TRIAL	NUMBER	33
111 116	I d Pag I Here, press 2 4	

						4.00 kg/ha
				1.00 kg/ha		
SPECIES MAT PERF	100	0.25 kg/ha	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SEN VULG	79	XXXXXXXXXXXXXX	1 4	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1 -	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL LAPA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXX	-	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ARE DESCRIPTION	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX
CHEN ALB		xxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SPER ARV	7.1	XXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
VER PERS		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX	14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VI ARVE		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
RUM OBTU	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(44)	11	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
EL REPEN	86	XXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxxxxxxxxxxxx
CIRS ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	400	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

TRIDIPHANE

SPECIES		0.25 kg/ha		1.00 kg/ha		4.00 kg/ha
MAIZE (57)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOL NIG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Aclonifen

Code number/s CME 127 Trade name/s Bandur

CME 12750 KUB 3359

Chemical name 2-chloro-6-nitro-3-phenoxyaniline

Other name/s Acloniten

Structure

Source Celamerck GmbH & Co KG

Ingelheim

Federal Republic of Germany

Information available and suggested uses

Pre-emergence residual control of blackgrass and broad-leaved weeds in winter wheat; grass and broad-leaved weeds in potatoes, peas, field beans and carrots. Doses 2.4 - 2.7 kg a.i./ha.

Formulation used . Suspension concentrate 60% a.i.

Spray volume 370 1/ha

RESULTS

Full results are given in the histograms on pages 33-37 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.00	Wheat+safener (NA) Barley+safener (NA) Maize+safener (NA)	Beta vulgaris Alopecurus myosuroides Poa annua Sinapis arvensis Polygonum lapathifolium Veronica persica + species below
1.00	Species above + maize	Poa trivialis Raphanus raphanistrum Chenopodium album Viola arvensis + species below
		*
0.25	Species above + oat perennial ryegrass carrot parsnip	Stellaria media Rumex obtusifolius Solanum nigrum

Comments on results

Activity experiment

The foliar spray was more active than the soil drench, post-emergence. However, greatest activity resulted from the pre-emergence surface treatment, the latter being much more active than with incorporation. Annual species were more susceptible than perennials, especially the smaller-seeded kale and ryegrass. This activity spectrum is thus very similar to other diphenyl-ether herbicides. Dwarf bean showed considerable tolerance to all of the soil treatments.

Symptoms on susceptible species

The most striking symptom, common to both pre- and post-emergence treatments was a pronounced chlorosis, or rather albinism, of leaves. Necrosis and death of plant tissue followed. Sprayed foliage of dwarf bean and kale was scorched rather rapidly, the chlorosis/albinism appearing more on the newer leaves, such as the newly developing trifoliates of dwarf beans. Thus symptoms are fairly typical of other diphenyl-ethers, though there was more evidence of chlorosis/albinism with aclonifen.

Post-emergence selectivity

Annual broad-leaved weeds were particularly susceptible. Of those controlled, Galium aparine at 0.25 kg/ha, Viola arvensis at 1.0 kg/ha and Veronica persica at 4.0 kg/ha are especially noteworthy. Composite weeds were not controlled however. Annual grass weed control was restricted to Poa trivialis at 1.0 kg/ha, Poa annua and more impressive, Alopecurus myosuroides at 4.0 kg/ha. Perennial weeds were resistant.

Tolerance was greatest with the cereals, wheat, barley and maize, all of which withstood the higher doses. Oat, perennial ryegrass, carrot and parsnip tolerated 0.25 kg/ha. White clover and lettuce are very sensitive.

Although aclonifen is considered to be primarily a pre-emergence herbicide, which the activity results confirm, selectivity post-emergence would also seem possible, giving it a greater flexibility of use. The potential control of Galium aparine, in cereals demands further study. The control of Stellaria media, must also be considered an advance for the diphenyl-ether group of herbicides. Lack of control of certain weeds, notably composites, will necessitate studies of mixtures and/or sequences with other herbicides. The weed control and crop tolerance spectra post-emergence, corresponds with that found earlier pre-emergence (Richardson and West, 1984, in press).

ACTIVITY EXPERIMENT

ACLONIFEN

		0.67 kg/ha	2.0 kg/ha	6.0 kg/ha
	F	XXXXXXXXXX	XXXXXXXXXXX	XXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
	P	XXXXXXXX ·	XXX	XX
	I	XXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
RYEGRASS	P	0	X	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX	XXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXX	XXX
	I	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
ELYMUS	S	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX

KEY: F = post-emergence, foliar application

S = post-emergence, soil drench

P = pre-emergence, surface film I = pre-planting, incorporated

				1.00 kg/ha		4.00 kg/ha
SPECIES		0.25 kg/ha	100	XXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEAT	100	$\times \times $	100	XXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	VXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEAT+S	100	XXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXX	the pros seas	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY (3)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
(4)	JUU	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	××××××××××××××××××××××××××××××××××××××		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(AT 5)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXX	and f	XXXXXXXXXXXXXXXXXX
PER RYGR	100	××××××××××××××××××××××××××××××××××××××	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	sale been seen	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(NION)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
DWF BEAN	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXX
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7:1	XXXXXXXXXXXXX	()	
W CLOVER	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31	XXXXXX	Ö	
. the state of		XXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE (14)	100	XXXXXXXXXX	43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
KALE)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX		XXXXXXXXXXXX
CABBAGE (18)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(16)	-21	AAAAAAAAA				

		,, p / h		1.00 kg/ha		4.00 kg/ha
SPECIES		0.25 kg/ha	100	XXXXXXXXXXXXXXXX	190	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PARSNIP (19)	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(19)		XXXXXXXXXXXXXXXX	n		0	
LETTUCE (20)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Ō			
SUG BEET	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	the great court	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX
PETA VUL		xxxxxxxxxxxxxx		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	XXX
BETA YUL	64	XXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BROM STE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVE FATU	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(26)	93	XXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXX	30	XXXXXX
ALO MYOS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX		XXX
	100	VVVVVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX
POA ANN (28)	100	XXXXXXXXXXXXXXXXXX			0	
POA TRIV	60 71	$\times \times $	14	XXXX	ŏ	
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SIN ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		40	XXXXXXX
	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX
RAPH RAF	57	XXXXXXXXXX		XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SE(i 100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	1.1	XXXXXXXXXXXXX

SPECIES		0.25 kg/ha		1.00 kg/ha		4.00 kg/ha
MAT PERF	100	××××××××××××××××××××××××××××××××××××××		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	THE COUNTY COLUMN	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SEN VULG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL LAPA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	THE RESERVE OF THE PARTY OF THE	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
GAL APAR	43	XXXXXXXXX XXX	29	$x \times x \times$	0	
CHEN ALB		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXX	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED	19	XXXX XXXX	0		0	
SPER ARV		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VER PERS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VI ARVE	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20	XXXXXXXXX	0	
RUM OBTU			0		0	
EL REPEN	1 10000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CIRS ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE+S (56)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

SPECIES 0.25 kg/ha		1.00 kg/ha		4.00 kg/ha		
MAIZE,	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOL NIG	37	×××××× ××××	25	XXXXX XXXX	1.7	XX X

RST 20024H

Code number RST 20024

RST 20061 (+ atrazine)

Trade name/s Atravit rustica (+ atrazine)

Common name

Trimexachlor (proposed)

Structure

Source

Ruhr-Stickstoff AG Landwirtschaftliche Forschung Hanninghof 35 D4408 Dülmen Federal Republic of Germany

Information available and suggested uses

Broad-spectrum weed control in maize, winter rape, soyabeans etc. preand post-emergence.

Formulation used Technical material (95.6% a.i.) in 10% methanol + 0.1% v/v Agral 90.

Spray volume 370 1/ha.

RESULTS

Full results are given in the histograms on pages 40-44 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.00	wheat+safener (NA) barley+safener (NA) maize+safener (NA) sugar beet	Poa trivialis
0.25 and 1.00	None listed as no weeds controlled	None

Comments on results

Activity experiment

Most activity resulted from pre-emergence treatments to grasses, perennial ryegrass being particularly sensitive. The surface pre-emergence spray was generally more effective than when incorporated, this different being greatest in the case of perennial ryegrass. Soil drenches, post-emergence were also quite effective on grasses but not on broad-leaved species. However, with the foliar spray, broad-leaved species tended to be slightly more affected than grasses.

Symptoms on susceptible species

A mild scorch of leaves occurred a day or so after spraying, particularly on broad-leaved species and some grasses. Retardation of growth resulted and hyperchromism of older leaves. Tillers of grasses were often stunted. Newly developing leaves were sometimes slightly deformed. Leaf trapping was seen on soil treatments to grasses with hyperchromism of the older leaves. Pre-emergence treatments to grasses, notably perennial ryegrass, caused die-back soon after emergence. These symptoms were reminiscent of amide and carbamate type herbicides.

Post-emergence selectivity

Only one grass weed, (<u>Poa trivialis</u>), was controlled at the highest dose. Tolerant crops were sugar beet, maize, wheat and barley, there being a mild safening effect of NA with the two latter species.

Results of both these experiments suggest that RST 20024H is primarily a pre- rather than a post-emergence herbicide. Although the effects from soil drenches, post-emergence to grasses and foliar sprays to broad-leaved species were considerable in the earlier activity experiment, the later post-emergence experiment suggests that combined soil and foliar effects were still not great enough for an effective post-emergence treatment. However, the results in the activity test justify future tests, pre-emergence.

ACTIVITY EXPERIMENT

RST 20024H

		0.25 kg ai/ha	1.0 kg ai/ha	4.0 kg ai/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
DWARF BEAN	P	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VATE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXX
	F	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXX	0	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXX	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXX	XXXXXXXXX	XX XX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELYMUS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX	XXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

KEY: F = post-emergence, foliar application

S = post-emergence, soil drench

P = pre-emergence, surface film

I = pre-planting, incorporated

SPECIES		0.25 kg/ha		1.00 kg/ha		4.00 kg/ha	
WHEAT		××××××××××××××××××××××××××××××××××××××		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
WHEAT+S		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
BARLEY (3)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
BARLEY+S		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
OAT (5)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
PER RYGR	day hour and	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
ONION (8)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
DWF BEAN	And County County	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
FLD BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
W CLOVER	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
RAPE (14)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
KALE (15)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
CABBAGE (16)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

RST20024 H

RST20024 H

SPECIES		0.25 kg/ha		1.00 kg/ha		4.00 kg/ha
CARROT (18)	and the second	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PARSNIP (19)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETTUCE (20)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BETA YUL	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BROM STE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVE FATU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA ANN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA TRIV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SIN ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPH RAP	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	**************************************	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

TEST

43

TRIA	L NUM	BER	33

				RST20024H		
SPECIES		0.25 kg/ha		1.00 kg/ha		4.00 kg/ha
MAT PERF	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	**************************************
SEN VULG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL LAPA		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHEN ALB	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SPER ARV	100	××××××××××××××××××××××××××××××××××××××	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VER PERS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VI ARVE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RUM OBTU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
EL REPEN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CIRS ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

SPECIES		0.25 kg/ha		1.00 kg/ha		4.00 kg/ha
MAIZE (57)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOL NIG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ACKNOWLEDGEMENTS

We are most grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; Messrs P D Smith, R M. Porteous and S L Burbank for technical and practical assistance; to Mrs J Wallsworth for the preparation and typing of this report; to Mrs S Cox and her staff for its duplication and to the commercial firms who provided the chemicals and relevant data.

REFERENCES

- RICHARDSON, W.G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam.

 Technical Report Agricultural Research Council Weed Research

 Organization, 32, pp. 74.
- RICHARDSON, W.G. and PARKER, C. (1977) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and Dowco 290. Technical Report Agricultural Research Council Weed Research Organization, 42, pp. 53.

Appendix I. Species, abbreviations, varieties and stages of growth at spraying and assessment for post-emergence selectivity test

Species	Designa- tion and computer serial number	Cultivar or source	Stage of growth at spraying	Stages of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Wheat (Triticum aestivum	WHEAT (1)	Timmo	3.5 leaves, 0-1 tiller	5-6 leaves, 0-1 tiller
Wheat+safener	WHEAT+S (2)	Timmo	3.5 leaves, 0-1 tiller	5-6 leaves, 0-1 tiller
Barley (Hordeum vulgare)	BARLEY (3)	Triumph	4 leaves, 0-1 tiller	7-8 leaves, 1 tiller
Barley+safener	BARLEY+S (4)	Triumph	4 leaves, 0-1 tiller	7-8 leaves, 1 tiller
Oat (Avena sativa)	OAT (5)	Penna1	3.5 leaves, 0-1 tiller	12 lraves, 2 tillers
Perennial ryegrass (Lolium perenne)	PER RYGR (6)	S 23	5-7 leaves, 1-2 tillers	
Onion (Alium cepa)	ONION (8)	Rijnsburg Robusta	2 leaves	2.5-4.5 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	Masterpiece	2 uni- foliate leaves	2 trifoliate leaves
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	2.5-3 leaves	121eaves
Pea (Pisum sativum)	PEA (11)	Dark skinned perfection	3-4 leaves	7 leaves
White clover (Trifolium repens)	W CLOVER (12)	S 100	2 tri- foliate leaves	5-6 trifoliate leaves
Rape (Brassica napus oleifera)	RAPE (14)	Jet Neuf	2 leaves	5 leaves
Kale (Brassica oleracea acephala)	KALE (15)	Marrowstem	2-2.5 leaves	3.5 leaves
Cabbage (Brassica oleracea capitata)	CABBAGE (16)	Derby Day	2-2.5 leaves	4.5 leaves

Species	Designa- tion and computer serial number	Cultivar or source	Stage of growth at spraying	Stages of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	2 leaves	4-5 leaves
Parsnip (Pastinaca sativa)	PARSNIP (19)	Evesham	1.5-2 leaves	2-3 leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Reskia	1.5-3.5 leaves	10 leaves
Sugar beet (Beta vulgaris)	SUG BEET (22)	Nomo	2 leaves	4-5 leaves
Beta vulgaris	BETA VUL (23)	WRO 1981 ex Attleborough	2 leaves	4-5 leaves
Bromus sterilis	BROM STE (24)	WRO 1982	1-3 tillers	3-4 tillers
Avena fatua	AVE FATU (26)	WRO 1980	4-5 leaves, 1-2 tillers	7 leaves, 1-2 tillers
Alopecurus myosuroides	ALO MYOS (27)	WRO 1983	1 tiller	3-4 tillers
Poa annua	POA ANN (28)	WRO 1982	2-3 tillers	5 tillers
Poa trivialis	POA TRIV (29)	B & S Supplies, 1981	1-2 tillers	5-6 tillers
Sinapis arvensis	SIN ARV (30)	WRO 1983	4-5 leaves	6-7 leaves, flowering
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	2-2.5 leaves	4-5 leaves
Chrysanthemum segetum	CHRY SEG (32)	WRO 1983	4 leaves	8-10 leaves
Matricaria perforata	MAT PERF (33)	WRO 1983	2-4 leaves	5-6 leaves
Senecio vulgaris	SEN VULG (34)	WRO 1981	5 leaves	7 leaves, flowering

Species	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stages of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Polygonum lapathifolium	POL LAPA (35)	WRO 1982	1-1.5 leaves	7-8 leaves
Galium aparine	GAL APAR (38)	WRO 1981	2 whorls	Numerous whorls
Chenopodium album	CHEN ALB (39)	B&S Supplies 1982	4-6 leaves	8 leaves, flowering
Stellaria media	STEL MED (40)	B&S Supplies 1982	6 leaves	Up to 20 leaves
Spergula arvensis	SPER ARV (41)	WRO, 1981	1.5 whorls	
Veronica persica	VER PERS (42)	WRO, 1981	4-6 leaves	Numerous leaves, flowering
Viola arvensis	VI ARVE (43)	B&S Supplies 1982	2-4 leaves	6-10 leaves, some flowering
Rumex obtusifolius	RUM OBTU (44)	WRO, 1981	1.5-2 leaves	3-4 leaves
Elymus repens	EL REPEN (47)	WRO Clone 31*	3 leaves	6-10 leaves, 0-1 tiller
Cirsium arvense	CIRS ARV (50)	WRO Clone 1**	4-6 leaves	10 leaves
Maize+safener (Zea mays)	MAIZE+S (56)	LG 11	3-3.5 leaves	6-8 leaves
Maize (Zea mays)	MAIZE (57)	LG 11	3.5-4 leaves	6-8 leaves
Solanum nigrum	SOL NIG (81)	WRO, 1980	2-5 leaves	Up to 8 leaves

^{*} one node rhizome pieces

^{**} root fragments

ABBREVIATIONS

angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.S.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	gal/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*		gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushel	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration x	concn	hydrogen ion concentration*	pH
time product	ct	inch	in。
concentration		infra red	i.r.
required to kill 50% test animals	LC50	kilogramme	kg
cubic centimetre*	cm ³	$kilo(x10^3)$	k
cubic foot*	ft ³	less than	<
cubic inch*	in ³	litre	1.
cubic metre*	m ³	low volume	LV
cubic yard*	yd ³	maximum	max。
cultivar(s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	°C	melting point	m.p.
degree centigrade	°C	metre	m
degree Fahrenheit*	o _F	micro (x10 ⁻⁶)	μ
diameter	diam.	microgramme*	μg
diameter at breast height	d.b.h.	micromicro (pico: x10 ⁻¹²)*	141
divided by*	e or /	micrometre (micron)*	μm (or μ)
dry matter	d.m.	micron (micrometre)* †	μm (or μ)
emulsifiable		miles per hour*	mile/h
concentrate	e.c.	$milli(x10^{-3})$	m
equal to*	=	milliequivalent*	m.equiv.
fluid	f1.	milligramme	mg
foot	ft	millilitre	m1

t The name micrometre is preferred to micron and μm is preferred to μ .

millimetre*	mm	pre-emergence	pre-em.
		quart	quart
millimicro* (nano: x10 ⁻⁹)	n or mu	relative humidity	r.h.
minimum	min.	revolution per minute*	rev/min
minus		second	8
minute	min	soluble concentrate	S.C.
molar concentration*	M (small cap)	soluble powder	s.p.
molecule, molecular	mol.	solution	soln
more than	>	species (singular)	sp.
multiplied by*	x	species (plural)	spp.
normal concentration*	N (small cap)	specific gravity	sp. gr.
not dated	n.d.	square foot*	ft ²
oil miscible	0.M.C.	square inch	in ²
concentrate	(tables only)	square metre*	m ²
organic matter	o.m.	square root of*	<u></u>
ounce	02	sub-species*	ssp.
ounces per gallon	oz/gal	summary	S.
page	p.	temperature	temp.
pages	pp.	ton	ton
parts per million	ppm	tonne	t
parts per million	ppmv	ultra-low volume	ULV
by volume	bhm.	ultra violet	u.v.
parts per million by weight	ppmw	vapour density	v.d.
percent(age)	%	vapour pressure	v.p.
		varietas	var.
pico (micromicro: x10 ⁻¹²)	p or µµ	volt	V
pint	pint	volume	vol.
pints per acre	pints/ac	volume per volume	v/v
plus or minus*	-	water soluble powder	w.s.p.
post-emergence	post-em	watch borner	(tables only)
pound	1b	watt	W
pound per acre*	lb/ac	weight	wt
pounds per minute	lb/min	weight per volume*	w/v
pound per square inch*	lb/in2	weight per weight*	W/W
powder for dry	p. (+-hlas onlar)	wettable powder	w.p.
application	(tables only)	yard	yd
power take off	p.t.o.	yards per minute	yd/min
precipitate (noun)	ppt.		

^{*} Those marked * should normally be used in the text as well as in tables etc.

WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS (Price includes surface mail; airmail £2.00 extra)

(* denotes Reports now out of print)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. rough-stalked meadow-grass. November 1966. G P Allen. Price £0.25
- 7. Flame cultivation experiments 1965. October 1966. G W Ivens. Price £0.25
- 8. The development of selective herbicides for kale in the United Kingdom.
 2. The methylthiotriazines. Price £0.25
- 10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types.

 July 1968. I E Henson. Price £0.25
- *12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - £0.25
 - 13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price £0.25
 - 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price £0.25
 - 15. Methods of analysis for herbicide residues. February 1977. (second edition). Price £5.75
 - 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during spring 1970. November 1970.

 J G Elliott and P J Attwood. Price £0.25
 - 17. The pre-emergence selectivity of some newly developed herbicides,
 Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112,
 pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker
 and K Holly. Price £0.25
 - 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price £0.25
- *19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxallis latifolia. December 1971. M L Dean and C Parker. Price £0.25

- * 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott.

 Price £0.35
 - 21. An automatic punching counter. November 1972. R C Simmons. Price £0.30
 - 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price £0.25
 - 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price £0.25
 - 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £1.25
 - 25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price £1.75.
 - The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price £3.31
 - 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price £1.05
 - 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price £1.00
 - *29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price £1.30
 - 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price £1.06
 - 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price £1.10
 - 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price £3.62
 - 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
 - 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean.

 Price £2.50

- 35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price £1.39
- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975.

 W G Richardson and M L Dean. Price £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630.

 March 1976. W G Richardson, M L Dean and C Parker. Price £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop-isopropyl. August 1976. W G Richardson, M L Dean and C Parker.

 Price £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price £3.40.
- 42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290.

 March 1977. W G Richardson and C Parker. Price £3.50
- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean.

 Price £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H. A Davies, J A P Marsh & G I Wingfield. Price £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson.

 Price £2.70
- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron effects on the quality of barley, wheat, maize and carrots. July 1978.

 J D Fryer, P D Smith and J W Ludwig. Price £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards.

 March 1978. A K Oswald. Price £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price £2.50

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry.

 Price £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978.

 W G Richardson and C Parker. Price £2.20.
- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes.

 July 1979. R H Webster. Price £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker Price £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price £2.00
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price £3.75
- 62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price £3.50
- 63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 2222293 and Dowco 433.

 May 1981. W G Richardson, T M West and C Parker. Price £3.50
- 64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982.

 W G Richardson, T M West and C Parker. Price £3.00
- 65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price £1.50

- 66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price £2.00
- 67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484.

 December 1982. W G Richardson, T M West and C Parker. Price £3.25
- 68. The activity and pre-emergence selectivity of some recently developed herbicides: WL 49818, WL 82830, WL 83627, WL 83801 and DPX 5648.

 December 1982. W G Richardson, T M West and C Parker. Price £4.00
- 69. The activity and late post-emergence selectivity of some recently developed herbicides: AC 252925, DOWCO 453, HOE 33171 and HOE 35609. March 1983. W G Richardson, T M West and G P White. Price £3.25
- 70. The potential of various herbicides for selective control of weed grasses and Stellaria media in newly sown ryegrass/clover leys and ryegrass seed crops. May 1983. F W Kirkham Price £1.75
- 71. A feasibility study of the use of chemicals for rural amenity areas.

 Sponsored by the Countryside Commission. September 1983. E J P Marshall Price £5.00
- 72. The activity and late post-emergence selectivity of FBC 32197.
 November 1983. W G Richardson, T M West and G P White. Price £1.25
- 73. Paraquat persistence statistical analysis of the WRO long term trial.

 January 1984. R J Hance, T H Byast and T M West. Price £1.00
- 74. The activity and post-emergence selectivity of some recently developed herbicides: AC 252214, DPX-T6376, and chlorazifop. February 1984. W G Richardson, T M West and G P White. Price £2.00.
- 75. The effect of temperature and soil moisture on the activity of isoproturon and chlortoluron on Alopecurus myosuroides and winter wheat. May 1984.

 A M Blair. Price £2.00
- 76. A laboratory rainfall simulator for pesticide studies. May 1984. R C Simmons. Price - £2.00
- 77. Experiments on the effects of the herbivorous fish, grass carp (Ctenopharyngodon idella Val.) on aquatic vascular plants, algae, zooplankton and phytoplankton and the importance of water temperature on the success of weed control. September 1984. M C Fowler. Price £3.50.
- 78, The activity and post-emergence selectivity of some recently developed herbicides: MCPA-thioethyl, MT-124, tridiphane, aclonifen and RST 20024 H. October 1984. W G Richardson and T M West. Price £5.40