Soil persistence

Using perennial ryegrass as the test species a moderate to long period of persistence was found. Although 0.25 kg/ha was undetectable after 28 weeks, and 1.0 kg/ha after 40 weeks the high dose was still causing severe effects at the latter date.

Pre-emergence selectivity

Three annual grasses (Alopecurus myosuroides and Poa species) and six broad-leaved species were controlled (Matricaria perforata, Galium aparine, Veronica persica, Viola arvensis, Rumex obtusifolius and Cirsium arvense) at 0.25 kg/ha. At 1.0 kg/ha Avena fatua and three more broad-leaved species, Chrysanthemum segetum, Chenopodium album and Stellaria media were controlled.

Crop tolerance was limited to the lowest dose where wheat, the brassicas (rape, radish and swede) and two legumes (dwarf bean and lucerne) were tolerant. Perennial ryegrass and white clover were very sensitive.

A moderate safening effect was found with wheat which was rendered tolerant to 1.0 kg/ha.

The potential control of the major problem broad-leaved weeds <u>G.aparine</u>, <u>V.persica</u> and <u>V.arvensis</u> in wheat is the most outstanding feature of this test. That the tolerance of wheat can be increased yet more by the safener, NA, deserves further investigation.

ACTIVITY EXPERIMENT

CINMETHYLIN

				. /2
		0.25 kg ai/ha	1.0 kg ai/ha	4.0 kg ai/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF BEAN	D	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Т	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	·F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	c	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX	XXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	C 1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	P	XXXXXXXXX	XXXX	XXX
	I	XXXXXXXXXXX	XXXXXXXX	8
	F	XXXXXXXXXXX	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXX	XXXXXXX
PERENNIAL RYEGRASS	P	XXXXXX	0	0
KIEGRADD	I	8 x	0	0
		X		
	F	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
ATTENTA	S	VVVVV	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
FATUA	P	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
	5	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXX
REPENS	1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX	X
		I XXXXXXX I XXXXXXX	XXXXXX	0

KEY: F = post-emergence, foliar application

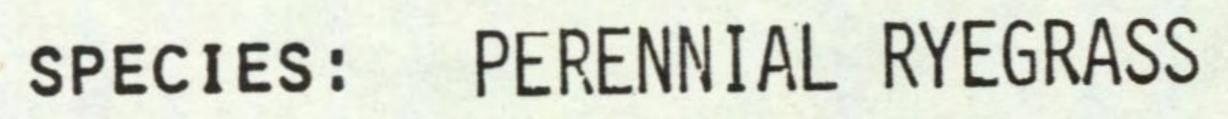
s = post-emergence, soil drench

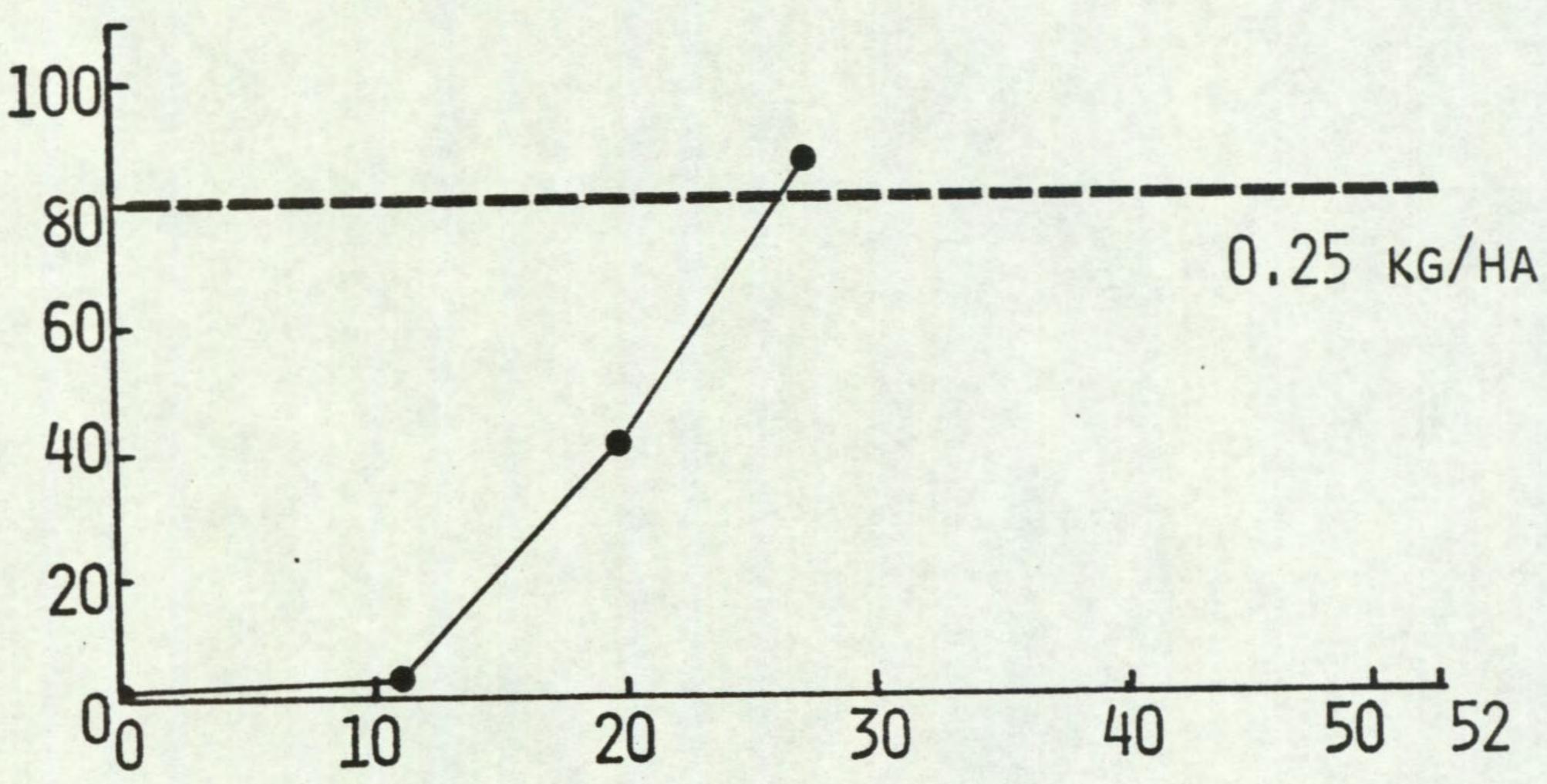
P = pre-emergence, surface film

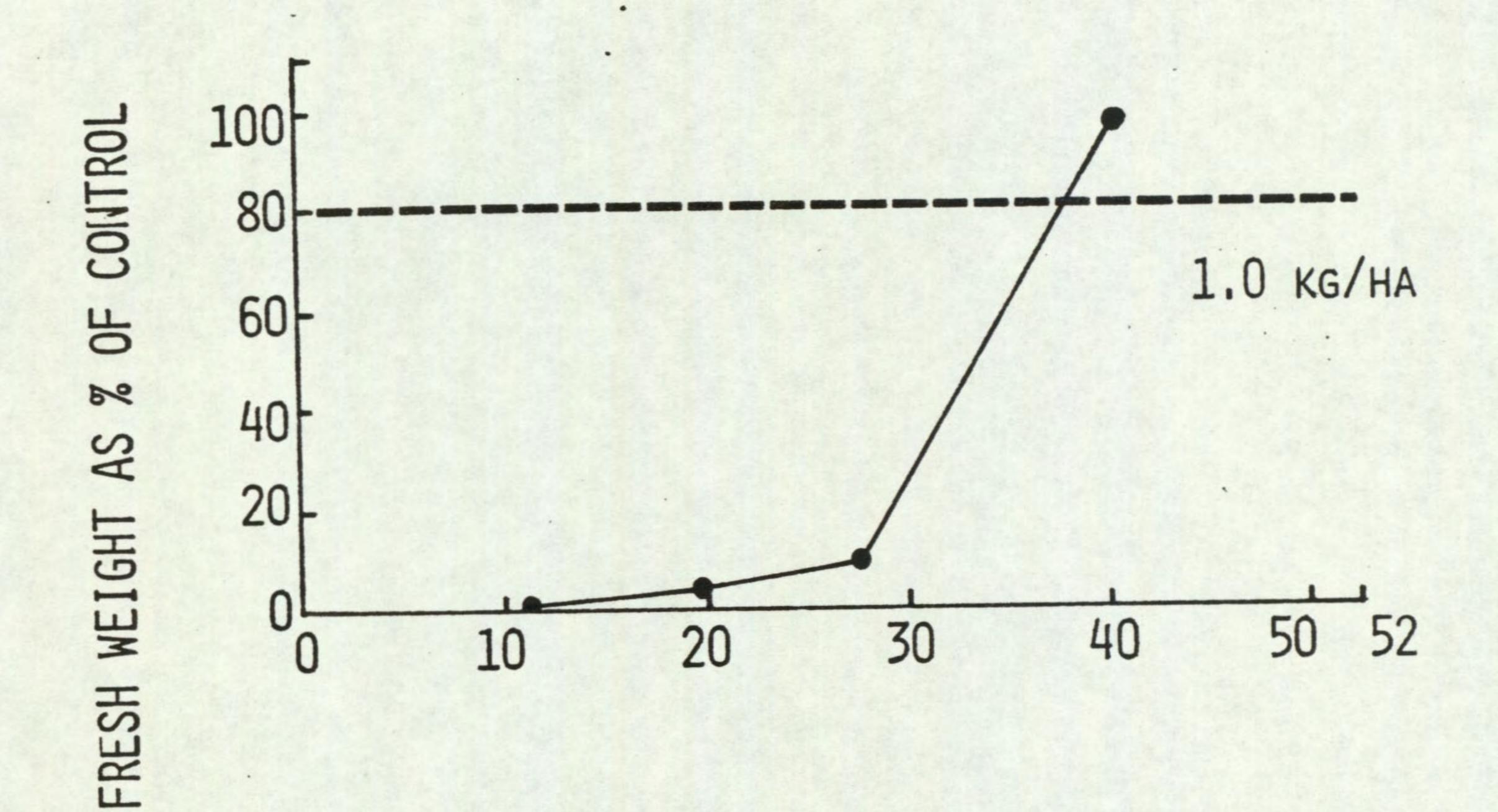
I = pre-planting, incorporated

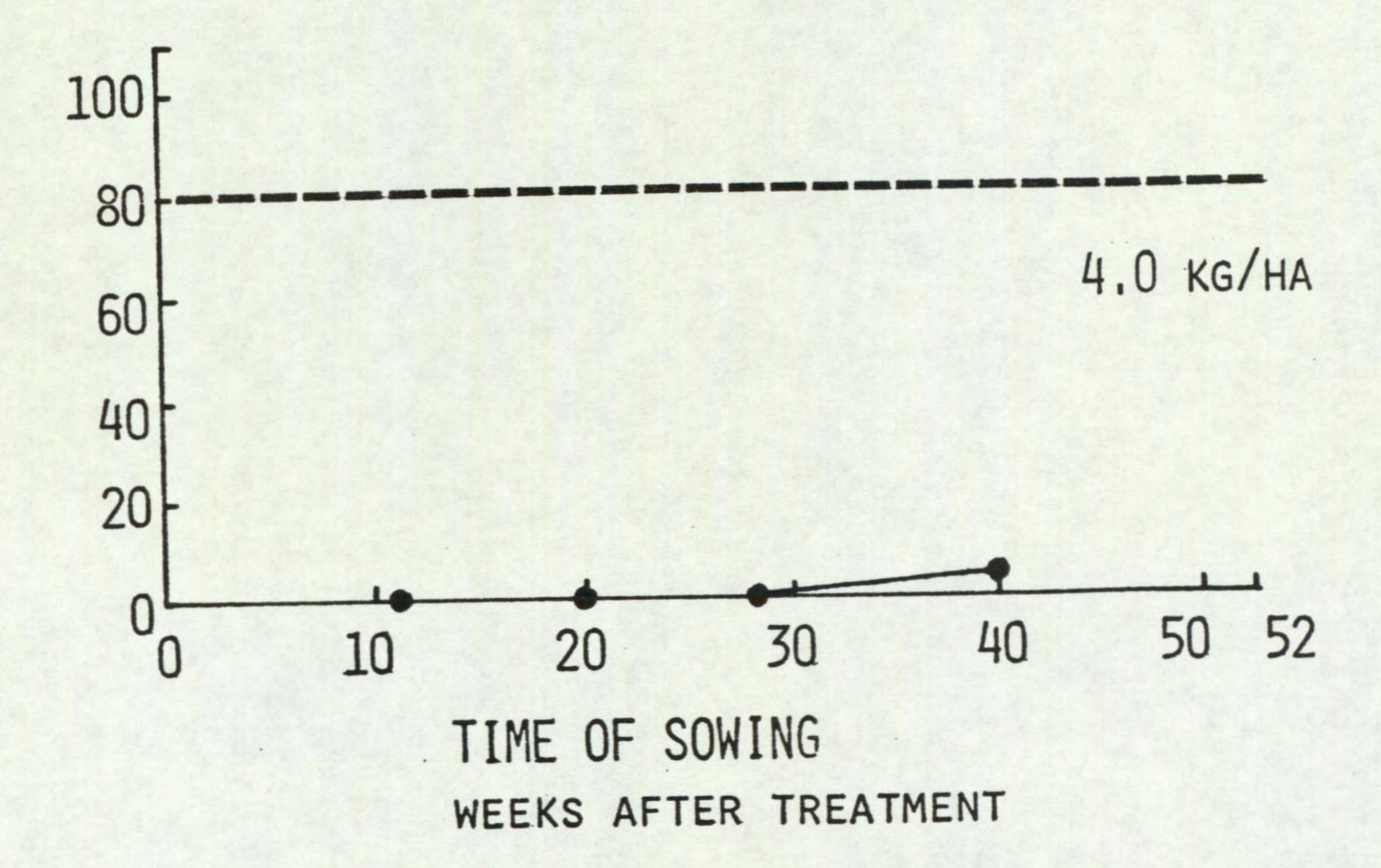
TRIAL NUMBER 534

				CINMETHYLIN		
SPECIES		0.250 kg/ha		1.000 kg/ha		4.000 kg/ha
WHEAT,	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	72	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	52	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEAT+S	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37	XXXXXXX	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY+S	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	65	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT (5)	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	19	XXXX XXXX	00	
PER RYGR	00		00		00	
ONION,	73	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		0	
DWF BEAN	87	××××××××××××××××××××××××××××××××××××××	87 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	95 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)	69	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	23	XXXXX X	00	
W CLOVER	138	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	23	XXXXX	46	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LUCERNE (13)	125	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX


TRIAL NUN	1BER	534		CINMETHYLIN		
				1.000 kg/ha		4.000 kg/ha
SPECIES		0.250 kg/ha	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE) KALE)	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(15) SWEDE (17)	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	40	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		00	
SUG BEET	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	142	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	111	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
BETA VUL	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	27	XXXX XXXX
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	61	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4	×
AVE FATU		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
ALO MYOS			00		00	
POA ANN	0		00		00	
POA TRIV	00		00		00	
(29) SIN ARV (30)	103	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	117	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX


-	_		_					-			-	-	-	
	т	JV.	TR/	п	E	1			7		1	n	M	
		17	IV	ш	п.		п	1				-11	w	
	-									_	_	-	•	


SPECIES		0.250 kg/ha		1.000 kg/ha		4.000 kg/ha
RAPH RAP	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33	XXXXXXX XXX	00	
MAT PERF	mark districts	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	39	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXX
POL LAPA		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	The second secon	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR	00		27	XXXXX	00	
CHEN ALB	125	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	67	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED	66	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13	XXX XXX	39	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VI ARVE			47	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32	XXXXXX X
RUM OBTU		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	18	XXXX
EL REPEN			97 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CIRS ARV	14	XXXXXX	00		00	


TRIAL NU	MBER	534		CINMETHYLIN		
CDECTEC		0.250 kg/ha		1.000 kg/ha	400	4.000 kg/ha xxxxxxxxxxxxxxxx
SPECIES CONV ARV	57	xxxxxxxxx	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
CONV ARV	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE+S	71	XXXXXXXXXXXXX	52 29	xxxxxxxxx	0	
MAIZE,	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	74	XXXXXXXXXXXXXXX	114	XXXXXXXXXXXXXXXXXXXXXXX
SOL NIG	43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	24	xxxxxx

PERSISTENCE OF CINMETHYLIN

Code number

AC 263, 499

Trade name

Common name

Chemical name

(+)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)

nicotinic acid

structure

Source

Cyanamid International Limited

Fareham Road

Gosport

Hants PO13 OAS, UK

Information available and suggested uses

Annual grass and broad-leaved control in soyabeans, several other leguminous crops, tobacco, coffee and established tree crops, pre-and/or post-emergence at doses ranging from 0.07 to 0.84 kg/ha.

Formulation used Aqueous concentrate 24.2% a.i.

Spray volume

373 1/ha

RESULTS

Full results are given in the histograms on pages 45-49 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.4	None	None listed as no crops tolerant
0.1	field bean	Alopecurus myosuroides Raphanus raphanistrum Chrysanthemum segetum Galium aparine Viola arvensis + species below
0.025	species above + wheat + safener (NA) barley + safener (NA) maize + safener (NA)	Beta vulgaris Poa annua Poa trivialis Sinapis arvensis Matricaria perforata Polygonum lapathifolium Chenopodium album Stellaria media Veronica persica Rumex obtusifolius Elymus repens Cirsium arvense Convolvulus arvensis Solanum nigrum

Comments on results

Activity experiment

Activity was generally greater with the soil treatments, especially pre-emergence. There was little difference between surface and incorporated pre-emergence treatments. Effects were found with the foliar spray on all species, dwarf bean being quite sensitive to this means of application.

Symptoms on susceptible species

Powerful growth inhibition followed by chlorosis or yellowing of old and new developing leaves were the most common symptoms, found with all four application methods, necrosis of tissue developing later. Tillers in grasses application broad-leaved species proliferated, but they were also inhibited and and buds in broad-leaved species proliferated, but they were failed to emerge. chlorotic. At higher doses, pre-emergence, the shoots often failed to emerge.

Soil persistence

Persistence was moderate to long. Although the lowest rate of 0.025 kg/ha was undetectable 40 weeks after treatment, the higher doses were still causing severe effects at this time.

Pre-emergence selectivity

At the lowest dose of 0.025 kg/ha, 14 weeds were controlled, 11 of which were broad-leaved species. A further four broad-leaved weeds, including Galium aparine were controlled at 0.1 kg/ha, as well as Alopecurus myosuroides. Only two other weeds, Bromus sterilis and Avena fatua were not controlled at this dose, but both were severely reduced.

Field bean showed outstanding tolerance, being reduced in vigour by only 21% at the highest dose. Dwarf bean was reduced to the same degree at the two lower doses, but all other crops were sensitive. A moderate degree of safening by NA was found with all three cereals (wheat, barley, maize).

The weed control spectrum was impressive including annuals, perennials, broad-leaved and grass weeds, but crop tolerance was limited to field bean. The safening of cereals by NA deserves further investigation.

ACTIVITY EXPERIMENT

AC 263,499

		0.0625 kg/ha	0.25 kg/ha	1.0 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DERM		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
DWARF BEAN	P	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXX	XXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
AMPHIBIUM	P	X	0	8
	I	XXXXX	0	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXXXXX	XX XX	0
	I	XXXXXXXXXX	XXXXXXXX	XXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
AVENA FATUA	P		XXXXXXXXXX	XXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
ELYMUS REPENS	F		0	8
]	XXXXXXXXX	0	0

Key: F = post-emergence, foliar application

S = post-emergence, soil drench

P = pre-emergence, surface film

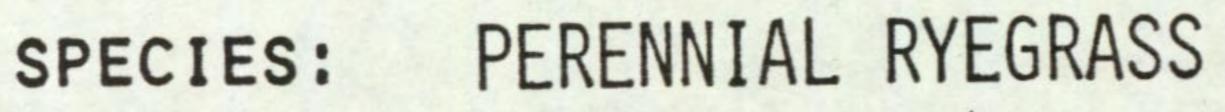
I = pre-planting, incorporated

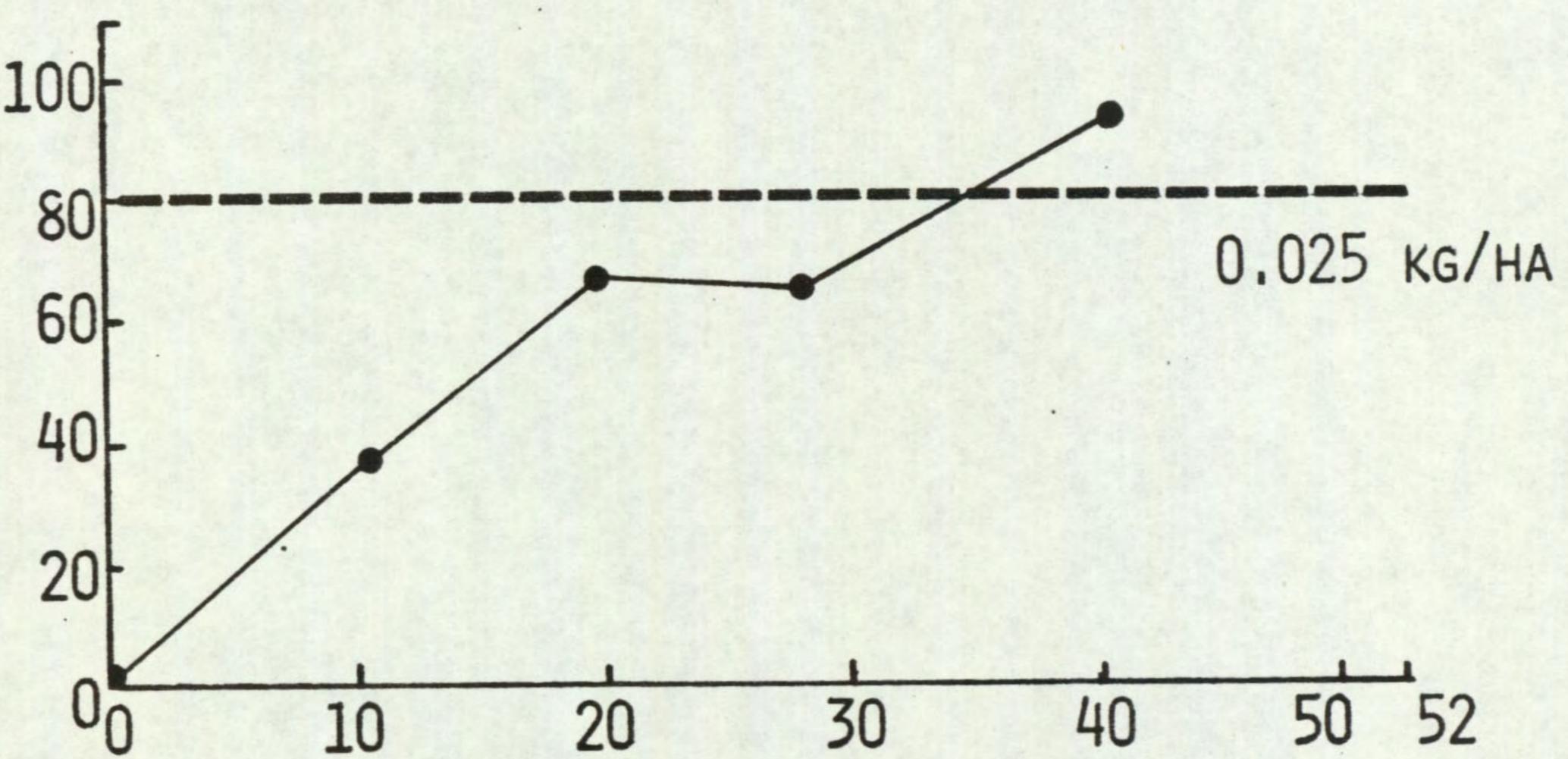
46

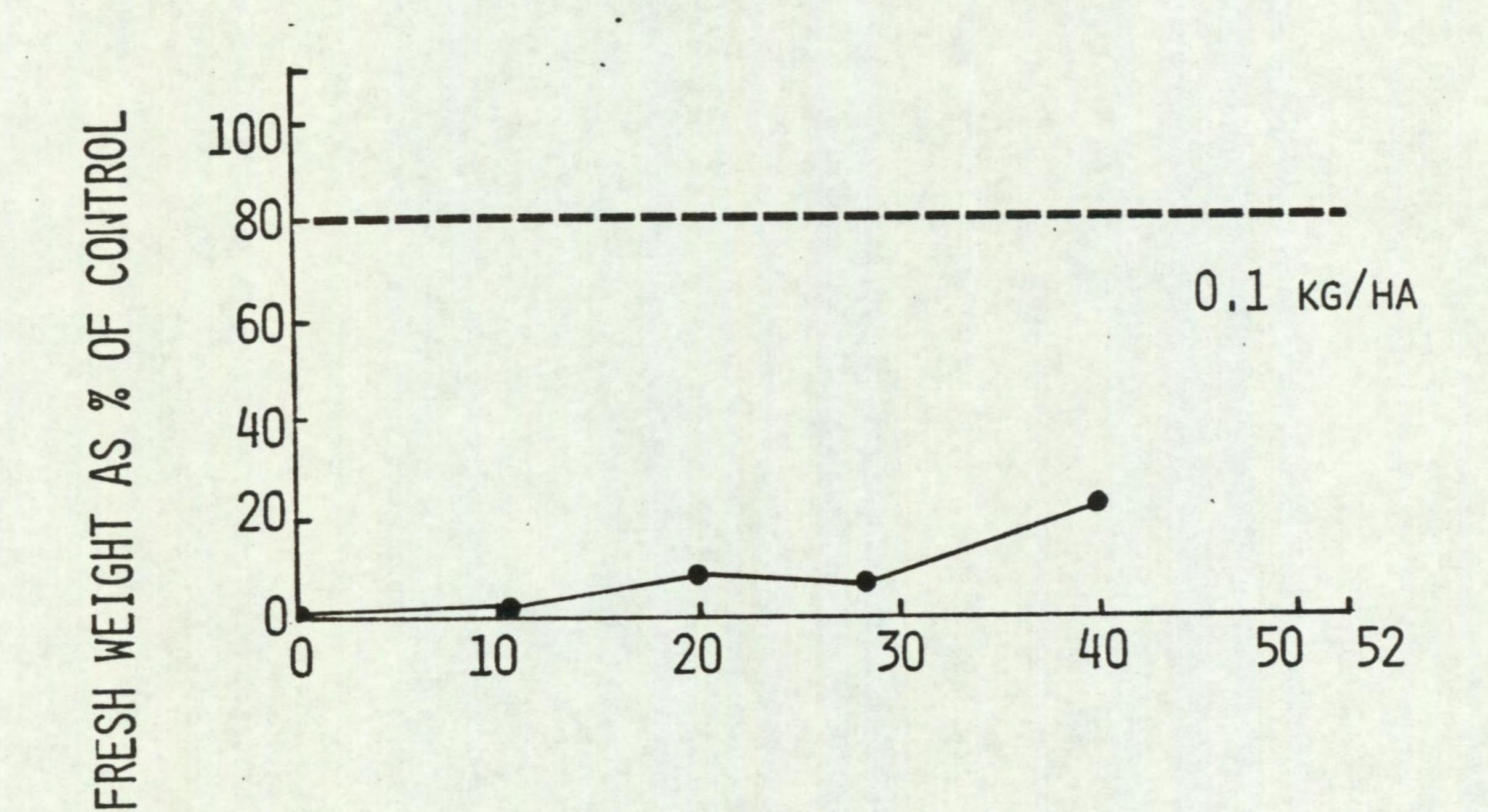
EMERGENCE

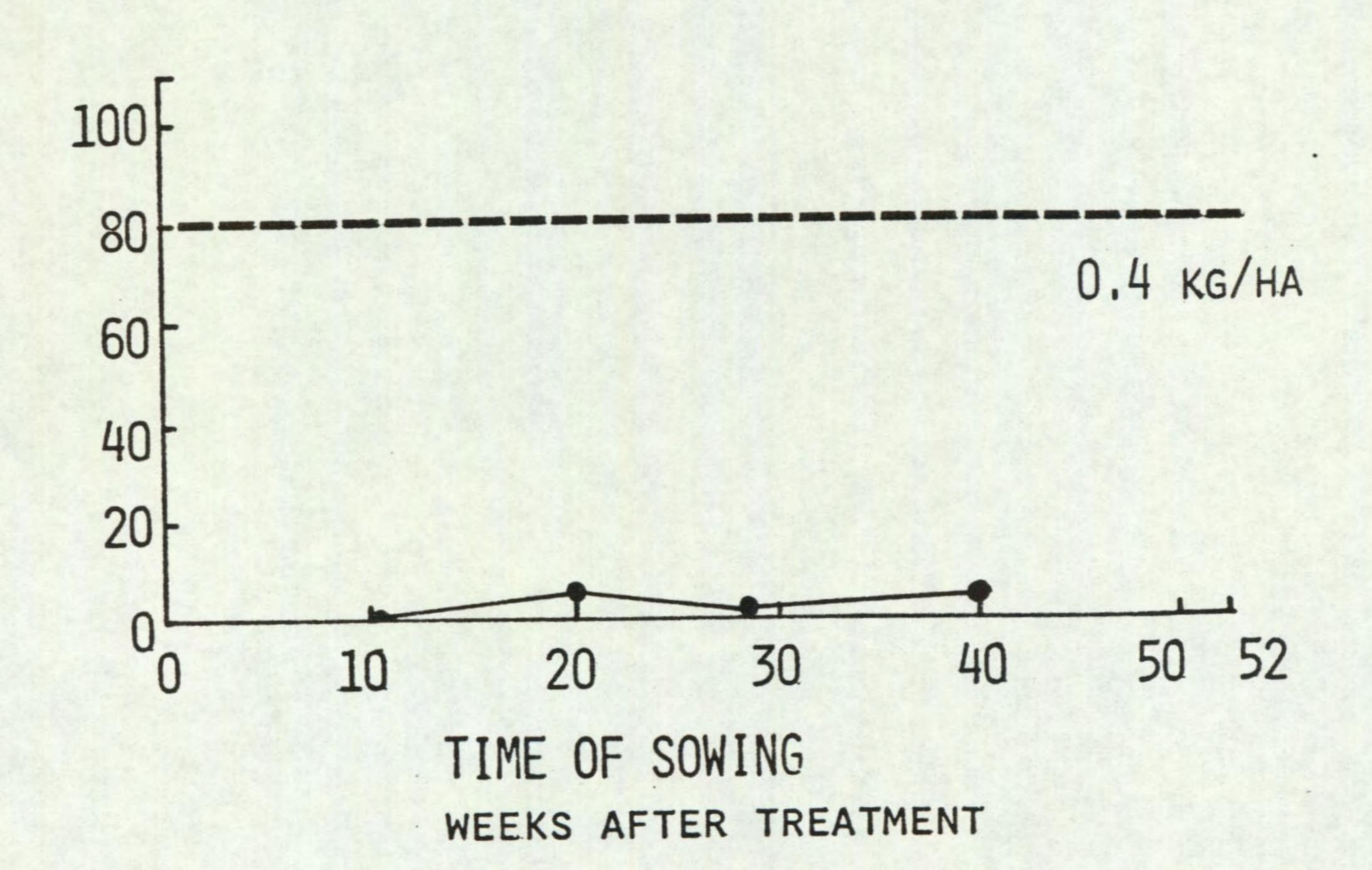
TEST

534


TRIAL NUMBER


TRIAL NU	MBER	534				
				AC263499		
SPECIES		0.025 kg/ha		0.100 kg/ha		0.400 kg/ha
RAPE (14)	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	52 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE (15)	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SWEDE,	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET	58 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37	XXXXXXX XXX	21	XXXX
PETA VUL		×××	77	×	30	XXXXXXX
BROM STE		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	22	XXXXX
AVE FATU		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41 29	XXXXXXXX	47	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA ANN	29	XXXXXX	00		00	
POA TRIV	19	XXXX	00		00	
SIN ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX


TRIAL NUMBER	534						
			AC263499				
SPECIES	0.025 kg/ha		0.100 kg/ha		0.400 kg/ha	PRE	
RAPH RAP 89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	EME	
CHRY SEG 133 (32)	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	67	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		GENC	
MAT PERF 26	XXXXX	00		00		CE SEI	
POL LAPA 137	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12	X X	ECTI	
GAL APAR 82 (38) 43		82 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		YTTY	48
CHEN ALB		42	XXXXXXXX XXX	33	XXXXXXXX	TEST	
STEL MED 32 (40) 14	XXXXXXX	44	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		13	XXX X		
VI ARVE 47 (43)		16	XXXXXX	16	XXX		
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	23	XXXXXX	1.4	XXX		
EL REPEN 29 (47) 43		10	XXX	00			
CIRS ARV 27	XXXXX	00		0			


TRIAL NO	MBER	534				
				AC263499		
SPECIES		0.025 kg/ha		0.100 kg/ha		0.400 kg/ha
CONV ARV	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE (57)	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOL NIG	29	XXXXXX	00		71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

PERSISTENCE OF AC 263,499

Code number

RST 20024H

RST 20061H (+ atrazine)

Trade name/s

Atravit rustica (+ atrazine)

Common name

Trimexachlor (proposed)

Chemical name

α-chloroacetic-N-(3,5,5-trimethyl-cyclo-hexen-l-yl)-N-

isopropylamide

structure

Source

Ruhr-Stickstoff AG

Landwirtschaftliche Forschung

Hanninghof 35 D4408 Dülmen

Federal Republic of Germany

Information available and suggested uses

Broad-spectrum weed control in maize, winter rape, soyabeans etc. pre- and post-emergence.

Formulation used

Emulsifiable concentrate 40% a.i.

Spray volume

373 1/ha

RESULTS

Full results are given in the histograms on pages 54-57 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigou
(kg a.i./ha)	by 15% or less	reduced by 70% or more
4.0	lucerne	Beta vulgaris
	rape	Bromus sterilis
	kale	Cirsium arvense
	radish	Convolvulus arvensis
		+ species below
1.0	species above +	Avena fatua
		Chrysanthemum segetum
	wheat + safener (NA)	Matricaria perforata
	barley + safener (NA)	Chenopodium album
	maize + safener (NA)	Rumex obtusifolius
	dwarf bean	+ species below
	swede	
0.25	species above +	Alopecurus myosuroides
	wheat	Poa annua
	barley	Poa trivialis
	maize	Stellaria media
	onion	Veronica persica
	field bean	Viola arvensis
	pea	Solanum nigrum

Comments on results

Activity test data, post-emergence selectivity and symptoms found on susceptible species were described previously (Richardson and West, 1984). Activity was greatest pre-emergence especially as a surface spray. Symptoms were reminiscent of other amide and carbamate type herbicides.

Soil persistence

Persistence in the soil was relatively short. Doses of 0.25, 1.0 and 4.0 kg/ha were undetectable 11, 20 and 28 weeks respectively after treatment.

Pre-emergence selectivity

Seven annual weeds were controlled at the lowest dose of 0.25 kg/ha, most impressive of which were Alopecurus myosuroides, Viola arvensis, Veronica persica and Solanum nigrum. At 1.0 kg/ha, Avena fatua and a further four annual broad-leaved weeds were controlled including two composites, Matricaria perforata and Chrysanthemum segetum. At 4.0 kg/ha Bromus sterilis, Cirsium arvense, Convolvulus arvensis and Beta vulgaris were controlled. The cruciferous weeds (Sinapis arvensis and Raphanus raphanistrum) were resistant.

Brassica crops were highly tolerant, rape, kale and radish tolerating the highest dose of 4.0 kg.ha while swede was reduced in vigour by only 29% at this dose. Lucerne and other legumes, dwarf bean at 1.0 kg/ha and pea and field bean at 0.25 kg/ha, were also tolerant. Onion, wheat, barley and maize were tolerant

to 0.25 kg/ha. A moderate safening effect was found on the cereals with NA which rendered all three tolerant to 1.0 kg/ha. Perennial ryegrass and white clover were highly sensitive.

Although controlling an interesting spectrum of weeds with potential selectivity in brassicas, in common with other herbicides selective in these crops, cruciferous weeds are tolerant. Other interesting features worthy of further study are the control of Solanum nigrum in peas, Alopecurus myosuroides, Viola arvensis and Veronica persica control in cereals and the potential to extend selectivity still further in the latter crops with the safener NA.

ACKNOWLEDGEMENTS

We are grateful to the Statistics Section for processing the experimental data; to Messrs P D Smith, R M Porteous and S Burbank, J K Smith and Miss J M Heritage for technical and practical assistance; to Mrs J Wallsworth for the preparation and typing of this report; to Mrs S Cox and her staff for its reproduction and to the commercial firms who provided the herbicides and relevant data.

REFERENCES

RICHARDSON, W.G. and DEAN, M.L. (1973) The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. Technical Report Agricultural Research Council Weed Research Organization, 25, pp.57.

RICHARDSON, W.G. and WEST, T.M. (1984) The activity and post-emergence selectivity of some recently developed herbicides: MCPA-thioethyl, MT-124, tridiphane, aclonifen and RST 20024. Technical Report Agricultural and Food Research Council Weed Research Organization, 78, pp.48.

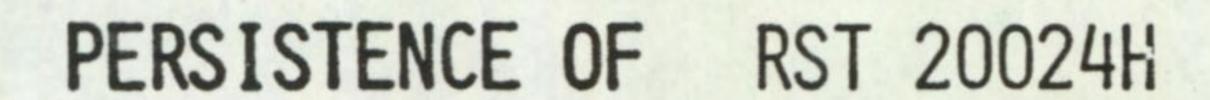
RICHARDSON, W.G., WEST, T.M. and WHITE, G.P. (1983a) The activity and late post-emergence selectivity of some recently developed herbicides: AC 252925, DOWCO 453, HOE 33171 and HOE 35609. Technical Report Agricultural Research Council Weed Research Organization, 69, pp.39.

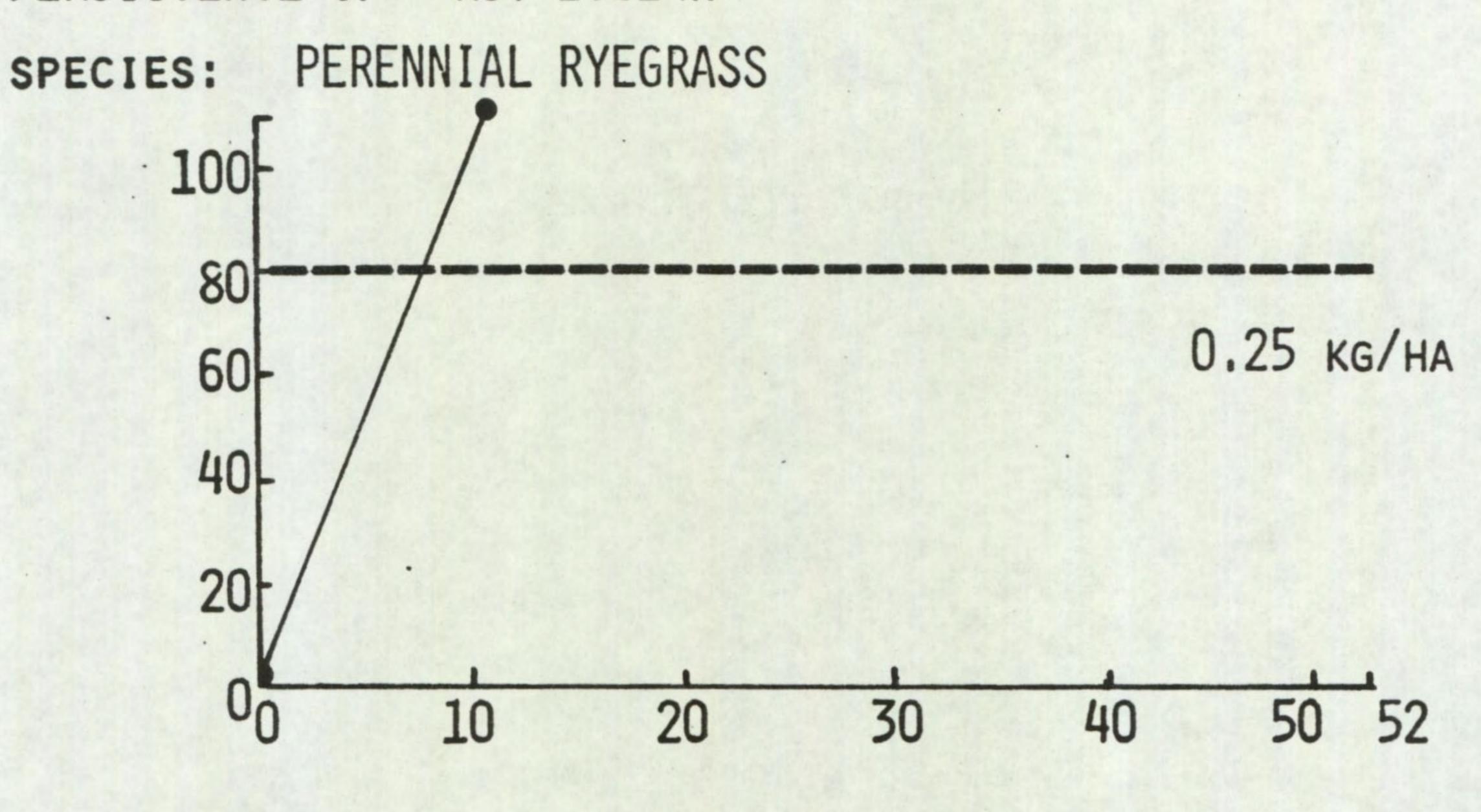
RICHARDSON, W.G., WEST, T.M. and WHITE, G.P. (1983b) The activity and late post-emergence selectivity of FBC 32197. Technical Report Agricultural Research Council Weed Research Organization, 72, pp.17.

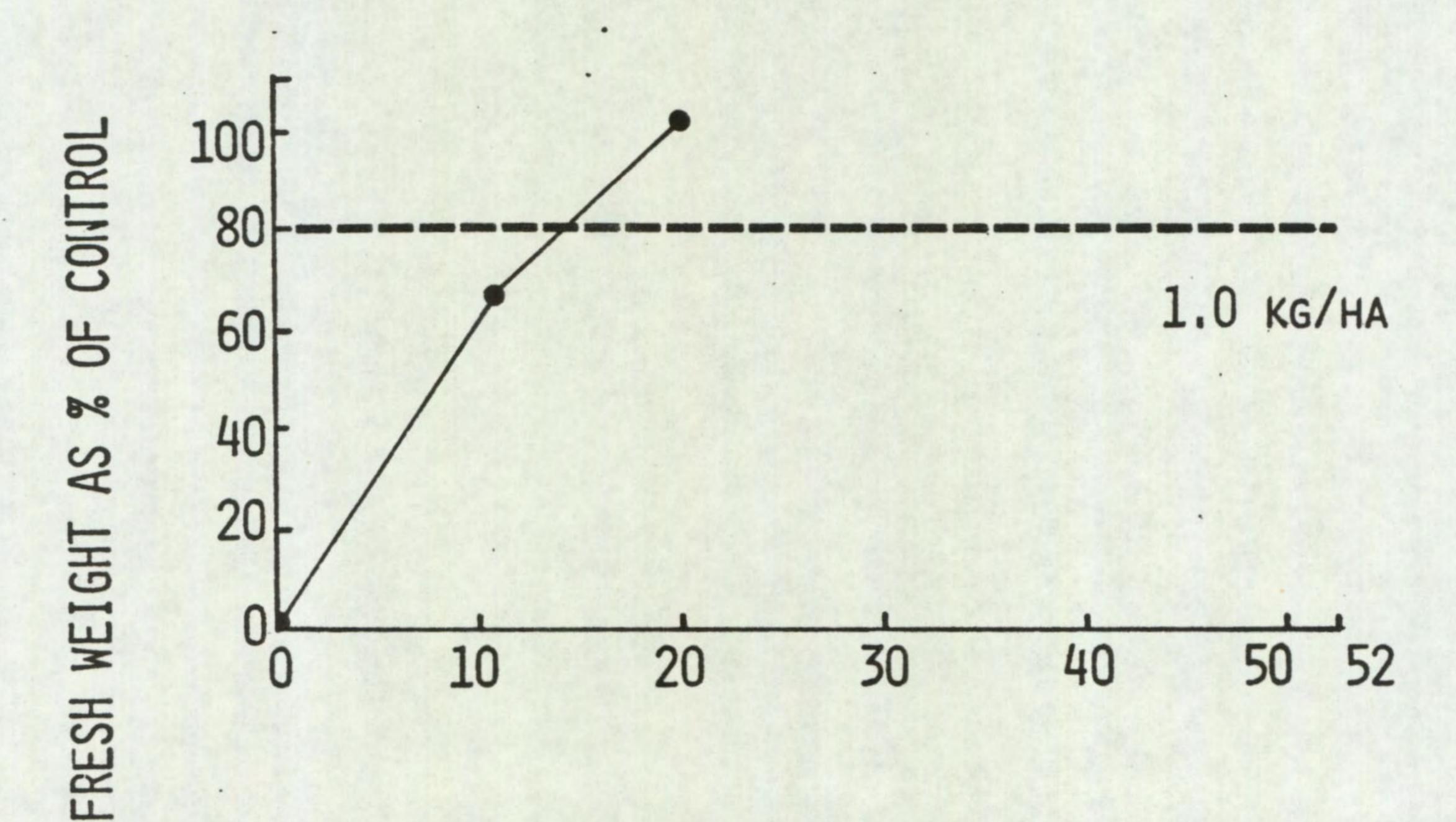
			RST20024		
SPECIES	0.250 kg/ha		1.000 kg/ha		4.000 kg/ha
WHEAT 104 (1) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	65	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEAT+S 102 (2) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY+S 104 (4) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT 109 (5) 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	19	XXXX
PER RYGR 19	XXXX	00		00	
ONION 87 (8) 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13	XXXXXXXXX	00	
DWF BEAN 100 (9)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN 95 (10) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	68 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA 192 (11) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	115	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
W CLOVER 0		00		00	
LUCERNE 137	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31	XXXXXXX	181	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

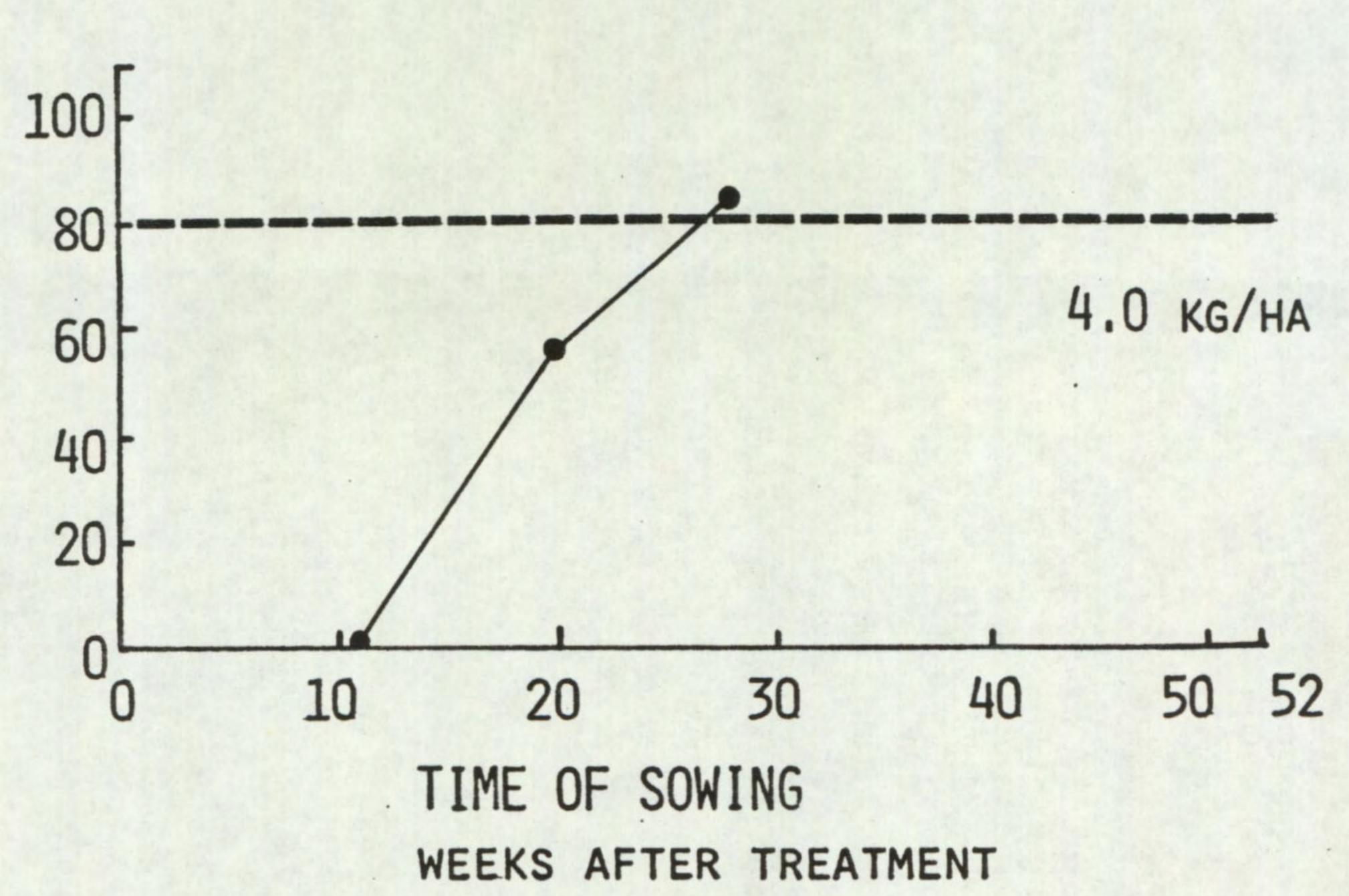
1	D	C	T	2	n	n	7	1.	
1	П	3	1	4	u	u	4	4	

SPECIES		0.250 kg/ha		1.000 kg/ha		4.000 kg/ha
RAPE (14)	96	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE (15)	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SWEDE (17)	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	100	XXXXXXXXXXXXXXXXX	40 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
SUG BEET	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BETA YUL	40	XXXXXXXXXXXXXXXXXX	51 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13 29	XXXXXX
BROM STE	100	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	61 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
AVE FATU	67	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS	83 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	26	XXXXX	00	
POA ANN	00		00		00	
POA TRIV	00		00		00	
SIN ARV	100	××××××××××××××××××××××××××××××××××××××	97	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

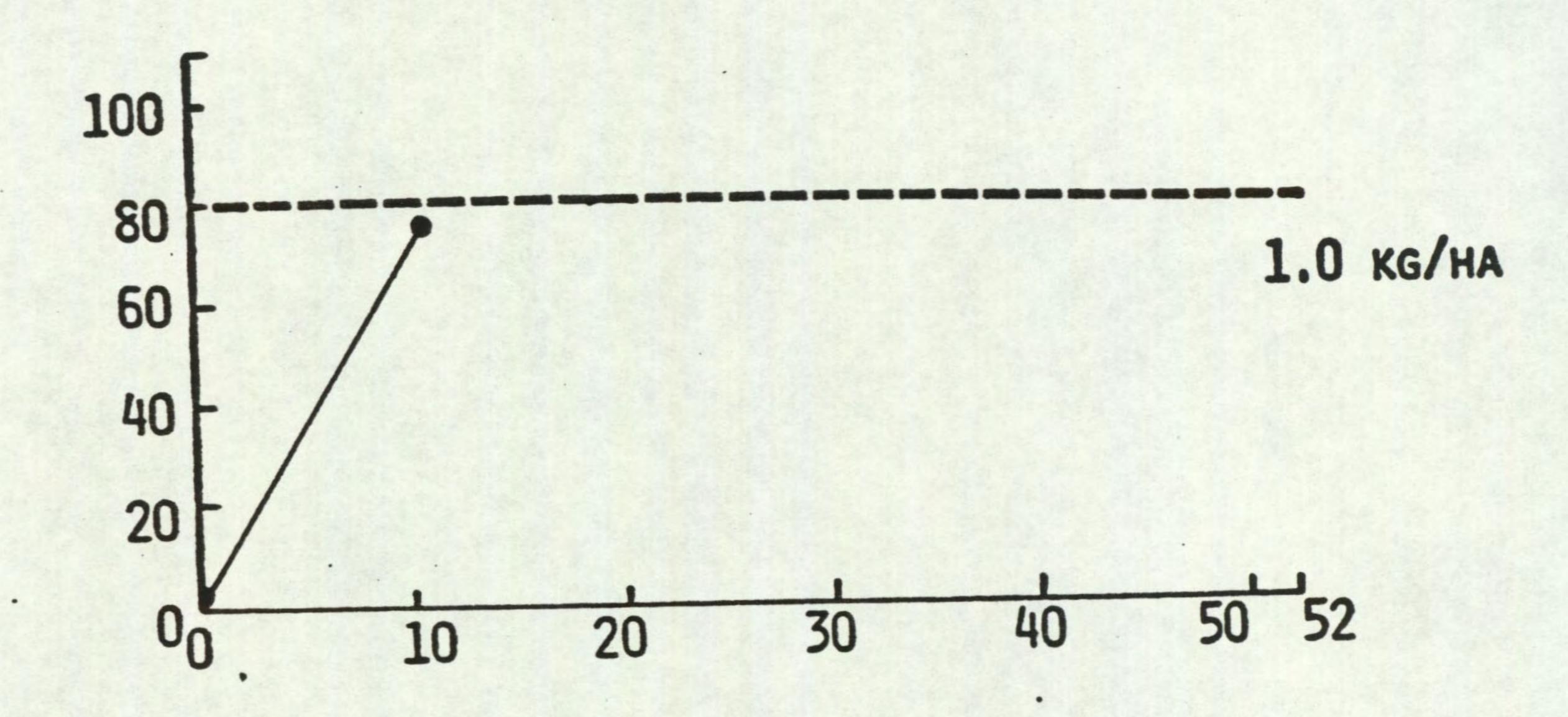

TRIAL NUMBER 534


				RST20024		
SPECIES		0.250 kg/ha		1.000 kg/ha		4.000 kg/ha
RAPH RAP	101	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	106	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG	33 71	XXXXXXXXXXXXXXX	17 36	XXXXXXX	27	XXXX
MAT PERF	130	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	39	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13	XXX X
POL LAPA	100	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	87 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR			191	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	55	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHEN ALB	67	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		27	XXXX
STEL MED	26 50	XXXXXXXXXXX	00		0	
VER PERS	13	XXX X	00		0	
VI ARVE	00		00		00	
RUM OBTU		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	18	XXXX	00	
EL REPEN		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	116	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	106	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
CIRS ARV		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	

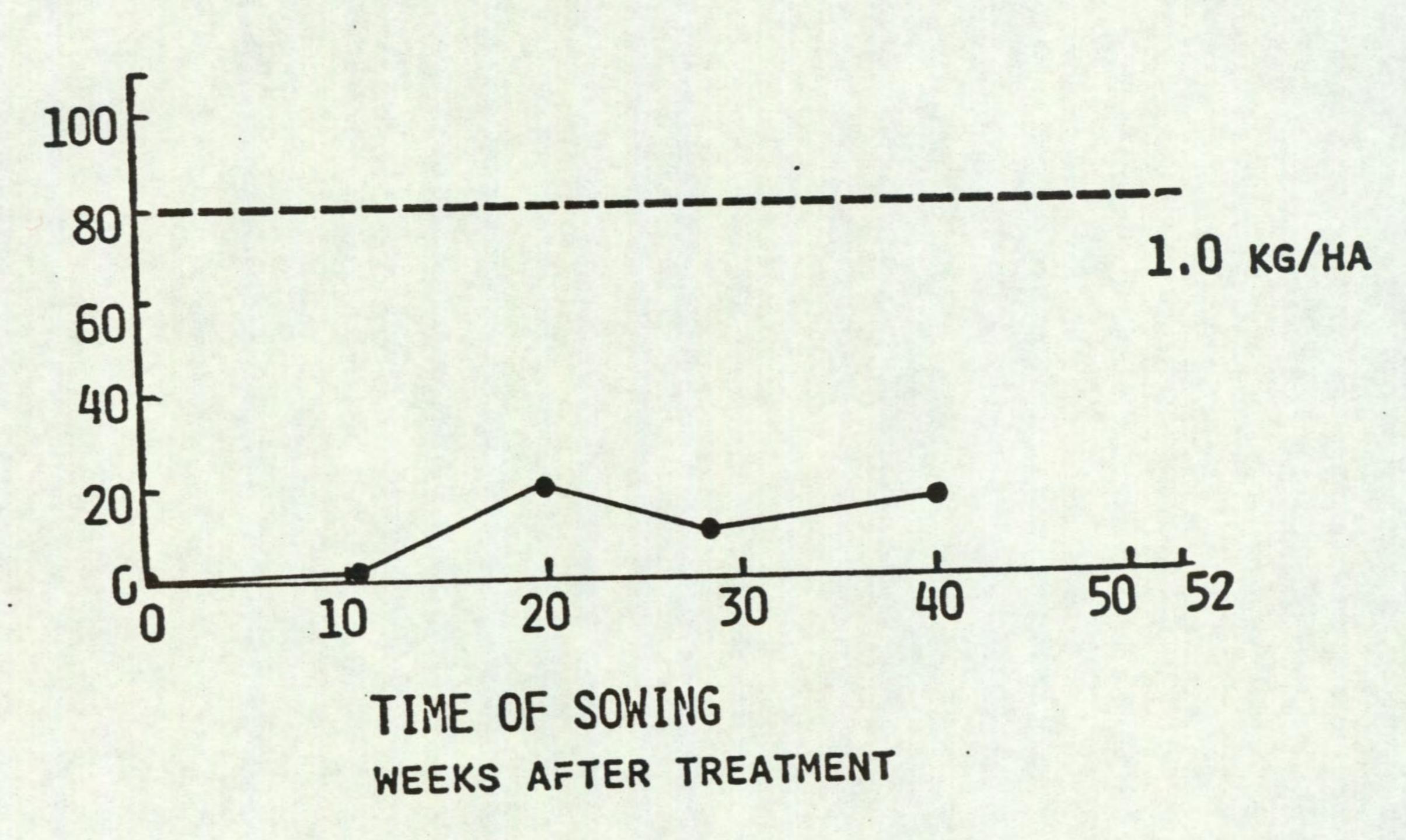

TRIA	AL.	NUMBER	534


SPECIES		0.250 kg/ha		1.000 kg/ha		4.000 kg/ha	
CONV ARV	186	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	129	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	PKET
MAIZE+S	100	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FMEK
MAIZE,	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	FENCE
SOL NIG	00		00		00		SELEC

RST20024



PERSISTENCE OF CYANAZINE SPECIES: PERENNIAL RYEGRASS


PERSISTENCE OF SIMAZINE Species: PERENNIAL RYEGRASS

CONTROL

8

26

FRESH WEIGHT AS

Appendix 1. Species, abbreviations, cultivars and stages of growth at assessment

	Designa- tion and computer serial	Cultivar or source	No. per pot	Depth of planting (cm)	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Temperate species					
Wheat (Triticum aestivum)	WHEAT (1)	Armada	8	1.0	4 leaves, 0-1 tiller
Wheat + safener	WHEAT + S	Armada	8	1.0	4 leaves,
	(2)				0-1 tiller
Barley (Hordeum vulgare)	BARLEY (3)	Sonja	8	1.0	4 leaves, 0-1 tiller
Barley + safener	BARLEY + S	Sonja	8	1.0	4 leaves, 0-1 tiller
Oat (Avena sativa)	OAT (5)	Pennal	8	1.0	5-7 leaves, 0-1 tiller
Perennial ryegrass (Lolium perenne)	PER RYGR	S 23	15	0.5	2 tillers
Onion (Allium cepa)	ONION (8)	Robusta	15	0.5	2-3 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	Masterpiece	4	2.0	Not recorded
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	4	2.0	Not recorded
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	4	1.5	6-7 leaves
White Clover (Trifolium repens)	W CLOVER (12)	Kent Wild White	20	0.5	1-7 trifoliate leaves
Lucerne (Medicago sativa)	LUCERNE (13)	Europe	12	0.5	6 trifoliate leaves
Rape (Brassica napus oleifera)	RAPE (14)	Jet Neuf	10	0.5	3.5 leaves
Kale (Brassica oleracea acephala)	KALE (15)	Marrowstem	15	0.5	3.5 leaves
Swede (Brassica napus)	SWEDE (17)	Acme	12	0.5	3.5 leaves

Species	Designa- tion and computer serial	Cultivar or source	No. per pot	Depth of planting (cm)	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
carrot Daucus carota)	CARROT (18)	Chantenay Red Core	10	0.5	3.5 leaves
Sugar beet Beta vulgaris)	SUG BEET (22)	Nomo	15	1.0	3.5-4 leaves
Beta vulgaris	BETA VUL (23)	Attleborough 1981	20	0.5	3.5-4 leaves
Bromus sterilis	BROM STE (24)	WRO 1982	12	0.5	2 tillers
Avena fatua	AVE FATU (26)	WRO 1980	10	1.0	4.5 leaves, 0-1 tiller
Alopecurus myosuroides	ALO MYOS (27)	WRO 1983	25	0.25	1 tiller
Poa annua	POA ANN (28)	B & S Supplies 1978	25	0.5	1-2 tillers
Poa trivialis	POA TRIV (29)	B & S Supplies 1981	25	0.25	1-2 tillers
Sinapis arvensis	SIN ARV (30)	WRO 1981	20	0.5	5-6 leaves
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	12	0.5	3.5 leaves
Chrysanthemum segetum	CHRY SEG	WRO 1983	20	surface	4-6 leaves
Matricaria perforata	MAT PERF (33)	WRO 1981	25	surface	5-6 leaves
Senecio vulgaris	SEN VULG (34)	B & S Supplies 1981	40	0.25	6 leaves

Species	Designa- tion and computer serial	Cultivar or source		Depth of planting (cm)	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Polygonum	POL LAPA (35)	WRO 1982	20	0.5	3.5-4 leaves
Galium aparine	GAL APAR (38)	Hatherop 1981	12	1.0	5-8 whorls
Chenopodium album	CHEN ALB (39)	B & S Supplies 1982	40	0.5	3-8 leaves
Stellaria media	STEL MED (40)	B & S Supplies 1984	40	0.5	Numerous leaves
Veronica persica	VER PERS (42)	WRO 1983	15	0.5	Numerous leaves
Viola arvensis	VI ARVE (43)	B & S Supplies 1982	25	0.25	3-4 leaves
Rumex obtusifolius	RUM OBTU (44)	B & S Supplies 1981	20	0.25	5-6 leaves
Elymus repens	EL REPEN (47)	WRO Clone 31	6*	1.5	6 leaves, 0-1 tiller
Allium vineale	ALL VIN (49)	WRO 1982	12+	1.0	2.5-3 leaves
Cirsium arvense	CIRS ARV (50)	WRO Clone 1	4**	1.5	2-7 leaves
Convolvulus arvensis	CONV ARV (52)	B & S Supplies 1982	15	0.5	6 leaves
Maize + safener (Zea mays)	MAIZE + S (56)	LG 11	4	1.5	4.5 leaves
Maize (Zea mays)	MAIZE (57)	LG 11	4	1.5	4.5 leaves
Solanum nigrum	SOL NIG (81)	B & S Supplies 1984	15	Surface	4-5 leaves

^{*} One node rhizome fragments

^{** 4} cm root fragments

⁺ Aerial bulbils

ABBREVIATIONS

	•		-
angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	gal/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*	~	gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushel	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration x	concn	hydrogen ion concentration*	pH
time product	ct	inch	in.
concentration		infra red	i.r.
required to kill 50% test animals	LC50	kilogramme	kg
cubic centimetre*	cm ³	kilo (x10 ³)	k
cubic foot*	ft ³	less than	<
cubic inch*	in ³	litre	1.
cubic metre*	m ³	low volume	LV
cubic metre cubic yard*	yd ³	maximum	max.
	cv.	median lethal dose	LD50
cultivar(s)	Ci	medium volume	MV
curie*	°C	melting point	m.p.
degree Celsius*	°C	metre	m
degree centigrade	o _F	micro (x10 ⁻⁶)	
degree Fahrenheit*			μ
diameter	diam.	microgramme*	μg
diameter at breast height	d.b.h.	micromicro (pico: x10 ⁻¹²)*	щ
divided by*	e or /	micrometre (micron)*	μm (or μ)
dry matter	d.m.	micron (micrometre)*†	μm (or μ)
emulsifiable		miles per hour*	mile/h
concentrate	e.c.	milli (x10 ⁻³)	m
equal to*		milliequivalent*	m.equiv.
fluid	f1.	milligramme	mg
foot	ft	millilitre	m1

t The name micrometre is preferred to micron and μm is preferred to μ .

millimetre*	mm	pre-emergence	pre-em.
millimicro* _9		quart	quart
(nano: x10 ⁻⁹)	n or mp	relative humidity	r.h.
minimum	min.	revolution per minute*	rev/min
minus		second	8
minute	min	soluble concentrate	s.c.
molar concentration*	M (small cap)	soluble powder	s.p.
molecule, molecular	mol.	solution	soln
more than	>	species (singular)	sp.
multiplied by*	x	species (plural)	spp.
normal concentration*	N (small cap)	specific gravity	sp. gr.
not dated	n.d.	square foot*	ft ²
oil miscible	O.M.C.	square inch	in ²
concentrate	(tables only)	square metre*	m ²
organic matter	O.M.	square root of*	
ounce	oz	sub-species*	ssp.
ounces per gallon	oz/gal		
page	p.	tommary	S. tamm
pages	pp.	temperature	temp.
parts per million	ppm	ton	ton
parts per million		tonne	t
by volume	ppmv	ultra-low volume	ULV
parts per million by weight	ppmw	ultra violet	u.v.
percent(age)	%	vapour density	v.d.
		vapour pressure	A.b.
pico (micromicro: x10 ⁻¹²)	p or µµ	varietas	var.
pint	pint	volt	V
pints per acre	pints/ac	volume	vol.
plus or minus*	+	volume per volume	V/V
post-emergence	post-em	water soluble powder	W.S.P. (tables only)
pound	1b	watt	W
pound per acre*	lb/ac	weight	wt .
pounds per minute	lb/min	weight per volume*	W/V
pound per square inch*	lb/in ²	weight per weight*	W/W
powder for dry	p.	wettable powder	w.p.
application	(tables only)	yard	yd
power take off	p.t.o.		yd/min
precipitate (noun)	ppt.	yards per minute	2 ch mitti

^{*} Those marked * should normally be used in the text as well as in tables etc.

WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS (Price includes surface mail; airmail £2.00 extra)

(* denotes Reports now out of print)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. rough-stalked meadow-grass. November 1966. G P Allen. Price £0.25
- 7. Flame cultivation experiments 1965. October 1966. G W Ivens. Price £0.25
- 8. The development of selective herbicides for kale in the United Kingdom.
 2. The methylthiotriazines. Price £0.25
- 10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types.

 July 1968. I E Henson. Price £0.25
- *12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price £0.25
 - 13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price £0.25
 - 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price £0.25
 - 15. Methods of analysis for herbicide residues. February 1977. (second edition). Price £5.75
 - 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during spring 1970. November 1970.

 J G Elliott and P J Attwood. Price £0.25
 - 17. The pre-emergence selectivity of some newly developed herbicides,
 Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112,
 pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker
 and K Holly. Price £0.25
 - 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price £0.25
- *19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxallis latifolia. December 1971. M L Dean and C Parker. Price £0.25

- * 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott.

 Price £0.35
 - 21. An automatic punching counter. November 1972. R C Simmons. Price £0.30
 - 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price £0.25
 - 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price £0.25
 - The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £1.25
 - The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
 - 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price £3.31
 - 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price £1.05
 - 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price £1.00
- *29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price £1.30
 - 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price £1.06
 - 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price £1.10
 - 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price £3.62
 - 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
 - 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean.

 Price £2.50

- 35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price £1.39
- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975.

 W G Richardson and M L Dean. Price £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630.

 March 1976. W G Richardson, M L Dean and C Parker. Price £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop-isopropyl. August 1976. W G Richardson, M L Dean and C Parker.

 Price £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price £3.40.
- 42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290.

 March 1977. W G Richardson and C Parker. Price £3.50
- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean.

 Price £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H.A Davies, J A P Marsh & G I Wingfield. Price £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson.

 Price £2.70
- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron effects on the quality of barley, wheat, maize and carrots. July 1978.

 J D Fryer, P D Smith and J W Ludwig. Price £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards.

 March 1978. A K Oswald. Price £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price £2.50

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry.
 Price £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978.
 W G Richardson and C Parker. Price £2.20.
- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes.

 July 1979. R H Webster. Price £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker Price £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price £2.00
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price £3.75
- 62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price £3.50
- 63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 222293 and Dowco 433.

 May 1981. W G Richardson, T M West and C Parker. Price £3.50
- 64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982.

 W G Richardson, T M West and C Parker. Price £3.00
- 65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price £1.50

- 66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price £2.00
- 67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484. December 1982. W G Richardson, T M West and C Parker. Price £3.25
- 68. The activity and pre-emergence selectivity of some recently developed herbicides: WL 49818, WL 82830, WL 83627, WL 83801 and DPX 5648.

 December 1982. W G Richardson, T M West and C Parker. Price £4.00
- 69. The activity and late post-emergence selectivity of some recently developed herbicides: AC 252925, DOWCO 453, HOE 33171 and HOE 35609. March 1983. W G Richardson, T M West and G P White. Price £3.25
- 70. The potential of various herbicides for selective control of weed grasses and Stellaria media in newly sown ryegrass/clover leys and ryegrass seed crops. May 1983. F W Kirkham Price £1.75
- 71. A feasibility study of the use of chemicals for rural amenity areas.

 Sponsored by the Countryside Commission. September 1983. E J P Marshall Price £5.00
- 72. The activity and late post-emergence selectivity of FBC 32197.

 November 1983. W G Richardson, T M West and G P White. Price £1.25
- 73. Paraquat persistence statistical analysis of the WRO long term trial.

 January 1984. R J Hance, T H Byast, P D Smith and T M Weight. Price £1.00
- 74. The activity and post-emergence selectivity of some recently developed herbicides: AC 252214, DPX-T6376, and chlorazifop. February 1984.

 W G Richardson, T M West and G P White. Price £2.00.
- 75. The effect of temperature and soil moisture on the activity of isoproturon and chlortoluron on Alopecurus myosuroides and winter wheat. May 1984. A M Blair. Price $\frac{1}{52.00}$
- 76. A laboratory rainfall simulator for pesticide studies. May 1984. R C Simmons. Price - £2.00
- 77. Experiments on the effects of the herbivorous fish, grass carp

 (Ctenopharyngodon idella Val.) on aquatic vascular plants, algae, zooplankton and phytoplankton and the importance of water temperature on the success of weed control. September 1984. M C Fowler. Price £3.50.
- 78, The activity and post-emergence selectivity of some recently developed herbicides: MCPA-thioethyl, MT-124, tridiphane, aclonifen and RST 20024 H. October 1984. W G Richardson and T M West. Price £5.40
- 79. A preliminary study on the effect of some agricultural herbicides on a range of field margin flora. November 1984. J E Birnie. Price £2.50
- 80. The activity and pre-emergence selectivity of some recently developed herbicides: imazaquin, isoxaben, metsulfuron-methyl, aclonifen and orbencarb. December 1984. W G Richardson and T M West. Price £6.50

- 81. The side effects of alloxydim sodium, sethoxydim, acifluorfen and fluazifop-butyl on legume growth and nodulation. January 1985. J M Bebb, M P Greaves and W G Richardson. Price £3.00
- 82. An IRGA system for continuous monitoring of CO₂ and H₂O vapour exchange in replicate plants growing in controlled environments. January 1985. C R Merritt and R C Simmons. Price £3.00
- 83. A laboratory pot sprayer for use with controlled environment chambers. February 1985. R C Simmons and J A Drinkwater. Price £2.50
- 84. Maps of the changes in the weeds of Boddington Barn field over twenty years (1961-1981). March 1985. R J Chancellor. Price £4.50
- 85. The use of bentazone and pyridyl herbicides alone and in mixtures for the control of creeping thistle (Cirsium arvense L.) in grassland. April 1985. W G Richardson, A K Oswald and T M West. Price £1.50
- 86. The activity and pre-emergence selectivity of some recently developed herbicides: metazachlor, butamifos, MT-124, tridiphane, MK 616 and prodiamine. May 1985. W G Richardson and T M West. Price £7.00.
- 87. The potential use of grass growth retardants at Sullom Voe terminal, Shetland. A report prepared for W J Cairns and Partners, 16 Randolph Crescent, Edinburgh, Environmental Consultants to BP Petroleum Development Ltd as Operators of Sullom Voe Terminal. May 1985.

 E J P Marshall. Price £3.00.
- 88. A further study of the effect of six cereal herbicide treatments on a range of broad-leaved field margin plants. June 1985. J E Birnie.

 Price £2.50
- 89. The activity, pre-and post-emergence selectivity of diflufenican.

 December 1985. W G Richardson and T M West. Price £3.00
- 90. The pre-emergence selectivity in warm-climate species of some recently developed herbicides: imazaquin, AC263 499, cinmethylin and isoxaben January 1986. C Parker and A K Wilson. Price £2.60
- 91. The activity, pre-emergence selectivity and persistence of some recently developed herbicides: DOWCO 453, Quizalofop-ethyl, BAS 517 00H, cinmethylin, AC263,499 and RST 20024H. W G Richardson and T M West. Price £6.20