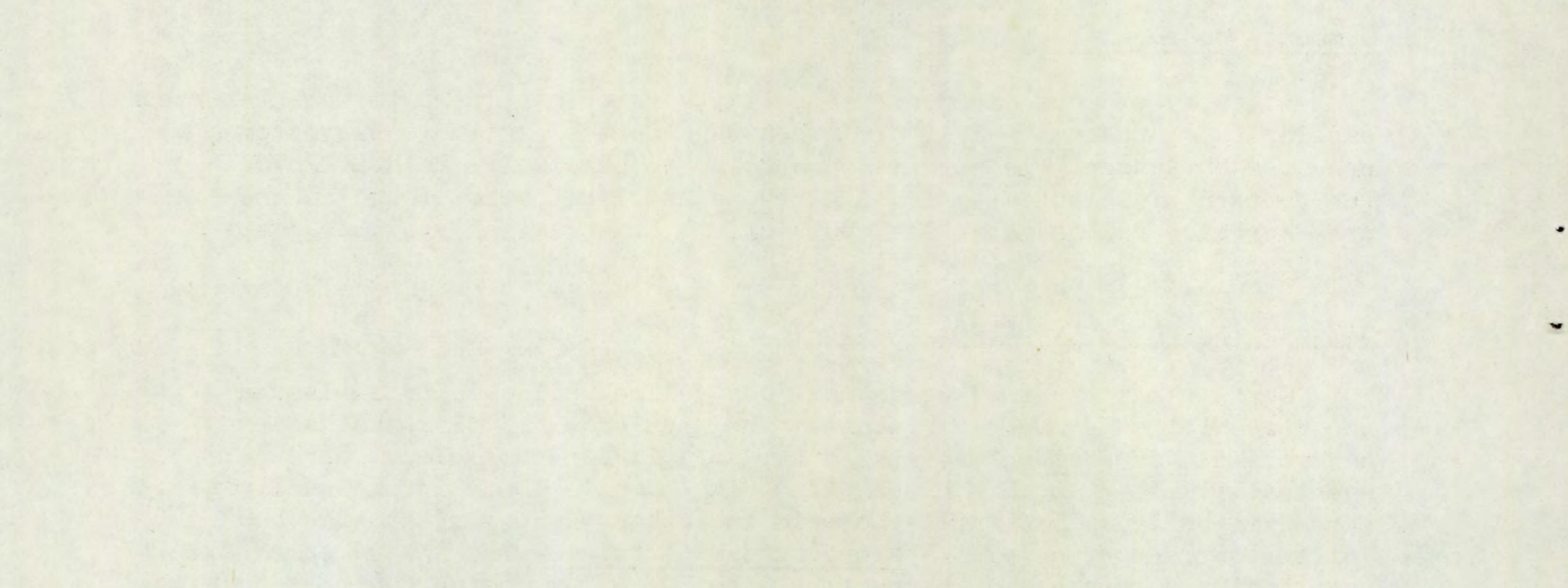
Comments on results

Activity and pre-emergence selectivity experiment results were reported earlier (Richardson et al., 1976) when the route of action and symptoms produced on susceptible species were found to be similar to HOE 22870. The pattern of selectivity found here was similar to that found in the pre-emergence selectivity test, but activity was generally higher postemergence.

Selectivity among temperate species

Certain annual grass weeds were controlled while all broad-leaved and perennial weeds were resistant. The high dose of 3.0 kg/ha had controlled <u>Avena fatua</u> two weeks after spraying and all plants were eventually killed at this dose. At 1.0 kg/ha all plants in one replicate were eventually killed while those in the others were very stunted and failed to produce panicles. <u>Alopecurus myosuroides</u> also showed some sensitivity although not so great as with HOE 22870, being controlled at 3.0 kg/ha and reduced in vigour at 1.0 kg/ha. <u>Poa trivialis</u> showed some sensitivity but Poa annua was quite resistant.

Wheat, barley, onion and most broad-leaved crops were tolerant. Among the latter, swede and carrot were slightly affected at 3.0 kg/ha but tolerant at 1.0 kg/ha. Oat was sensitive to 3.0 kg/ha but recovered from initial effects at 1.0 kg/ha. Perennial ryegrass was very sensitive, slightly more so than to HOE 22870.


Potential selective control of A. fatua, A. myosuroides and P. trivialis in cereals, onion and broad-leaved crops can be expected. Some potential for suppressing perennial ryegrass in swards including clover is apparent, as was the case with HOE 22870.

- 16 -

Although the pattern of pre- and post-emergence selectivity is generally similar, A. fatua and A. myosuroides were more sensitive post-emergence. As with HOE 22870, however, Poa species and V. persica were more sensitive pre-emergence (Richardson et al., 1976).

Selectivity among tropical crops

This compound was somewhat more active than HOE 22870 but the selectivity was generally similar; the main differences being that jute, kenaf and sesamum were relatively more sensitive. Effects on Digitaria sanguinalis were only slightly better than those of HOE 22870 and more work is needed on this latter species at an earlier growth stage. Selectivity against Snowdenia in wheat should be even better and a dose of 1 kg/ha could be effective at an early stage of growth. Selectivity against other grasses in tropical wheat will also of course be of great interest. Control of grass weeds including Rottboellia in tropical legumes will be one of the greatest potentialities of both compounds particularly in those crops susceptible to alachlor and in which preplanting incorporation of herbicides (e.g. trifluralin) would be inconvenient. They could be especially useful as an aid to the establishment of ground-cover legumes in perennial crops, and further testing will be well worthwhile at various growth stages but particularly early postemergence.

*

SPECIES		0.33 kg/ha		1.0 kg/ha		3.0 kg/h
WHEAT (1)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY (2)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT (3)	100 ⁻ 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PER RYGR (4)	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	· 44 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ONION (8)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWF BEAN (9)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN (10)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER (12)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE (14)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE (15)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

HOE 23408

HOE 23408

HOE	23408		
3.0	kg/ha		

•

.

ha

XXXXXXXXX XXXXXX

XXXXXXXXX XXXXXX

XXXXXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXXXXXX XXXXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXXXXXX

P SC MER ENC 日 SEI E - --H F PER IMENT

SPECIES	
CABBAGE	100
(16)	100
SWEDE	100
(17)	100
CARROT	100
(18)	100
PARSNIP	100
(19)	93
LETTUCE	100
(20)	100
SUG BEET	100
(21)	100
AVE FATU	100
(26)	86
ALO MYOS	100
(27)	79
POA ANN	100
(28)	86
POA TRIV	100
(29)	64
SIN ARV	100
(30)	100

HOE 23408 0.33 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXX	12	XX
XXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	50	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXX	64	XXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXX

HOE 23408

1.0 kg/ha

XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX

-

.

HOE 23408

3.0 kg/ha

XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXX

PO ST EMERGENCE SEL UTT < TY EXPERIMEN T

	*	HOE 23408		HOE 23408
SPECIES		0.33 kg/ha		1.0 kg/ha
RAPH RAP (31)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TRIP MAR (33)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SEN VULG (34)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL LAPA (35)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL AVIC (36)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR (38)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHEN ALB (39)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED (40)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SPER ARV (41)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VER PERS (42)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RUM OBTU (44)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

4

.

HOE 23408 3.0 kg/ha

~

.

100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXXXXXX 100

XXXXXXXXX XXXXXXXX

XXXXXXXXX XXX

XXXXXXXXX XXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXXXXXX XXXXXXXXX

XXXXXXXXXX XXXXXX

10 So H P 4-ENCE SEL E TY EXP Ę E

H

		HOE 23408		HOE 23408		HOE 23408
SPECIES		0.33 kg/ha		1.0 kg/ha		3.0 kg/ha
AG REPEN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(47)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX
AG STOLO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(48)	93	XXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXX	57	XXXXXXXXXXX
MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(58)	50	XXXXXXXXXX	0		0	
SORGHUM	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(59)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXX
RICE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(60)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	57	XXXXXXXXXXX
PIGEON P	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(61)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COWPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(62)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX
CHICKPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(63)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX
GRNDNUT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX
(64)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOYABEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(65)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX
COTTON	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(66)	86	XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX

4

.

1

-

H

5

H

EMERGENCE

SEI

E

1 -H

F

MENT

20

		HOE 23408		HOE 23408		HOE 23408
SPECIES		0.33 kg/ha		1.0 kg/ha		3.0 kg/ha
JUTE (67)	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KENAF (68)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TOBACCO (69)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SESAMUM (70)	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TOMATO (71)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OR PUNCT (73)	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELEU IND (74)	000		000		000	
ECH CRUS (75)	000		000		00	
ROTT EXA (76)	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30 29	XXXXXX XXXXXX
DIG SANG (77)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMAR RET (78)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1

~

C

la

XXXXXXXX

XXXXXXXX

XXXXXXXX XX

XXXXXXXX

XXXXXXXX XXXX

XXXXXXXX

XXXXXXXX XX

10 OST EMERGENCE SELECTIVITY EXPERIMENT

N

		HOE 23408		HOE 23408		HOE 23408
SPECIES		0.33 kg/ha		1.0 kg/ha		3.0 kg/ha
PORT OLE (79)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOL NIG (81)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SNOW POL (83)	42 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	42 36	XXXXXXXXX XXXXXXXX	42 21	XXXXXXXXX XXXX
SNOW POL (84)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ESCU (85)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU (86)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OXAL LAT (87)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

*

. .

XXXXXXX XXXXXXX

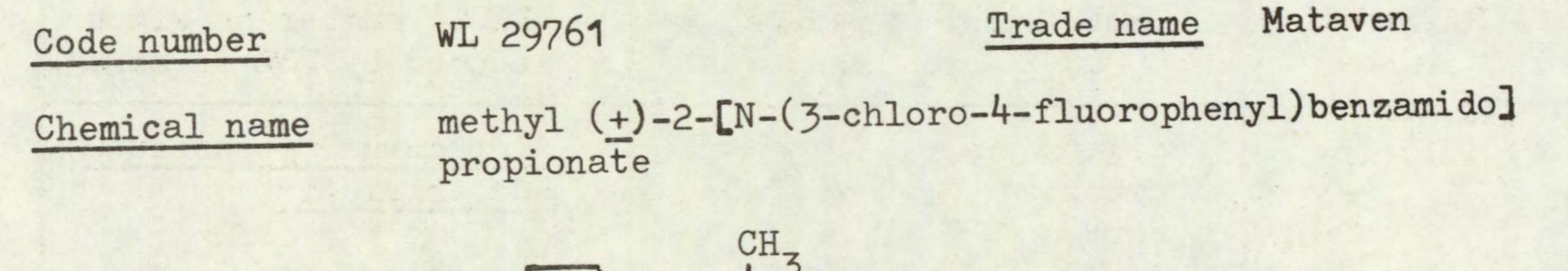
XXXXXXX XXXXXXX

XXXXXXXX

XXXXXXX XXXXXXXX

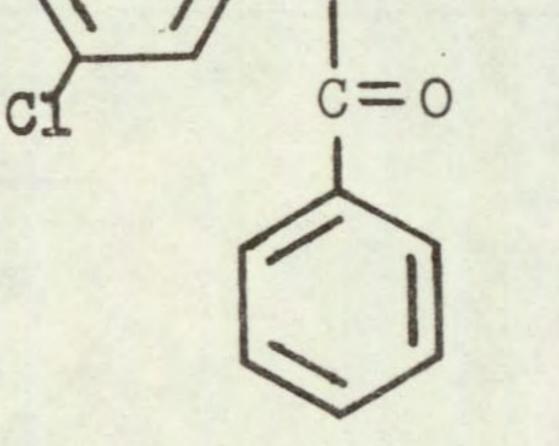
...

XXXXXXX XXXXXXX


XXXXXXX

.

10 OST EMERGENCE SELECTI < TIN EXPERIMENT


FLAMPROP-METHYL

- 23 -

-CH-COOCH_

Structure

Source

Shell Research Limited Woodstock Agricultural Research Centre Sittingbourne Kent ME9 8AG

Information available and suggested uses

F-

Haddock et al., 1974 reported good control of <u>Avena spp.</u> in wheat at rates of 0.45-0.60 kg/ha in extensive field trials in Europe during 1973 and 1974, with an adequate margin of safety. Limited data from glasshouse and field tests have indicated useful activity against <u>Alopecurus myosuroides</u> and <u>Agropyron repens</u>.

Formulation used 15% w/v a.i. emulsifiable concentrate

Spray volume

for activity experiment 305 1/ha for selectivity experiment 200 1/ha

RESULTS

Full histogram results are presented on pages 27-32 and potential selectivities are summarised in the following Table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
kg a.i./ha	by 15% or less	reduced by 70% or more
3.0	wheat barley perennial ryegrass dwarf bean rape carrot parsnip lettuce sugar beet maize	Alopecurus myosuroides Poa trivialis + species below

(Table continued overleaf)

RATE kg a.i./ha	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
3.0	pigeon pea chickpea cotton jute tobacco	Alopecurus myosuroides Poa trivialis + species below
1.0	species above + onion field bean swede radish rice soyabean	Agrostis stolonifera *(Avena fatua)
0.33	None listed as no weeds controlled	None

* Avena fatua eventually - see text

Comments on results

Activity experiment

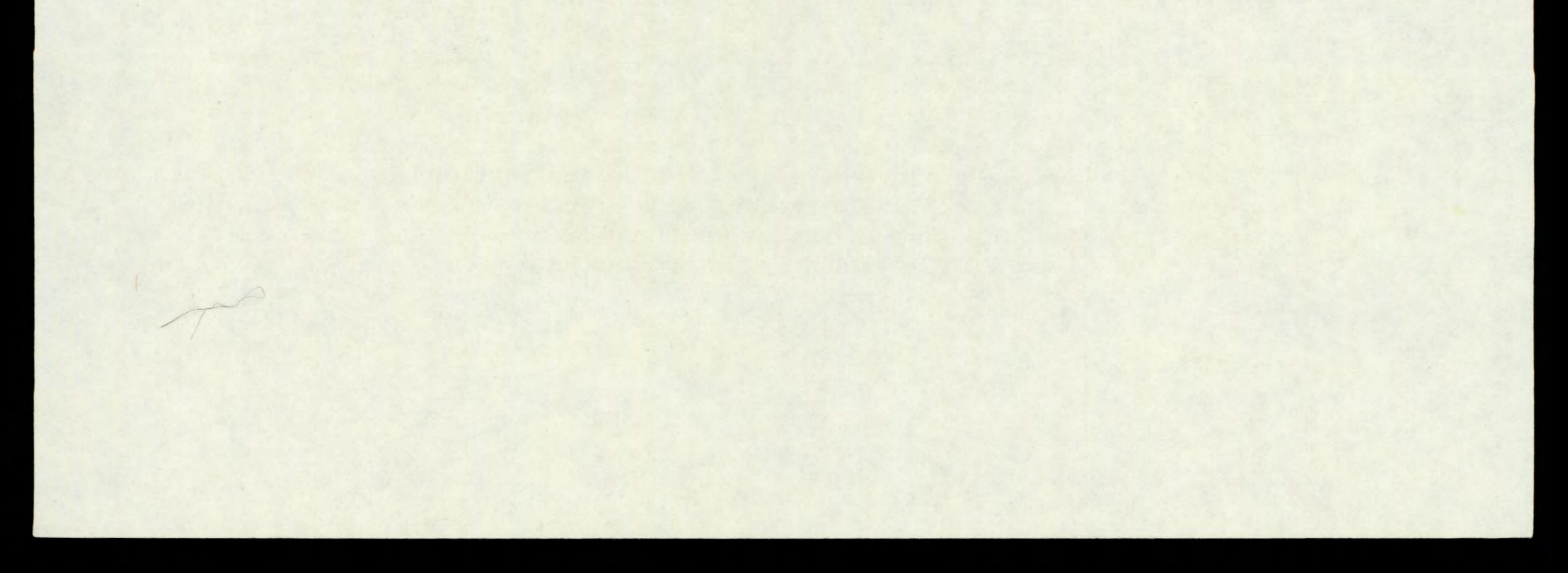
Full histogram results are presented for this test on page 26. Activity was found with foliar and soil treatments on most of the species. Avena fatua was the most susceptible species, particularly to the foliar spray although some activity was found in the soil as a result of postemergence drenches and pre-emergence surface application, mainly at the higher doses. Although Agropyron repens showed some sensitivity to the foliar spray, this was only temporary, all plants eventually making good recovery, but useful effects were also found pre-emergence at the high dose. Perennial ryegrass was resistant to post-emergence foliar sprays and soil drenches, but pre-emergence treatments at the high dose were damaging and some kill resulted from the surface spray. Dwarf bean and kale were damaged by the foliar spray but Polygonum amphibium was unaffected.

Symptoms

Mild to severe contact scorch resulted from the foliar sprays. A. fatua also suffered a powerful inhibition and eventual kill of the main shoot, followed by necrosis of the older leaves. Die-back was accompanied by a gummy exudation of the leaves. Some extra tillers were produced at the lower dose but these were usually inhibited and deformed. Leaves were often seen to exhibit a darker green colouration. Inhibition of main shoots of grasses and buds of broad-leaved species was noted as a result of the soil treatments, a darker green colour of leaves again developing. Pre-emergence treatments on grasses at the high dose resulted in a failure to emerge from the coleoptile or death soon after emergence.

Selectivity among temperate species

Although <u>Avena fatua</u> was not sufficiently controlled at assessment two weeks after spraying, later observations showed a complete kill at 3.0 kg/ha while only one very weak plant eventually survived treatment at 1.0 kg/ha. Furthermore, a severe inhibition was also apparent at this time with plants treated with only 0.3 kg/ha. <u>Alopecurus myosuroides</u> and <u>Poa trivialis</u> were controlled at 3.0 kg/ha and severely reduced at 1.0 kg/ha. <u>Poa annua</u> was resistant, comparing with HOE 22870 and HOE 23408. No effects were found on <u>Agropyron repens</u>, in contrast to the activity experiment, but <u>Agrostis stolonifera</u> proved to be highly susceptible, no plants surviving treatment at 3.0 kg/ha while only a few recovered from 1.0 kg/ha. Broad-leaved weeds were resistant.


- 25 -

Wheat and barley were tolerant to 3.0 kg/ha but oat was susceptible at all doses. Perennial ryegrass showed outstanding tolerance. Onion and several broad-leaved crops were also tolerant, notably rape, carrot and sugar beet. Pea, however, was severely inhibited at all doses while white clover was damaged at 1.0 and 3.0 kg/ha.

The selective control of A. fatua in wheat and barley is the most interesting and probably most important feature of this herbicide. Other WRO tests have shown it to be more active than its chemical analogues benzoylpropethyl and flamprop-isopropyl. However the possible control of this species in other crops such as perennial ryegrass and a break crop such as oil seed rape, merit further investigation. The possible suppression of other grass weeds e.g. Alopecurus myosuroides could give it an advantage over other post-emergence wild oat herbicides but the resistance of P. annua is unfortunate. Some further investigation on perennial grass weeds may be worthwhile in view of the susceptibility of A. stolonifera. The variation in response of A. repens in these two tests is not easy to explain, the same clonal material being used throughout, while the growth stages at treatment were similar. However the activity experiment, where the inhibition occurred, was carried out under glass, while in the selectivity test, plants were kept outside, possibly suggesting that environmental factors may be important with regard to activity.

Selectivity among tropical crops

No useful activity was shown on the tropical annual grasses and it appears unlikely that the compound will have a use in the tropics other than for wild oat control in wheat and barley.

ACTIVITY EXPERIMENT

- 26 -

FLAMPROP-METHYL

0.33 kg/ha

1.0 kg/ha

F DWARF S XXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

- XXXXX

3.0 kg/ha

XXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXX

BEAN		AAAAAAAAAAAAA	AAAAAAAAAAAAAAA
DEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM AMPHIBIUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

XXXXXXXXXXXXXXX XXXXXXXX

*

.

-

XXXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

PERENNIAL RYEGRASS

S

S

P

.

- F
 - XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
- P XXXXXXXXXXXXX XXXXXXXXXXXXXX
- XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXX

- F XXXXXXXXXXXXXXX XXXXXXXX
- S XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
- P XXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXX
- XXXXXXXXXX XXXXXXXXXXXXXXXX
- F XXXXXXXXXXXXXXX XXXXXXXXXXX
 - XXXXXXXXXXXXXX XXXXXXXXXXXX
 - XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXX

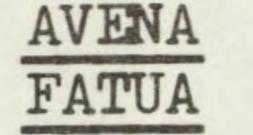
XXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXX XXXXXXXX

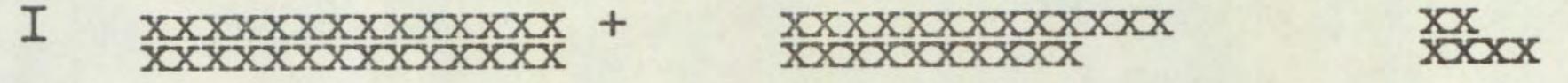
XXXXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX XXXX


XXXXXXXXXXXXXXX XXXXXXX

XXXXXXX XXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX


XXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

AGROPYRON

REPENS

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

		FLAMPROP-METHYL		FLAMPROP-METHYL
SPECIES		0.33 kg/ha		1.0 kg/ha
WHEAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	· XXXXXXXXXXXXXXXXXXXXXX
(1)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(2)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(3)	71	XXXXXXXXXXXXXX	43	XXXXXXXXX
PER RYGR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(4)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ONION	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(8)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWF BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(9)	. 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXX
FLD BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(10)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXX
PEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(11)	57	XXXXXXXXXX	57	XXXXXXXXXXX
W CLOVER	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(12)	86	XXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX
RAPE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(14)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(15)	100	XXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX

.

FL	AN	1P	R	0	P	
also also	4 7 4	diale (100	-	-	

3.0 kg/ha

100	XXXXXXXXXXXX
86	XXXXXXXXXXXX
	XXXXXXXXXXXX
86	XXXXXXXXXXXX
100	XXXXXXXXXXXX
43	XXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXX
100	XXXXXXXXXXXXX
71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	*
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
00	AAAAAAAAAAAAAA

100

64

100

100

43

100

86

.

43

XXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX 40.00

XXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

100 XXXXXXXXXXXXXXXXXXXXXXXX 64 XXXXXXXXXXXXX

-METHYL

XXXXXXXXX XXXXXX

XXXXXXXXXX XXXXXXX

XXXXXXXXXX

and the se

XXXXXXXXX XXXXXXXXXX

XXXXXXXXX XXX

XXXXXXXXXX XXXXXXX

POS ERG ENCE 3 ER IMENT

		FLAMPROP-METHYL		FLAMPROP-METHYL		FLAMPROP-M
SPECIES		0.33 kg/ha		1.0 kg/ha		3.0 kg/1
CABBAGE (16)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SWEDE (17)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PARSNIP (19)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETTUCE (20)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET (21)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVE FATU (26)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS (27)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA ANN (28)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA TRIV (29)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37 14	XXXXXXX XXX
SIN ARV (30)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

METHYL

/ha

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXX

XXXXXXXXX

xxxxxxxxxx

XXXXXXX

.

POST-EMERGENCE SELECTIVITY EXPERIMENT

		FLAMPROP-METHYL		FLAMPROP-METHYL
SPECIES		0.33 kg/ha		1.0 kg/ha
RAPH RAP (31)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	00	
TRIP MAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(33)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SEN VULG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(34)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL LAPA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(35)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL AVIC	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(36)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(38)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100		100	
CHEN ALB (39)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(40)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SPER ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(.41)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VER PERS .	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(42)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RUM OBTU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(44)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

4

XXXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AAAAAAAAAAAAAA
XXXXXXXXXXXXXXX
XXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

F	LA	M	PR	0	P	-

3

.

3.0 kg/ha

100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXX

64

-METHYL

XXXXXXXXX XXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXXXXXX XXXXXXXXX

XXXXXXXXXX XXXXXX

XXXXXXXXXX XXXXXX

XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX

POST-EMERGENCE SEI ECTI H H K EXP E IMENT

		FLAMPROP-METHYL		FLAMPROP-METHYL		FLAMPROP-M
SPECIES		0.33 kg/ha		1.0 kg/ha		3.0 kg/
AG REPEN (47)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AG STOLO (48)	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE (58)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORGHUM (59)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RICE (60)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PIGEON P (61)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COWPEA (62)	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHICKPEA (63)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GRNDNUT (64)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOYABEAN (65)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COTTON (66)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

-METHYL

/ha

XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX XXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX XXXXXX

XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXXX

XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXXX

XXXXXXXXXX XXXXXX

XXXXXXXXXXX XXXXXXX

1

Click here to continue

- Walnut I

J OST EMERGENCE SELECTI < TTY EXPER IME

NT

. .

30

100

N. Market