

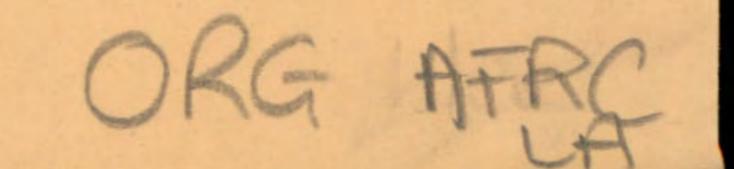
TECHNICAL REPORT No. 89

THE ACTIVITY, PRE-AND POST-EMERGENCE SELECTIVITY OF DIFLUFENICAN

.

W G Richardson and T M West

December 1985


.

CONTRACTOR DE LA LICENTER DE LA CONTRACTÓRIA DE LA CONTRACTÓRI Received 27 JAN 1988 Display Until An or want of the second se

Price - £3.00

Long Ashton Research Station, Weed Research Division, Begbroke Hill, Yarnton, Oxford, OX5 1PF.

ISSN 0511 4136 ISBN 07084 0395 6

CONTENTS

PAGE

1

1

2

7

7

23

23

24

INTRODUCTION

METHODS AND MATERIALS

DIFLUFENICAN 2',4'-difluoro-2-(&, &, & -trifluoro-m-tolyloxy)nicotinanilide RESULTS ACKNOWLEDGEMENTS REFERENCES APPENDICES

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the AFRC-Long Ashton Research Station, Weed Research Division are fully acknowledged. The correct bibliographic reference is:-

RICHARDSON, W.G., and WEST, T.M. The activity, pre- and post-emergence selectivity of diflufenican. <u>Technical Report Agricultural and Food</u> <u>Research Council, Long Ashton Research Station, Weed Research Division,</u> <u>1985, No. 89, 30 pp.</u>

THE ACTIVITY, PRE- AND POST-EMERGENCE SELECTIVITY OF DIFLUFENICAN

-1-

W.G. Richardson*, and T.M. West* Agricultural and Food Research Council Long Ashton Research Station, Weed Research Division Begbroke Hill, Yarnton, Oxford OX5 1PF, UK

SUMMARY

In a series of pot experiments in the glasshouse and outdoors, diflufenican was examined for pre- and post-emergence selectivity on a wide range of temperate crop and weed species. Wheat, barley and maize were each treated with seed dressings of the safener 1,8 naphthalic anhydride (NA) to investigate possible protection from herbicide injury. The route of entry into plants was examined in a separate test on six selected species. Persistence of the herbicide in the soil was examined over a period of 52 weeks.

Diflufenican was more active pre- rather than post-emergence. Good selectivity was found pre-emergence with all cereals, carrot, and certain legume and brassica crops. The weed-spectrum, though consisting mainly of annual broad-leaved species, included <u>A. myosuroides</u>, <u>Veronica persica</u> and <u>Viola arvensis</u>. Potential selective control of <u>Viola arvensis</u> was achieved post-emergence in cereals but only at a high dose.

Persistence in the soil was moderate, relative to the standard cyanazine (short persistence) and simazine (long persistence).

INTRODUCTION

The pre- and post-emergence activities and selectivities of new herbicides are investigated at LARS, WRD on a number of pot-grown crop and weed species and at the same time experience of the type of effects produced by each compound is obtained. Persistence in the soil is also monitored and these data in conjunction with crop susceptibilities, are useful in considering subsequent cropping of treated land. The limitations of these investigations are that only one crop variety or source of weed species is used; they are grown in one particular soil type, at only one depth of sowing and without interspecific competition. Consequently the results should only be used as a guide for further work, as plant responses in pot experiments can be very different from those in the field.

This report gives pre- and post emergence selctivity data on diflufenican. Results of an activity experiment are also included to provide information on levels of phytotoxicity, type and route of action.

* Herbicide Group

METHODS AND MATERIALS

Activity experiment (AE) This was carried out in the glasshouse on six selected species as described previously (Richardson and Dean, 1973). Four annual species were raised from seeds and two perennials from rhizome fragments. Herbicides were applied by four different methods.

-2-

- i) a post-emergence spray to the foliage only, avoiding contact with the soil;
- ii) post-emergence to the soil only, as a drench avoiding foliar contact;
- iii) pre-emergence to the soil surface;
- iv) pre-emergence with thorough incorporation to 5 cm depth before
 planting.

Pre-emergence selectivity experiment

Techniques for this experiment were as described by Richardson and Dean (1973), the herbicide being applied as a surface pre-emergence spray. Species were sown as detailed in Appendix I, each being replicated twice for every treatment.

Radish (<u>Raphanus raphanistrum</u>) was included for ease of propagation and may be regarded as a crop or weed. To improve establishment, seeds of <u>Chenopodium album</u> were kept in 0.1 M potassium nitrate for 48 hours in the light.

To protect from soil-borne pathogens, all seeds (except wheat, barley, oat, perennial ryegrass, <u>C. segetum</u>, <u>G. aparine</u>, <u>Viola arvensis</u> and most perennials) were pre-treated with one of the following:- thiram, captan, thiram + benlate (for onion only), bromophos + captan + thiabendazole (pea only). <u>A. fatua</u> seeds were dressed with 'Harvesan' organo-mercury. <u>Maize</u> seeds were purchased already treated with captan A + teraquinone. The seeds of kale, radish, swede and dwarf bean, were treated with thiram, a 6% gum arabic solution being used prior to dressing, to give better adhesion. In addition, 'Cheshunt Compound' (3 g litre) fungicide solutions were applied to certain species as soil drenches or sprays to protect against fungal diseases. Root fragments of <u>Cirsium arvense</u> were washed in a 2 ml litre⁻¹ colloidal copper solution.

A series of treatments were included for wheat, barley and maize in which seeds were treated with the safener (1,8-naphthalic anhydride) at 0.5% w/w

a.i. of seeds.

Herbicides were applied using a laboratory sprayer embodying an 8002E Spraying Systems Tee Jet operated at a pressure of 207 kPa (30 lb/in²) and moving at 0.54 m/s, 30 cm above the soil. Subsequent watering was from overhead. During the experiment, plants were raised in the glasshouse, normal daylight being supplemented by mercury vapour lighting to provide 14 hour photoperiods.

Table 1. Plant data for activity experiment

.

-3-

Species	Cultivar	No. per pot at spraying		Depth of planting	Stage of growth Spraying Assessment			
	/source	pre-	post-	(cm)	pre-em	pre-em	post-em	
Dwarf bean (Phaseolus vulgaris)	Master- piece	3	2	2.0	2 uni- foliate leaves	1.5 to 2.5 tri- foliate leaves	2 to 3 tri- foliate leaves	
Kale (Brassica oleracea acephala)	Marrowstem	10	5	0.5	2 to 2.5 leaves	4 to 5 leaves	4 to 5 leaves	
Polygonum amphibium	WRO Clone 1	6	4 to 5	1.0	4.5 to 5.5	6 to 8 leaves	9 to 10 leaves	

Perennial ryegrass (Lolium perenne)	S23	12	10	0.5	2 to 3 leaves	4 to 5 leaves, tiller- ing	2 to 6 tillers
Avena fatua	WRO 1978	5 to 6	5	1.0	2.5 to 3 leaves	3.5 to 4.5 leaves, 0 to 2 tillers	2 tillers
Elymus repens	WRO Clone 31	6	4 to 5	1.0	2.5 to 3 leaves	3.5 to 5 leaves, 0 to 3 tillers	l to 2 tillers

Table 2. Soil and environment conditions

-4-

Experiment type	Activity	Pre-emergence	Post-emergence
	experiment	selectivity test	selectivity test
Date of spraying	13.10.82	13.12.83	7&12.7.83
Main assessment	13.10.02	13.12.03	/a12.7.03
completed	16.11.82	3.2.84	5.8.83
Organic matter (%)	2.2	2.2	1.3
Clay content (%)	15.0	15.0	16.0
pH (water; 1:2 soil/water)) 7.5	7.5	7.5
Ammonium sulphate (g/kg)	-	0.4	_
Superphosphate (g/kg)	2.0	0.8	-
Potassium sulphate (g/kg)	_	0.4	_
Vitax QS fertilizer (g/kg)) 2.5	_	2.5
Fritted trace elements (g/	kg) -	0.08	
Hydrated Mg ₂ SO ₄ (g/kg)	0.8	0.3	-
Temperature (°C)	Clachow		Outdoord
remperature (C)	Glasshou	50	Outdoors
Mean	19	15	19

Maximum	26	22	30
Minimum	12	6	9
Relative humidity (%)			
Mean	60	64	50
Maximum	85	88	86
Minimum	32	33	12

Post-emergence selectivity experiment

The experimental details were as previously described (Richardson and Parker, 1977). Plants were raised in 9 or 10 cm diameter plastic pots in a soil/peat/sand medium (4:1:1 v/v) the soil being taken from a field near Begbroke Hill (Yarnton). Planting dates were staggered so that the majority of species would reach a pre-determined stage (2-4 leaves) by the time of spraying. However, as noted in Appendix II several species were at a more advanced stage of growth. All species were raised in the open.

-5-

In some cases plant material was pre-treated to improve establishment:seeds of <u>Chenopodium album</u> were soaked in 0.1 M potassium nitrate solution and kept in the light for two days prior to planting; seeds of <u>Alopecurus</u> <u>myosuroides</u> were soaked in distilled water and kept in the light for 24 hours; <u>Rumex obtusifolius</u> seeds were dehusked; <u>Veronica persica</u> and <u>Agrostis</u> <u>stolonifera</u> were sown in a tray of peat compost and seedlings (1-2 leaves) transplanted into the potting medium.

For protection from soil-borne pathogens all seeds except wheat, barley, oat, sugar beet, <u>Avena fatua</u> and those soaked in potassium nitrate solution were pre-treated with one of the following: thiram, Harvesan organomercury, thiram + benomyl (onion). Root fragments of <u>Cirsium arvense</u> were washed in a colloidal copper solution (2ml litre⁻¹) prior to planting. As dwarf bean, field bean and certain brassicas (kale, rape, cabbage, radish) are suceptible to "damping off" diseases, 6% gum arabic solution was included with the thiram fungicide seed dressing to improve adhesion.

A series of treatments was included to investigate possible uses for the safener NA (1,8-naphthalic anhydride). Maize, wheat and barley were treated with NA at 0.5% a.i. w/w of seeds. Before spraying, each species was thinned to constant number per pot.

Herbicides were applied using a laboratory sprayer operating at a pressure of 207 kPa (30 lb/in²) with a Spraying Systems 8002 TeeJet spray nozzle moving at 0.54 m sec⁻¹, 45 cm above the stationary plants and delivering a volume of 370 l/ha. There were two replicates for each treatment. Stages of growth at spraying and assessment are summarised in Apendix II. After spraying, the plants were protected from rainfall for 25 hours and then watered overhead to wash any residues off the foliage, using a rose at the end of a trigger hose attached to the mains water supply. The pots were then returned to their original position in the open. Watering throughout the experiment was from overhead. Additional fertilizer in solution was applied to all species at one week intervals after spraying (5 ml litre⁻¹ Vitafeed 301). Insecticide and fungicide solutions were applied to individual species as required.

Assessment and processing of results

Results were processed as described by Richardson and Dean (1973 and 1974). Survivors were counted and scored for vigour on a O-7 scale where O = dead and 7 = as in untreated control. Certain species showed variable germination in the pre-emergence test and the results were ignored. However, vigour scores were taken for <u>Polygonum lapathifolium</u> and <u>Phalaris paradoxa</u> and these are included in the selectivity tables and referred to in the text where appropriate. <u>Polygonum aviculare</u>, <u>Solanum nigrum</u> and <u>Holcus lanatus</u> failed to germinate. Pairs of histograms are presented for each treatment, the upper representing plant survival and the lower vigour score, both calculated at precentage of untreated controls. Each 'x' represents a 5% increment in the selectivity experiments but 7% in the activity experiment. A '+' indicates a value in excess of 100%; 'R' indicates a result based on one replicate only and 'M" represents a missing treatment.

-6-

A table of observed selectivities, using the criteria specified, is presented along with comments to highlight salient points.

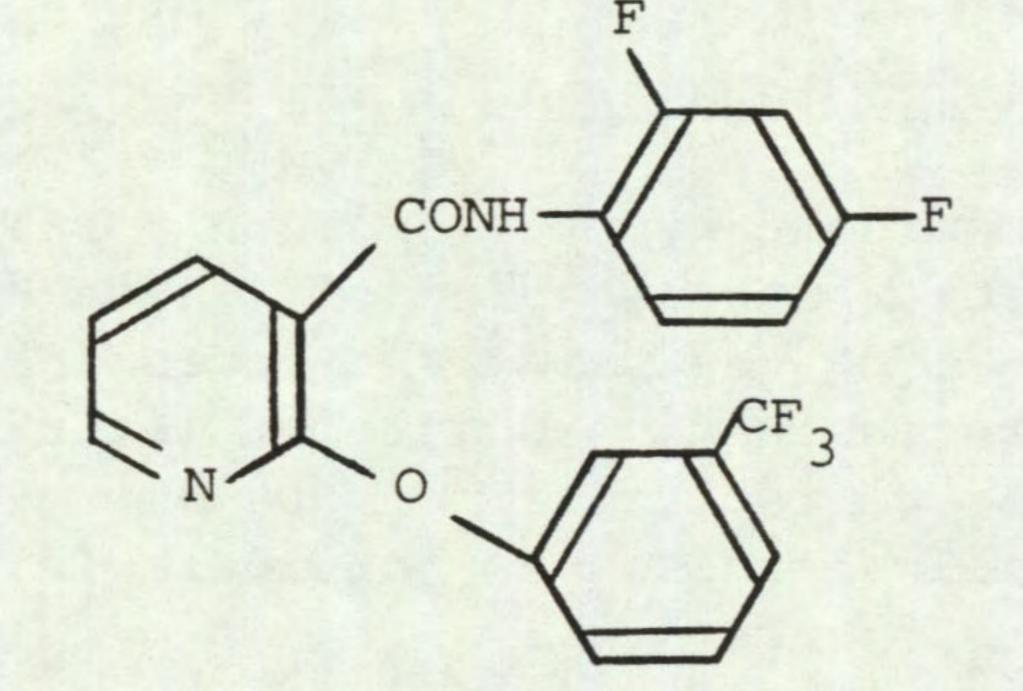
Several species, notably the perennials, were kept for an extra period to observe later effects, or the degree of recovery from injury and these final observations are referred to in the text.

Persistence in the soil

This was monitored, by bioassay, in conjunction with the pre-emergence selectivity experiment. Pots (7.5 cm diameter) containing soil were sprayed directly with the herbicide. All pots were then transferred to the temperate glasshouse together with untreated controls and watered as necessary from overhead.

For each bioassay three replicate pots per treatment were selected and seeds of perennial ryegrass was sown 0.5 cm deep, disturbing the soil as little as possible. Plants were harvested three or four weeks after sowing at a pre-determined growth stage, the number and fresh weight of shoots being recorded. Bioassays were repeated at six to eight week intervals for 52 weeks, unless the herbicide had disappeared before then. The herbicide was considered to have disapeared when shoot fresh weights of the test plants were 80% or more as compared with the controls. Results are presented graphically and comments are made in the text. Standard treatments of cyanazine (short persistence) and simazine (moderate to long persistence) were included for comparison (see page 17). Average temperature during this period was 15°C (minimum 2°C, maximum 34°C) and relative humidity 60% (minimum 25%, maximum 90%).

-7-


Diflufenican

Code number MB 38544

Chemical name 2',4'-difluoro-2-(\$\alpha,\$\alpha,\$\alpha-trifluoro-m-tolyloxy)nicotinanilide

Structure

.

Source May and Baker Limited Ongar Research Station

> Fyfield Road Ongar Essex CN5 OHW

Information and available and suggested uses

Control of broad-leaved weeds (<u>Galium</u>, <u>Veronica</u>, <u>Viola</u> spp., <u>Polygonum</u> <u>aviculare</u>, <u>Stellaria media</u>), pre- and early post-emergence in wheat and barley at 0.125 to 0.25 kg a.i./ha. Also pre-emergence in maize for control of <u>Setaria</u>, <u>Digitaria</u>, <u>Amaranthus</u>, <u>Chenopodium</u>, <u>Solanum</u> spp.

Formulation used: Wettable power 50% w/w a.i.

Spray volume: 372 1/ha

RESULTS

Full results are given in the histograms on pages 21-23 and potential selectivities are summarised in the tables.

Comments on results

Activity experiment (see histogram on page 10)

Phytotoxicity was greatest with the smaller seeded species (kale and perennial ryegrass) treated pre-emergence, the surface treatments being much more effective than when incorporated into the soil. Only minor effects were found post-emergence. The perennials (<u>Polygonum amphibium</u> and <u>Elymus repens</u>) showed a high degree of resistance, as did the larger seeded dwarf bean and

-8-

Avena fatua.

Symptoms on susceptible species

The most prominent symptom, common to all four application methods and seen in many species was albinism of leaves and petioles. This albinism was often strongest along the veins but occasionally, the whole shoot system was affected. Growth inhibition developed later followed by necrosis. Many species were able to recover from post-emergence treatments however, even though the initial albinism was considerable. Germination was not affected in pre-emergence treatments.

Persistence in the soil (see graphs on pages 16 an 17)

Perennial ryegrass was not as sensitive a test species as had been expected, the two lower doses having no effect on shoot fresh weight, although symptoms (albinism) were seen at 0.25 kg/ha. It is therefore difficult to make any conclusions regarding soil persistence at these doses. Curiously the highest dose of 1.0 kg/ha, was causing a similar depression of shoot fresh weight (c. 50%) after 52 weeks, to that found initially, while even greater effects were observed at intermediate bioassay time.

Pre-emergence selectivity (see histograms on pages 11 to 15)

RATE (kg a.i./ha)	CROPS: vigour reduced by less than 15%	WEEDS: number or vigour reduced by 70% or more
1.0	wheat±safener (NA)	Alopecurus myosuroides
	<pre>barley±safener (NA)</pre>	Poa annua
	maize±safener (NA)	Matricaria perforata
	oat	Chenopodium album
	dwarf bean	Rumex obtusifolius
	field bean	Phalaris minor
	carrot	Polygonum lapathifolium

+ species below

0.0625	None listed as no weeds	None
	fenugreek	
	kale	Phalaris paradoxa
	rape	Viola arvensis
	lucerne	Veronica persica
	pea	Stellaria media
0.25	as above +	Poa trivialis

Five annual weeds were susceptible to 0.25 kg/ha, most interestingly <u>Veronica persica</u> and <u>Viola arvensis</u>. Others were <u>Stellaria media</u> and two grasses, <u>Poa trivialis</u> and <u>Phalaris paradoxa</u>. At the high dose of 1.0 kg/ha a further seven annual weeds were controlled, including three grasses, <u>Alopecurus myosuroides</u>, <u>Poa trivialis</u> and <u>Phalaris minor</u> and four broad-leaved species, <u>Matricaria perforata</u>, <u>Chenopodium album</u>, <u>Polygonum lapathifolium</u> and <u>Rumex obtusifolius</u>. Perennial weeds were resistant as were large-seeded grasses (<u>Avena fatua</u>, <u>Bromus sterilis</u>), crucifers (<u>Sinapis arvensis</u>, <u>Raphanus</u> <u>raphanistrum</u>) and <u>Chrysanthemum segetum</u>. <u>Galium aparine</u> showed pronounced symptoms of albinism and was reduced in vigour by 36 and 43% at 0.25 and 1.0

-9-

kg/ha respectively.

All four cereals (wheat, barley, maize, oats) showed outstanding tolerance. Carrot and large-seeded legumes (dwarf bean, field bean) also withstood the high dose of 1.0 kg/ha. Three other legumes, pea, lucerne and fenugreek tolerated 0.25 kg/ha as did two of the brassicas, rape and kale. Onion was very sensitive.

The potential control of <u>V. persica</u> and <u>V. arvensis</u>, as well as <u>A.</u> <u>myosuroides</u> in wheat and barley is the most impressive feature of this herbicide. In addition, a wide range of broad-leaved crops such as carrots, legumes and certain brassicas, tolerate doses which achieve control of several important annual weeds.

Post-emergence selectivity (see histograms on pages 18 to 22)

RATE

CROPS: vigour reduced by WEEDS: number or vigour

(kg a.i./ha)	less than 15%	reduced by 70% or more
1.0	wheat <u>+</u> safener (NA)	Viola arvensis
	barley±safener (NA)	Raphanus raphanistrum
	<pre>maize±safener (NA) oat</pre>	Solanum nigrum
	perennial ryegrass	
	onion	
	carrot	
	parsnip	
	fenugreek	
0.25 and	None listed as no weeds	None
0.0625	controlled	

Only three broad-leaved weeds (<u>Viola arvensis</u>, <u>Raphanus raphanistrum</u> and <u>Solanum nigrum</u>) were controlled and then only at the highest dose of 1.0 kg/ha. Effects were seen on <u>Galium aparine</u> and <u>Veronica persica</u> at lower doses but did not result in control. Certain species, notably grasses and composites were resistant, while some such as <u>Stellaria media</u> recovered well from earlier symptoms.

Temperate cereals (wheat, barley, oat), perennial ryegrass, onion, carrot, parsnip and fenugreek tolerated the highest dose. A moderate safening of maize by NA was observed.

Post-emergence selectivity would appear to be rather limited from these results, the activity experiment suggesting that pre- and perhaps very early post-emergence is the preferred time of application.

10

ACTIVITY EXPERIMENT

DIFLUFENICAN

0.0625 kg/ha

0.25 kg/ha

- F
- S
- P

- XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX

1.0 kg/ha

.

.

DWARF

BEAN

	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	F XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	P XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	$\frac{1}{2}$	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		
POLYGONUM	S xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	F XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
PERENNIAL	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
RYEGRASS	P XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	$\frac{1}{200000000000000000000000000000000000$	XXX
PALE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	F XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
FATUA	P XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1000000000000000000000000000000000000	
	F XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
ELYMUS	S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
REPENS		1000000000000000000000000000000000000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		

ELYMU

KEY: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

.

SPECIES	0.0625 KG/HA		0.25 KG/HA		1.0 KG/H
WHEAT 83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(1) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEATIS 94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(2)100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY 102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(3) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY+S 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(4) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DAT 98	XXXXXXXXXXXXXXXXXXXXXX	1.04	XXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(5) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FER RYGR 109	XXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41	XXXXXXX
(6)100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX	50	XXXXXXXXX
ONION 57	XXXXXXXXXX	4	X	0	
(8) 57	XXXXXXXXXXX	1.4	XXX	0	
IWF BEAN 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(\$) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXX	126	XXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(10) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXX	1.24	XXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX
(11) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXX

DIFLUFENICAN

XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXX+ XXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXXX

.

•

KG/HA 1.0

> PRE-EMERGEN CE SELECTIVITY TEST

> > -

~ P. P. P. P. P. P.

.

SFECIES	0.0625 KG/HA		0.25 KG/HA		1.0 KG/
W CLOVER 68	XXXXXXXXXXXXXX	27	XXXXX	0	
(12) 86	XXXXXXXXXXXXXXXXX	21	XXXX	0	
LUCERNE 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58	XXXXXXXXXXX
(13) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX
RAPE 103	XXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(14) 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX
KALE 95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(15) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX
SWEDE 103	XXXXXXXXXXXXXXXXXXXXXXXX	99	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56	XXXXXXXXXX
(17) 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX
CARROT 92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXX
(18) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX
LETTUCE 101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72	XXXXXXXXXXXXX
(20) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	43	XXXXXXXXX
FENUGREK 82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.04	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(21) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX
SUG BEET 103	XXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXX
(22) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	50	XXXXXXXXXX
BETA VUL 87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX

. .

DIFLUFENICAN

*

1.

.

XXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXXX XXXXXXXX

KG/HA 1.0

> PRE -EMERGENCE SELECTIVITY TEST

SPECTES

.

~

SPECIES	0.0625 KG/HA		0.25 KG/HA		
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX XXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXX XXXXXXXXXXX		XXX XXXXXXXX

DIFLUFENICAN

1.0 KG/HA XXXXXXXXXXXXXXX+ XXXXXXXXXX

XXXX XXX

.

*

(XXXXXXXXXXXXXX XXXXXXXXX

XX

XX XXXX

XXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XX

PRE-EMERGENCE SELECTIVITY TEST

1

w

SPECIES		0.0625 KG/HA		0.25 KG/HA		
SEN VULG	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	54	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
(34)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXX
GAL APAR	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	179	XXXXXXX
(38)	86	XXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	57	XXXXXXX
CHEN ALE	119	XXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20	XXXX
(39)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	29	XXXXXX
STEL MED	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9	XX	0	
(40)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX	0	
VER PERS	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(42)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
VI ARVE	103	XXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(43)	50	XXXXXXXXXX	0		0	
RUM OBTU	44	XXXXXXXXX	33	XXXXXXX	0	
(44)	64	XXXXXXXXXXXX	50	XXXXXXXXXX	0	
EL REFEN	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXX
(47)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
ALL VIN	109	XXXXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXX
(49)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71.	XXXXXXXXXXXXX	57	XXXXXX
CIRS ARV	67	XXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	133	XXXXXXX
(50)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX

*

.

DIFLUFENICAN

KG/HA 1.0

XX XXXXX

XXXXXXXXXXXXXXX XXXXXX

PRE-EMERGENCE SELECTIVITY TEST

14

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXX

.

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

.

1.20

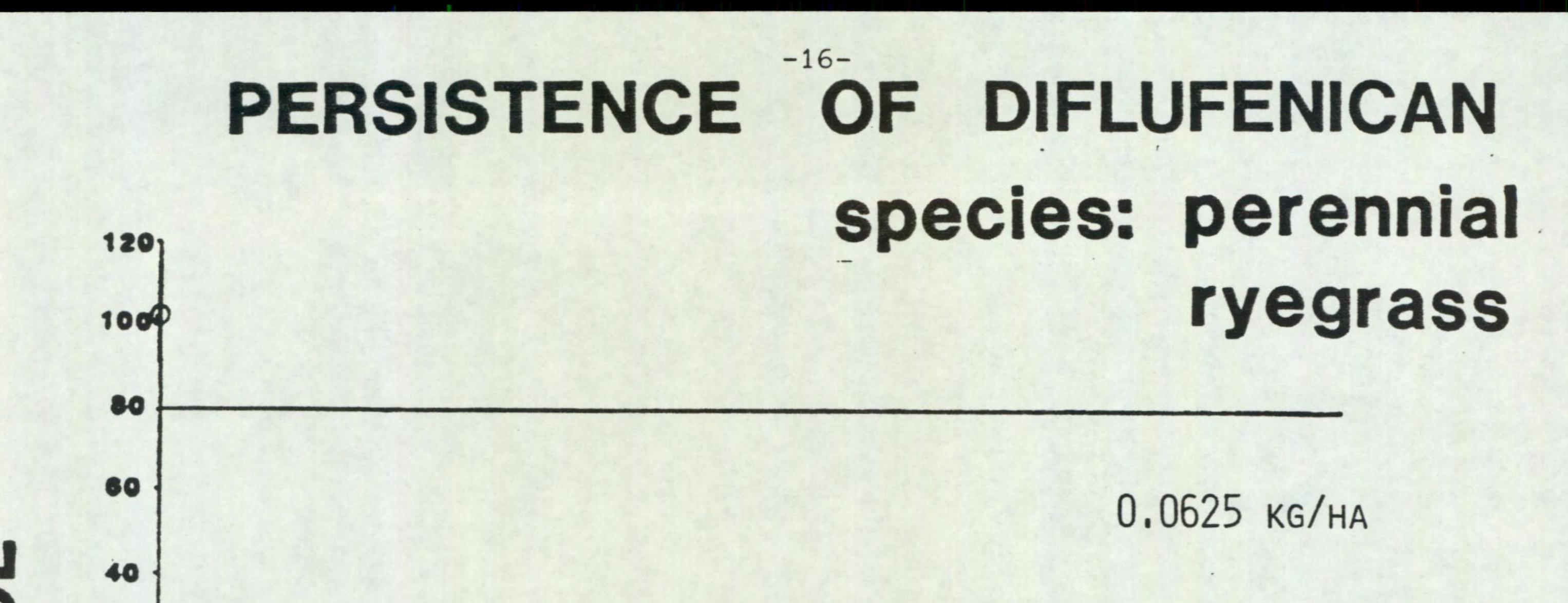
SFECIES	0.0625 KG/HA		0.25 KG/HA		
TUS FARF 87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(51) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
CONV ARV 53	XXXXXXXXXXX	71	XXXXXXXXXXXXX	176	XXXXXXXXX
(52) 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXX
MAIZE+S 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXX
(56) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXX
MAIZE 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXX
(57) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXX
FHAL MIN 105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4	X
(84) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX

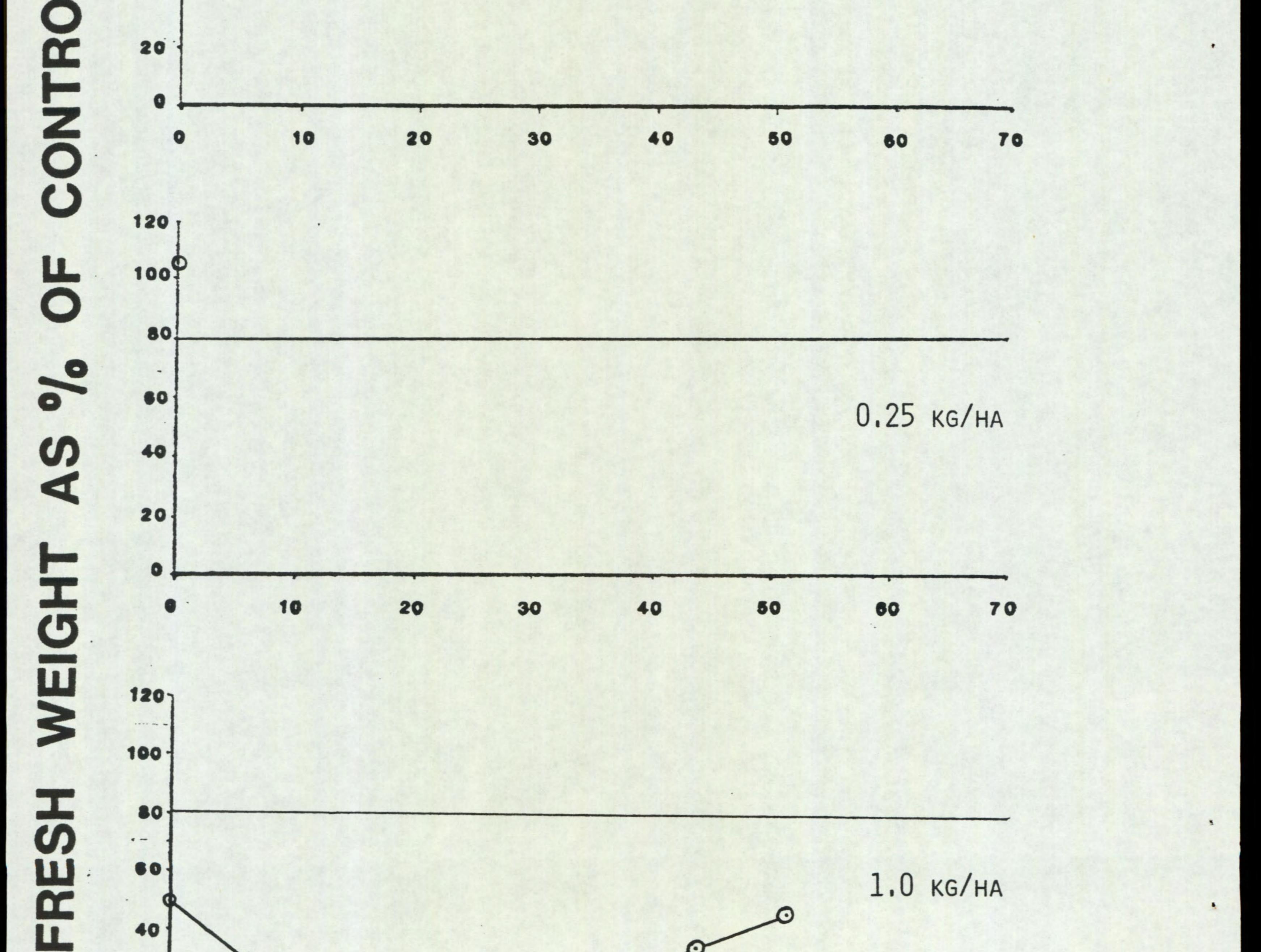
DIFLUFENICAN

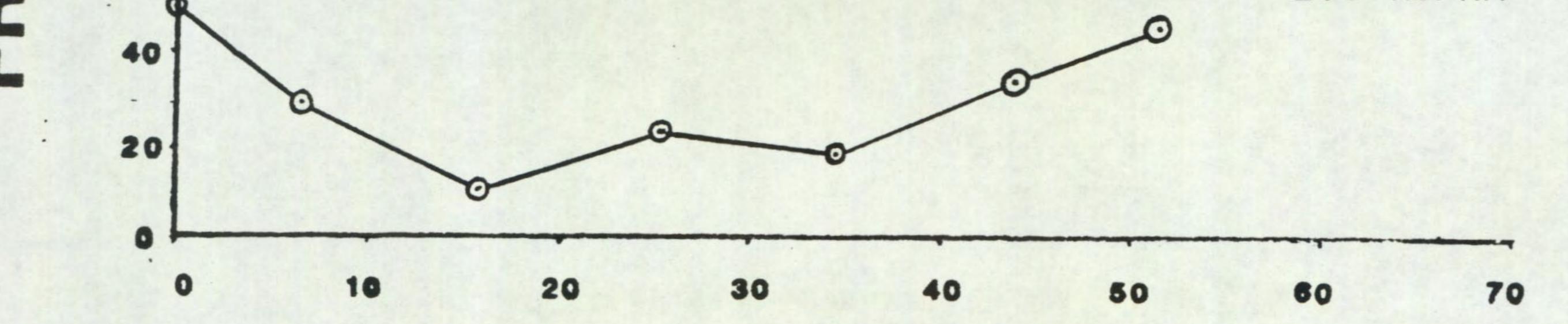
.. ..

	1.0	KG/HA
XXX	XXXXXX	XXXXXX
XXX	XXXXXX	XXXXXXX

.


XXXXXXXXXXXXXXXX XXXXXXXXX


XXXXXXXXXXXXXXXX XXXXXXXXXXXX

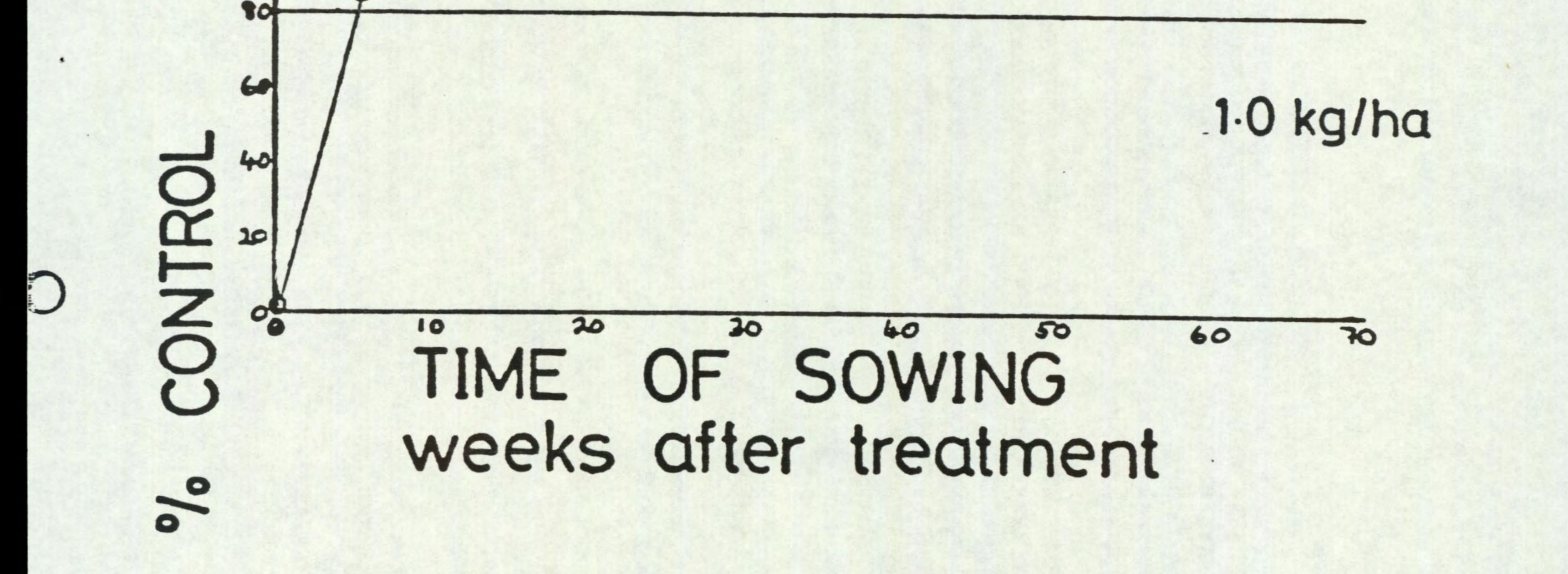

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

PRE EMERGENCE SEL EC H H _ H TEST

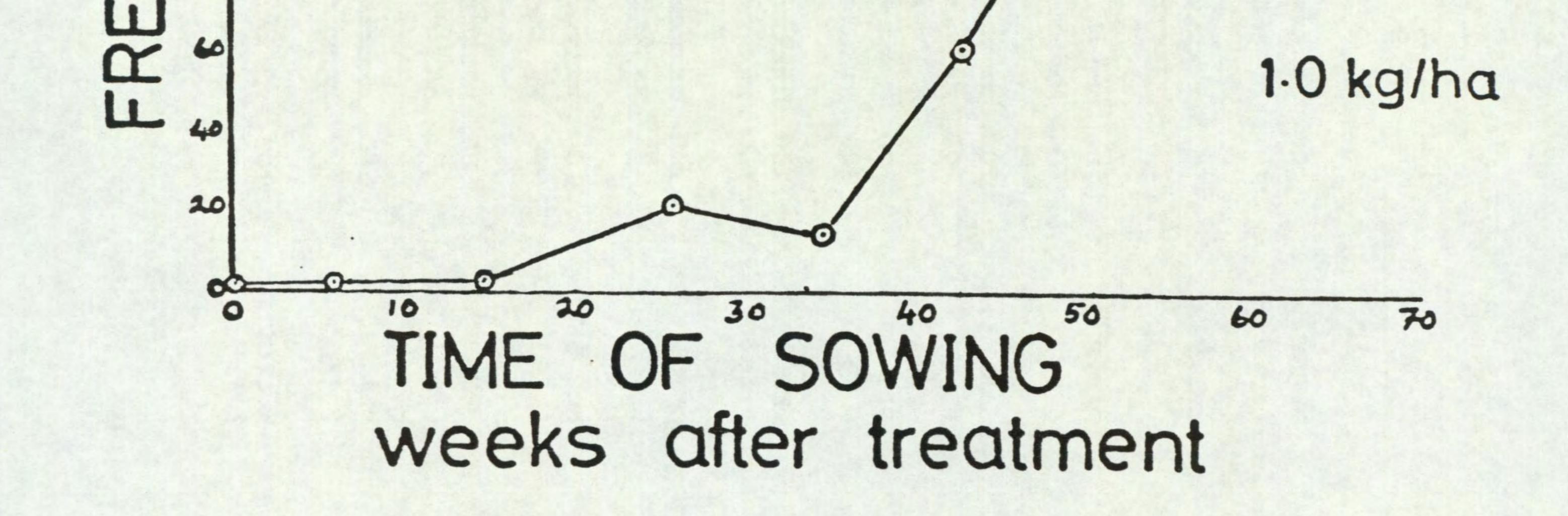
1 J

TIME OF SOWING weeks after treatment

.



- 17 -


1201

100

0

SP HON PERSISTENCE OF SIMAZINE species:Perennial Ryegrass

WHEAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(1)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
WHEAT+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	000000000000000000000000000000000000000
(2)	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	
BARLEY	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(3)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
BARLEY+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(4)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	
OAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	***
(5)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
PER RYGR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	200000000000000000000000000000000000000
(6)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	
ONION	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	200000000000000000000000000000000000000
(8)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	
DWP BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	200000000000000000000000000000000000000
(9)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXX
FID BEAN	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120		107	
(10)	71	XXXXXXXXXXXXXXXX	50	XXXXXXXXXXXX	43	XXXXXXXXXXX
PEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	
(11)	79	XXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXXXX
(12)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

DIFLUFENICAN

0.0625 kg/ha

.

0.25 kg/ha

1.0 kg/ha

XXXXXXXX XXXXXXXX

XXXXXXX XXXXXXX

XXXXXXXX XXXXXXX

XXXXXXXX XXXXXXX

XXXXXXXXXXX XXXXXXX

XXXXXXXX CXXXX

XXXXXXX CXXX

XXXXXXXXX

KOCKCCC+

XXXXXXX

POST EMERGENCE SELECTIVITY TEST

RAPE

KALE

(15)

CABBAGE

(14)

100 2000 86 2000 100 2000 64 20000 100 XXXXXX 79 20000

.

(16) CARROT 114 20000 (18) 100 2000 PARSNIP 100 20000 (19) 100 XXXXXX LETTUCE 100 2000 (20) 100 XXXXXX FENUGREK 100 30000 (21) 100 XXXXXX SUG BEET 1.00 XXXXXX (22) 86 XXXXXX BETA VUL 100 20000 (23) 79 2000 BROM STE 100 20000 (24) 100 20000 FEST RUB 100 xxxx (25) 93 2000

DIFLUFENICAN

0.0625 kg/ha

.

.

0.25 kg/ha

	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	71	XXXXXXXXXXXX
	300	XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	1.00	
	57	XXXXXXXXXXXXXX
	114	XXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
000000000000000000000000000000000000000	100	XXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	
	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	200000000
	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	
	100	XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71.	XXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX

1.0 kg/ha

xxxxxxxxxxxx	100	200000000000000000000000000000000000000
KXXXXX	64	XXXXXXXXXXXXXXXX
KXXXXXXXXXXXXXXXX	100	
KK	43	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KK	36	XXXXXXXXXX
00000000000000000000000000000000000000	114	***
KOKOKOKOK	100	
	83	
XXXXXXXXXXXXXXXXXX	93	
	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	200000000000000000000000000000000000000
COCOCC	86	
	92	000000000000000000000000000000000000000
XXXX	43	XXXXXXXXXXXX
XXXXXXXXXXXXXXX	58	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COCC	50	XXXXXXXXXXXXXX
XXXXXXXXXXXXXXX	100	200000000000000000000000000000000000000
COCCCCCCCCC	300	
COCCCCCCCCC	100	000000000000000000000000000000000000000
COCCCC	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXX

.

.

XXXXXX

HXXXXXX XXXXXX

XX XXXX

XXXXXXX XX

XXXX

XXXXXXX XXXXXX

XXXXXX

POS H EMERGENCE SELECTIVITY TEST

-----9

AVE FATU 100 XXXX (26) 100 XXXXX ALO MYOS 100 XXXXX 86 XXXX (27) POA ANN 300 XXXXX (28) 100 XXXXX POA TRIV 100 2000 (29) 100 xxxx SIN ARV 91 XXXX (30) 57 XXXXX RAPH RAP 100 XXXXX (31) 43 XXXXX CRY SEG 100 XXXXX (32) 93 XXXXX MAT PERF 100 XXXX (33) 100 XXXXX GAL APAR 100 2000 (38) 57 XXXXX CHEN ALB 92 20000 (39) 86 20000

STEL MED (40)

100 XXXXX 86 XXXXX

.

*

0.0625 kg/ha

0.25 kg/ha

	100	xxxxxxxxxx
	100	XXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	86	XXXXXXXXXXX
	100	XXXXXXXXXXXXX
	100	XXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	93	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	
COOCCX	50	XXXXXXXXXXXX
	50	
CCCCCC	43	XXXXXXXXXXX
	100	200000000
	86	
COCCCCCCCCCCCCCCC	300	200000000
	100	XXXXXXXXXXXX
000000000000000000000000000000000000000	100	2000000000
COCKCCCK	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
000000000000000000000000000000000000000	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	71	XXXXXXXXXXXXXXX
COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	64	XXXXXXXXXXXX

XXXXXXXXXXXXXXXXX	100	
XXXXXXXXXXXXXXX	300	
XXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	
XXXXXXXXXXXXX	86	
	300	
	64	XXXXXXXXXXXXXXXXX
	91	
x	36	XXXXXXXXX
x	0	
	0	
	100	***
XXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xx	43	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXX XXXXXX

XXXX

XXXXXXX KXX

OCCOC

XXXX

XXXXXX XX

XXXXXXX XXXXXXX

XXXXXX

XXXX

XXXXXX

*

.

POST-EMERGENCE SELECTIVITY TEST

SPER ARV	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXX
(41)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXXXX
VER PERS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(42)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXXXX
VI ARVE	60	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(43)	43	XXXXXXXXXX	43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
RUM OBTU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(44)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXXXXXX	43	XXXXXXXXXXX
EL REPEN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	200000000000000000000000000000000000000
(47)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
AG STOLO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	***
(48)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	
PHAL PAR	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	****
(54)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	
MAIZE+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(56)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	***
(57)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOYABEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	***
(65)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXX
SOL NIG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(81)	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXXX	29	XXXXXXX

0.0625 kg/ha

-

.

0.25 kg/ha

1.0 kg/ha

.

XXXXXX

XXXXXX XXXXXX

XXXXXX XX

XXXXXX XXXXXX

XXXXXX XXXXX

XXXXXXX

XXXXXXX

POST EMERGENCE SELECTIVITY TEST

N -

PHAL MIN (84)

1.00 100

*

-

DIFLUFENICAN

0.0625 kg/ha

0.25 kg/ha

100 100

1.0 kg/ha

100 93

> P S H EMERGENCE S EL ECTI < -K TES

1. .

ACKNOWLEDGEMENTS

We are grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; to Miss J M Heritage and Messrs G P White, R H Webster, R M Porteous and S Burbank for technical and practical assistance; to Mrs J Wallsworth for the preparation and typing of this report; to Miss N Kiley for the persistence graphs; to Mrs S Cox and her staff for its duplication and to the commercial firms who provided the herbicides and relevant data.

-23-

REFERENCES

RICHARDSON, W.G., and DEAN, M.L. (1973) The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. <u>Technical Report Agricultural Research</u> <u>Council Weed Research Organization, 25</u>, pp. 57.

RICHARDSON, W.G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam. <u>Technical Report Agricultural Research Council Weed Research</u> Organization, 32, pp. 74.

RICHARDSON, W.G. and PARKER, C. (1977) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and Dowco 290. <u>Technical Report Agricultural Research</u> <u>Council Weed Research Organization</u>, 42, pp. 53

-24-

Appendix I. Species, abbreviations, cultivars and stage of growth at assessment for pre-emergence experiment

> Stages of growth at Designa-Cultivar Depth of No assessment tion and planting or (untreated per computer controls, leaf source pot (Cm) serial numbers excl. number of cotyledons)

Temperate species

.

	Wheat (Triticum aestivum)	WHEAT (1)	Armada	8	1.0	3.5-4 leaves O-1 tiller
	Wheat+safener (Triticum aestivum)	WHEAT+S (2)	Armada	8	1.0	<pre>7 leaves, tillering</pre>
	Barley (<u>Hordeum vulgare</u>)	BARLEY (3)	Sonja	8	1.0	4 leaves, O-1 tiller
	Barley+safener (<u>Hordeum vulgare</u>)	BARLEY+S (4)	Sonja	8	1.0	7.5-8.5 leaves, tillering
	Oat (Avena sativa)	OAT (5)	Pennal	8	1.0	4-5 leaves
	Perennial ryegrass (Lolium perenne)	PER RYGR (6)	S 23	15	0.5	5-6 leaves; O-1 tiller
	Onion (Allium cepa)	ONION (8)	Robusta	15	0.5	3-4 leaves
	Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	Masterpiece	4	1.5	1.5 trifoliate leaves
	Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	4	2.0	5 leaves
	Pea (<u>Pisum sativum</u>)	PEA (11)	Dark Skinned Perfection	4 4	1.5	7 leaves
•	White Clover (Trifolium repens)	W CLOVER (12)	Kent Wild White	20	0.5	3 trifoliate leaves
	Lucerne (Medicago sativa)	LUCERNE (13)	Europe	12	0.5	3 trifoliate leaves
	Rape (Brassica napus oleifera)	RAPE (14)	Jet Neuf	20	0.5	4 leaves
	Kale (<u>Brassica oleracea</u> acephala)	KALE (15)	Green Marrow Stem	15	0.5	2.5-3 leaves
	Swede (Brassica napus)	SWEDE (17)	Acme	12	0.5	3.5 leaves

Designa- tion and computer serial	Cultivar or source	No per pot	Depth of planting (CM)	Stages of growth at assessment (untreated controls, leaf
serial number				numbers excl. of cotyledons)

-25-

Carrot

CARROT

Chantenav 12 0.5 3.5

3.5-4 leaves

7

(Daucus carota)	(18)	Red Core	12	0.5	3.5-4 leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Reskia	15	0.5	6 leaves
Fenugreek (Trigonella foenumgraecum)	FENUGREEK (21)	Paul	10	0.5	2-3 trifoliate leaves
Sugar beet (Beta vulgaris)	SUG BEET (22)	Nomo monogerm	15	1.0	2-4 leaves
<u>Beta vulgaris</u>	BETA VUL (23)	Attleborough 1979	20	0.5	4.5 leaves
Bromus sterilis	BROM STE (24)	WRO 1982	12	0.5	6-8 leaves, 2 tillering

Festuca rubra	FEST RUB (25)	BOREAL CDN 86-0192	25	0.25	1-3 tillers
Avena fatua	AVE FATU (26)	WRO 1980	10	1.0	4.5-5 leaves
Alopecurus myosuroides	ALO MYOS (27)	B and S Supplies 1982	25	0.25	2-3 tillers
Poa annua	POA ANN (28)	B and S Supplies 1980	25	0.5	4-5 leaves, 0-1 tiller
<u>Poa trivialis</u>	POA TRIV (29)	B and S Supplies 1981	25	0.25	Up to 10 cm

<u>Sinapis arvensis</u>	SIN ARV (30)	WRO 1981	20	0.5	4-5 leaves
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	12	0.5	4 leaves
<u>Chrysanthemum</u> <u>segetum</u>	CHRY SEG (32)	WRO 1982	20	surface	5-6 leaves
Matricaria perforata	MAT PERF (33)	WRO 1981	25	surface	6-7 leaves

Stages of growth at Designa-Cultivar Depth of No assessment tion and planting or (untreated per computer source pot controls, leaf (Cm) serial numbers excl. number of cotyledons)

Senecio vulgaris

٠

-26-

SEN VULG B and S 40 surface 6-7 leaves

	(34)	Supplies 1981			
<u>Polygonum</u> <u>lapathifolium</u>	POL LAPA (35)	WRO 1981	20	0.5	1-4 leaves
Galium aparine	GAL APAR (38)	WRO 1981	12	1.0	8-15 whorls
Chenopodium album	CHEN ALB (39)	WRO 1979	40	0.5	4 leaves
<u>Stellaria media</u>	STEL MED (40)	B and S Supplies 1981	40	0.5	Numerous leaves
<u>Veronica persica</u>	VER PERS (42)	WRO 1981	15	0.5	Several leaves

Viola arvensis	VI ARVE (43)	B and S Supplies 1982	30	0.5	6 leaves
Rumex obtusifolius	RUM OBTU (44)	B and S Supplies 1981	25	0.25	2-3 leaves
Elymus repens	EL REPEN (47)	WRO Clone 31	6*	1.5	4-5 leaves
Allium vineale	ALL VIN (49)	WRO 1982	12***	1.0	2-3.5 leaves
<u>Cirsium arvense</u>	CIRS ARV (50)	WRO Clone 1	4**	1.5	4-7 leaves

Tussilago farfara	TUS FARF (51)	WRO Clone 1	4*	1.5	2-4 leaves
<u>Convolvulus</u> arvensis	CONV ARV (52)	B and S Supplies 1979	15	0.5	7-8 leaves
Phalaris paradoxa	PHAL PAR (54)	ADAS 1981	20	0.5	

-27-

No

per

pot

Designa- Cultivar tion and or computer source serial number Depth of planting (Cm)

Stages of growth at assessment (untreated controls, leaf numbers excl. of cotyledons) at assessment

.

Maize+safener (Zea mays)	MAIZE+S (56)	LG11	5	1.5	4.5 leaves
Maize (Zea mays)	MAIZE (57)	LG11	5	1.5	4.5 leaves
Phalaris minor	PHAL MIN (84)	Delhi 1978	15	0.25	4-5 leaves

*	=	one node rhizome fragments
**	=	4 cm root fragments
***	=	aerial bulbils

Appendix II. Species, abbreviations, varieties and stages of growth at spraying and assessment for post-emergence selectivity test

Species	Designa- tion and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
---------	--	--------------------------	-----------------------------------	---

-28-

Wheat (Triticum aestivum)	WHEAT (1)	Timmo	3.5-4.5 leaves, l tiller	3-5 tillers
Wheat + safener	WHEAT + S (2)	Timmo	3 leaves	4 tillers
Barley (<u>Hordeum vulgare</u>)	BARLEY (3)	Triumph	3-5 leaves, l tiller	4-5 tillers
Barley + safener	BARLEY + S (4)	Triumph	2-2.5 leaves	4-5 tillers
Oat (Avena sativa)	OAT (5)	Pennal	2.5-3 leaves	4-6 tillers
Perennial ryegrass (Lolium perenne)	PER RYGR (6)	S 23	1 tiller	7-9 tillers
Onion (Allium cepa)	ONION (8)	Robusta	2-2.5 leaves	4.5 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	Masterpiece	2 unifoliate leaves	5 trifoliate leaves, flowering
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	3 leaves	10-12 leaves, flowering
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	3.5 leaves	Up to 10 leaves
White Clover (Trifolium repens)	W CLOVER (12)	S 100	4 trifoliate leaves	Numerous trifoliate leaves
Rape (Brassica napus oleifera)	RAPE (14)	Jet Neuf	2.5-3.5 leaves	7-7.5 leaves
Kale (Brassica oleracea acephala)	KALE (15)	Marrowstem	2-2.5 leaves	3.5-4.5 leaves
Cabbage (Brassica oleracea capitata)	CABBAGE (16)	Derby Day	2-2.5 leaves	8-8.5 leaves

.

-29-

Species	Designa- tion and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	3-3.5 leaves	7-8 leaves

۲

.

*

Parsnip (Pastinaca sativa)	PARSNIP (19)	Evesham	2.5 leaves	4.5-5 leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Reskia	3.5 leaves	6-10 leaves
Fenugreek (Trigonella foenumgraecum)	FENUGREK (21)	Paul	3-4 trifoliate leaves	7.5-8.5 trifoliate leaves
Sugar beet (Beta vulgaris)	SUG BEET (22)	Nomo	4-5 leaves	10 leaves
Beta vulgaris	BETA VUL (23)	WRO 1981 ex Attleborough	3-4 leaves	14 leaves
Bromus sterilis	BROM STE (24)	WRO 1982	2-3 tillers	Up to 10 tillers
Festuca rubra	FEST RUB (25)	Boreal	3-3.5 leaves	7-20 tillers
Avena fatua	AVE FATU (26)	WRO 1980	2-3 tillers	3-4 tillers
Alopecurus myosuroides	ALO MYOS (27)	WRO 1982	1-2 tillers	Up to 14 tillers
Poa annua	POA ANN (28)	B & S Supplies, 1978	2-3 tillers	8-10 tillers
Poa trivialis	POA TRIV (29)	B & S Supplies, 1981	1-3 tillers	8-10 tillers
Sinapis arvensis	SIN ARV (30)	WRO 1981	5 leaves	Numerous leaves, podded
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	2.5-4 leaves	4.5-6 leaves
Chrysanthemum segetum	CHRY SEG (32)	WRO 1982	8 leaves	Up to 11 leaves
Matricaria perforata	MAT PERF (33)	WRO 1981	7-9 leaves	Numerous leaves, flowering
Galium aparine	GAL APAR (38)	WRO 1981	3-3.5 whorls	Numerous whorls

-30-

	Designa-			Stage of growth at assessment
Species	tion and computer	Cultivar or	Stage of growth at	(untreated controls, leaf
	serial number	source	spraying	numbers exclusive of cotyledons)

Chenopodium album

.

.

.

CHEN ALB

WRO 1979

.

Up to 14 leaves Numerous leaves,

chenopourum arbum	(39)	MRU 1979		flowering
Stellaria media	STEL MED (40)	B & S Supplies, 1982	Up to 18 leaves	Numerous leaves, flowering
Spergula arvensis	SPER ARV (41)	WRO, 1981	3-4 whorls	Numerous whorls, flowering
Veronica persica	VER PERS (42)	WRO, 1980	9-11 leaves	Numerous leaves, flowering
Viola arvensis	VI ARVE (43)	B & S Supplies, 1982	3-7 leaves	Numerous leaves, flowering
Rumex obtusifolius	RUM OBTU (44)	WRO, 1981	3-4.5 leaves	5.5 leaves
Elymus repens	EL REPEN (47)	WRO Clone 31*	2.5-3 leaves	4-5 tillers
Agrostis stolonifera	AG STOLO (48)	B & S Supplies, 1981	4-6 stolons	18-25 stolons
Cirsium arvense	CIRS ARV (50)	WRO Clone 1**	10-10.5 leaves	Numerous leaves
Phalaris paradoxa	PHAL PAR (54)	Ethiopia, 1979	Up to 2 tillers	5-7 tillers, flowering
Maize + safener (Zea mays)	MAIZE + S (56)	LG 11	4.5 leaves	6-6.5 leaves
Maize (Zea mays)	MAIZE (57)	LG 11	3.5 leaves	5.5-6.5 leaves
Soybean (Glycine max)	SOYABEAN (65)	Anoko	2 unifoliates	3.5 trifoliate leave:
Solanum nigrum	SOL NIG (81)	WRO, 1980	3.5-4 leaves	<pre>5-6 leaves, flowering</pre>
Phalaris minor	PHAL MIN (84)	WRO, 1979	2 tillers	5 tillers

.

* one node rhizome pieces ** root fragments