Click here for previous

SPECIES	
CYP ESCU	100
(85)	64
CYP ROTU	100
(86)	93
OXAL LAT (87)	100
BROM PEC	100
(88)	100

ACIFLUORFEN

0.2 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1ó0 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

0.6 kg/ha

.

-180-

1.00

.-...

同じたたなの形象医院

1.8 kg/ha

XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXX

XXXXXXXXXXXXX XX

XXXXXXXXXXXXXX XXXXXXX

POST-EMERGENCE SELECTIVITY EXPERIMENT

S

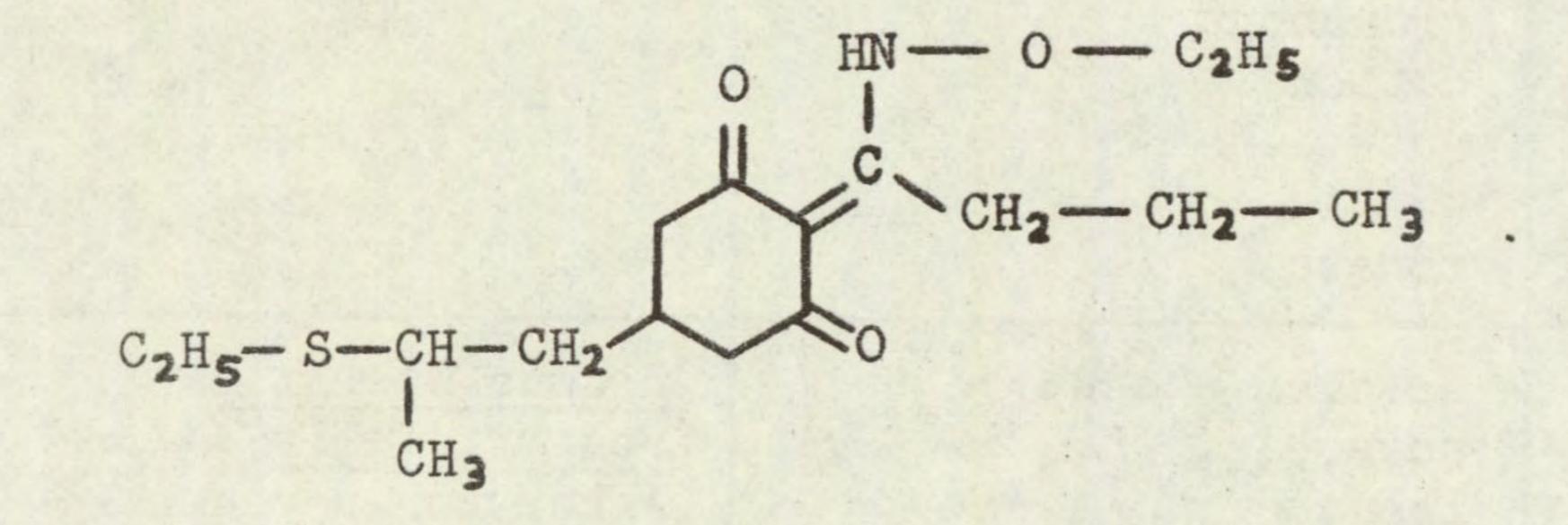
NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, R 40244 is flurochloridone

- 32 -

ARD 34/02

Code number

ARD 34/02 NP 55 BAS 9052


cietoxidim

Proposed common name

Chemical name

2-[N-(ethoxyamino)butylidene]-5-(2-ethylthiopropyl) -cyclohexan-1,3-dione

Structure

Note

There are alternative representations of this tautomeric structure, depending how the H is placed. Either form is correct but the above is consistent with the nomenclature used for the related alloxydim (see also Formigoni et al, 1979).

May & Baker Ltd Source

Ongar Research Station Fyfield Road Ongar Essex, UK

Information available and suggested uses

Annual and perennial grass weed control in dicotyledonous crops.

Formulation used

18.4% w/v a.i. emulsifiable concentrate

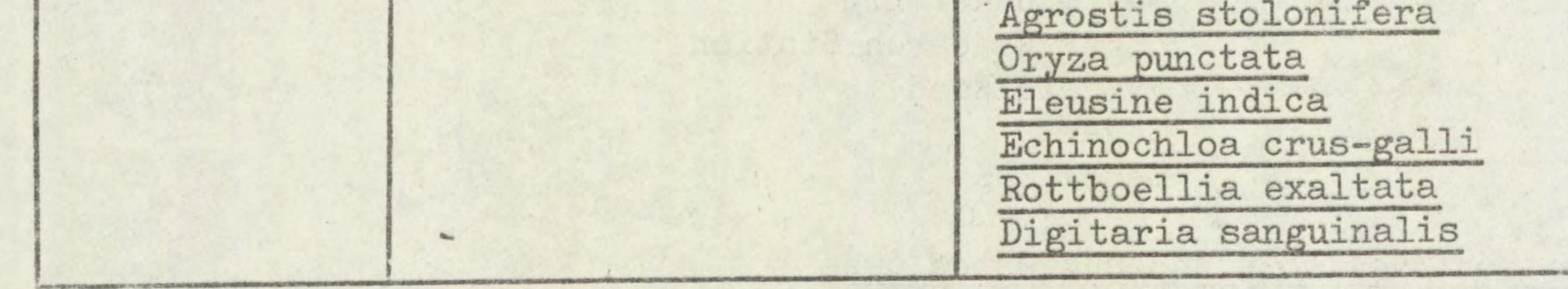
Spray volume

for activity experiment 370 1/ha for post-emergence selectivity experiment 345 1/ha

RESULTS

Full results are given in the histograms on pages 35-41 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg a.i./ha)	by 15% or less	reduced by 70% or more
1.6	onion dwarf bean field bean pea white clover rape kale cabbage	species below


continued on page 33

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg a.i./ha)	by 15% or less	reduced by 70% or more
1.6	radish carrot parsnip lettuce sugar beet pigeon pea cowpea	species below

7 * 7

- 33 -

	chickpea groundnut cotton jute kenaf tomato	
0.4	species above+ soyabean tobacco	Bromus sterilis Poa trivialis Agropyron repens Snowdenia polystachya Phalaris minor Bromus pectinatus + species below
0.1	species above + sesamum	Avena fatua Alopecurus myosuroides Holcus lanatus

Comments on results

Activity experiment

Activity was almost entirely confined to the grass species, these being sensitive to post- and pre-emergence applications. In the former, perennial ryegrass and <u>Avena fatua</u> were slightly more affected by soil drenches than the foliar spray, though activity was high even in the latter, the low dose of 0.1 kg/ha giving vigour reductions in the region of 50%. With <u>Agropyron</u> <u>repens</u>, however, the foliar spray was more effective than the soil drench at the higher doses. This should be borne in mind when considering the results of the post-emergence selectivity test where there was the possibility of both soil and foliar uptake. Pre-emergence surface treatments tended to be slightly more toxic than post-emergence on ryegrass and <u>A. fatua</u>, the former species being killed even at the lowest dose. The surface pre-emergence spray on these two species was more effective than when the herbicide was incorporated into the soil. <u>A. repens</u> showed this trend only at the middle dose.

Symptoms

A severe inhibition or stunting of growth developed on grasses treated postemergence. This took several days to develop and was often accompanied by chlorosis and followed by necrosis and death. Sub-lethal doses on <u>A. fatua</u> and A. repens sometimes caused extra tillering, leading in some cases to recovery,

NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, R 40244 is flurochloridone

but on <u>A. fatua</u> treated with the foliar spray even the tillers became chlorotic. Similar symptoms occurred on grasses treated pre-emergence but at higher doses there was often a failure to emerge from the soil or from the coleoptile. Apart from a slight stunting at the high dose with the foliar spray on kale and dwarf bean and a mild scorch of the unifoliate leaves of the latter, possibly due to the solvent in the formulation, no symptoms appeared on any broadleaved species.

Post-emergence selectivity among temperate species

With the exception of <u>Poa annua</u>, all annual and perennial grass weeds were controlled by the two lowest doses. <u>Poa annua</u> was not controlled even at the high dose. <u>Agropyron repens</u> recovered from initially severe effects at 0.1 kg/ha but was killed at the two higher doses. The other perennial, <u>Agrostis stolonifera</u>, was eventually killed even at the lowest dose. All broadleaved weeds were resistant.

All broad-leaved crops and onion were resistant. Several species were kept to observe any late effects but these did not occur (other than a possible slight reduction of nodulation of field bean roots).

Clearly this herbicide offers outstanding potential for control of grass weeds in onion and broad-leaved crops. Control of volunteer cereals and ryegrass is also possible, these species being as susceptible as most of the other grasses. Its activity on grasses is somewhat greater than the related alloxydim. The same defect in the weed spectrum is apparent, however, with the resistance of Poa annua and all broad-leaved weeds (Richardson & Parker, 1978). In view of their importance, in onion and many broad-leaved crops, studies on mixtures and sequences with herbicides used in these crops will need

to be carried out.

Post-emergence selectivity among tropical species

Excellent selectivity was demonstrated against all the grass weeds including <u>Rottboellia exaltata</u> at 0.4 kg/ha in all broad-leaved crops other than sesamum. The latter showed some deformities at this dose but it is not certain that these were due to the herbicide. It did not show corresponding susceptibility to the related alloxydim (Richardson & Parker, 1978). In general, the activity of ARD 34/02 on grasses was at least 2½ times greater than that of alloxydim while selectivity was at least as good. Limited further studies at WRO have indicated a similarly greater activity on perennial grasses and this compound seems likely to have an important role in selective control of annual and perennial grasses in a wide range of tropical crops. <u>Cyperus</u> species are highly tolerant but so far there is no evidence for tropical grass species with tolerance comparable to that of Poa annua.

ACTIVITY EXPERIMENT

ARD 34/02 (= NP 55)

- 35 -

0.1 kg/ha

F

S

P

I 0.4 kg/ha

1.6 kg/ha

ĩ

	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	· XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	8	8	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX XXXX	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX X
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	XXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX

DWARF

BEAN

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

			ARI	0 34/02
SPECIES		0.1 kg/ha		0
WHEAT (1)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 21	XXXXX
BARLEY (2)	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 21	XXXXX
OAT (3)	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000000000000000000000000000000000	
PER RYGR (4)	62 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
ONION (8)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXX
DWF BEAN (9)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXX
FLD BEAN (10)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXX
PEA (11)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXX
W CLOVER (12)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXX
RAPE (14)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXX
KAIE (15)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXX
CABBAGE (16)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXX

(= NP 55)

	1	3 /2	
).	4	kg/ha	l
			1

XXXXXXXXXXXXXXXX	0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
	00	
	00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXX

1.6 kg/ha

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX POST-EMERGENCE SELECTIVITY E TMENT

SFECIES	
CARROT (18)	100
PARSNIF (19)	100
LETTUCE (20)	100
SUG BEET (21)	100
FENUGREEK (22)	100
BROM STE	100
(24)	71
AVE FATU	100
(26)	29
ALO MYOS	100
(27)	29
POA ANN	100
(28)	100
POA TRIV	100
(29)	36
SIN ARV	100
(30)	100
RAPH RAP	100
(31)	100

The second

ARD 34/02 (= NP 55)

0.1 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXX	29	XXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
XXXXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXX	14	XXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	42	XXXXXXX	25	XXXXX
XXXXXXX	14	XXX	7	x
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX

0.4 kg/ha

1.6 kg/ha

XXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXX XXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXX

POST EMERGENCE SELECTIV TTY EXPERIMENT

SPECIES	
TRIP MAR (33)	100
SEN VULG (34)	100
POL LAFA (35)	100
GAL AFAR (38)	100
CHEN ALB (39)	100
STEL MED (40)	100
SPER ARV (41)	100
VER PERS (42)	100
RUM OBTU (44)	100
HOLC LAN (45)	80 21
AG REPEN (47)	100 57
AG STOLO (48)	87 29

ARD 34/02 (= NP 55)

0.1 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	190	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
XXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXX	14	XXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXX	14	XXX	0	

0.4 kg/ha

1.6 kg/ha

XXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

POST EMERGENCE SELECTI 0 H TY EXPERIMENT

SFECIES	
CIRS ARV	100
(50)	100
MILLET (55)	000000000000000000000000000000000000000
MAIZE	100
(57)	29
SORGHUM	50
(59)	14
PIGEON P	83
(61)	86
COWPEA (62)	100
CHICKPEA	100
(63)	93
GRNDNUT	100
(64)	100
SOYABEAN	100
(65)	100
COTTON	100
(66)	100
JUTE	100
(67)	100
KENAF	100
(68)	100

ARD 34/02 (= NP 55)

0.1 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
	0		0	
	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10		0	
XXXXXX	0		0	
XXXXXXXXXX	0		0	
XXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	93	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	' XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX

0.4 kg/ha

1.6 kg/ha

XXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXXXX

and the second

XXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX POST EMERGENCE SELECTIVITY F 2 PERIMENT

SPECIES	
TOBACCO	100
(69)	100
SESAMUM	100
(70)	100
томато	100
(71)	100
OR PUNCT	60
(73)	29
ELEU IND	100
(74)	29
ECH CRUS	67
(75)	21
ROTT EXA	50
(76)	29
DIG SANG	92
(77)	29
AMAR RET	100
(78)	100
PORT OLE	100
(79)	100
SOL NIG	100
(81)	100
SNOW POL	100
(83)	57

0.1 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
	10	XX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX	0	
	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
XXXX	0		0	
XXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXX	14	XXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXX	14	XXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	' XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	0	
XXXXXXXXXXX	14	XXX	0	

ARD 34/02 (= NP 55)

0.4 kg/ha

1.6 kg/ha

XXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

POST EMERGENCE SELECTIVITY EXPERIMENT

SPECIES

PHAL MIN (84)	100 36
CYP ESCU (85)	100
CYP ROTU (86)	100
OXAL LAT (87)	100
BROM PEC (88)	100 64

ARD 34/02 (= NP 55)

0.1 kg/ha

14

. . .

4.4

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XX	000
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		00

0.4 kg/ha

1. 1. 1.

TO THE SERVICE

VID 3F OF (F Vo BE)

XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX

+

1.6 kg/ha

PO 5 ERGENCE SELE H

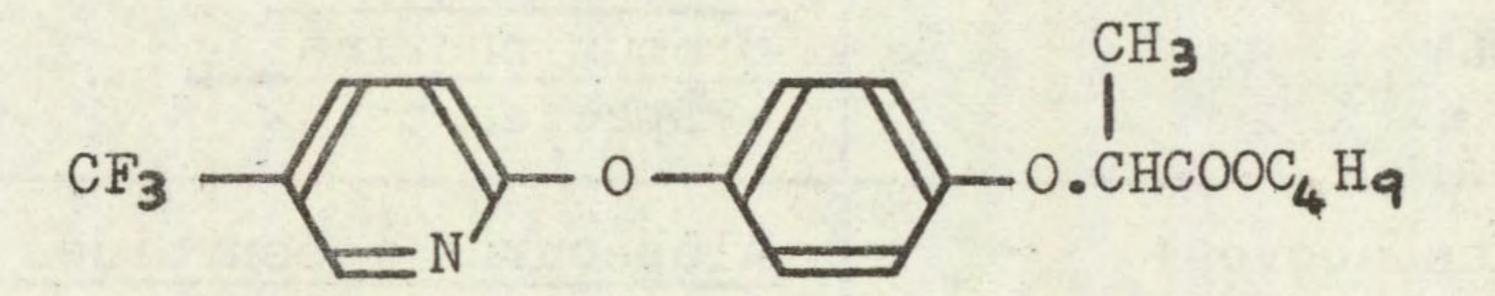
1.

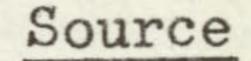
NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, R 40244 is flurochloridone

PP 009

- 42 -

Code number


PP 009


Fluazifop-butyl Proposed common name

Chemical name

Butyl 2-[4-(5-trifluoromethyl-2-pyridyloxy)phenoxy] propionate

Structure

ICI Plant Protection Ltd Jealott's Hill Research Station Bracknell Berks RG12 6EY UK

Information available and suggested uses

Post-emergence control of annual and perennial grass weeds and self-sown cereals in a wide range of temperate and tropical broad-leaved crops.

Formulation used

25% w/v a.i. emulsifiable concentrate

Spray volume

for activity experiment 370 1/ha for post-emergence selectivity experiment 345 1/ha

RESULTS

Full results are given in the histograms on pages 45-51 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg a.i./ha)	by less than 15%	reduced by 70% or more
1.6	onion dwarf bean field bean pea white clover rape kale cabbage radish carrot parsnip lettuce sugar beet fenugreek cowpea groundnut cotton	Bromus sterilis Poa trivialis Agropyron repens + species below

continued on page 43

NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, R 40244 is flurochloridone

- 43 -

RATE (kg a.i./ha)	CROPS: vigour reduced by less than 1 5%	WEEDS: number or vigour reduced by 70% or more
0.4	species above + chickpea soyabean jute kenaf tobacco sesamum	Avena fatua Holcus lanatus Oryza punctata Digitaria sanguinalis Snowdenia polystachya Phalaris minor Bromus pectinatus + species below
0.1	species above + tomato	Alopecurus myosuroides Agrostis stolonifera Eleusine indica . Echinochloa crus-galli Rottboellia exaltata

Comments on results

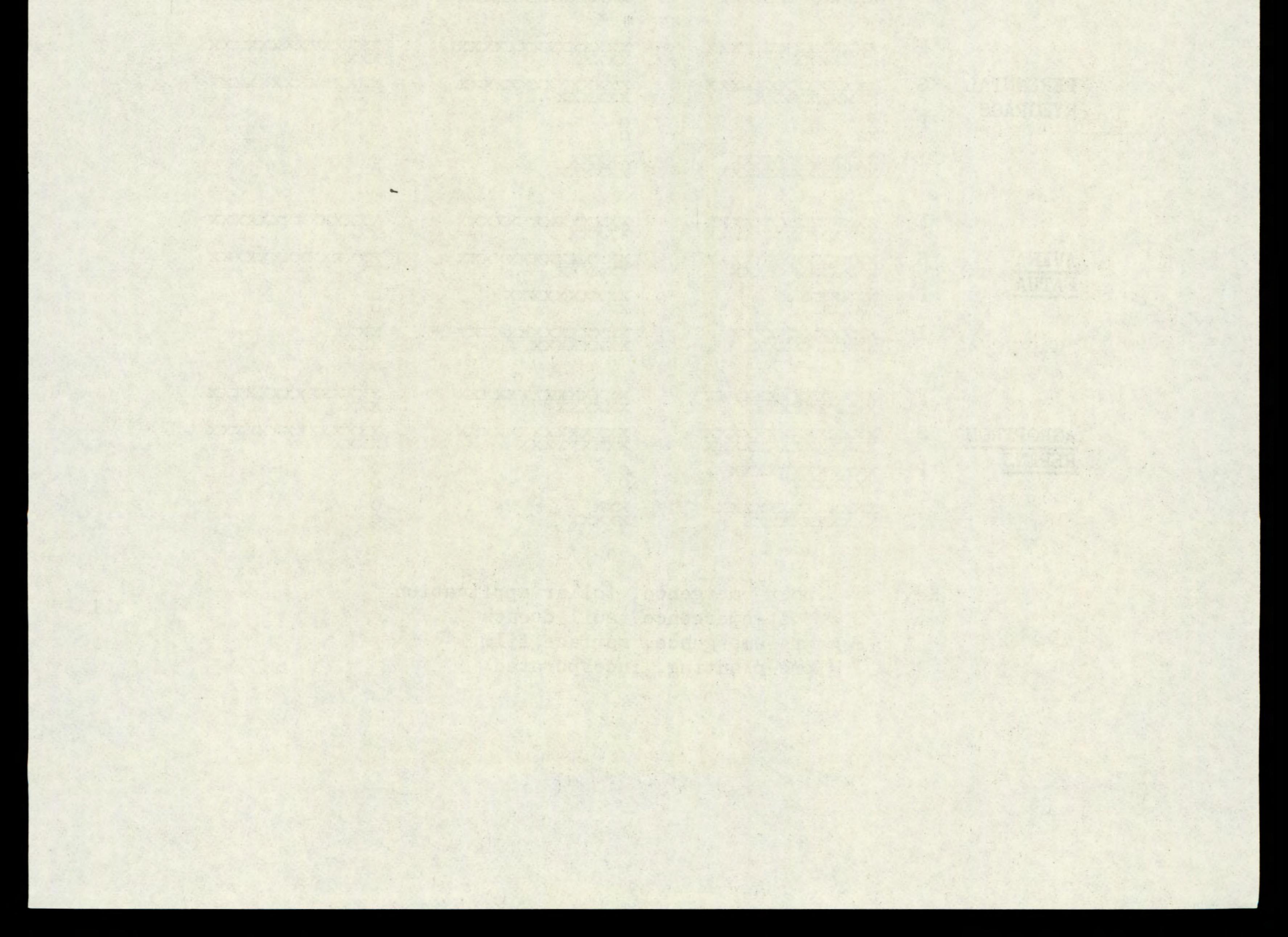
Activity experiment

The grass species exhibited high sensitivity to PP 009 but broad-leaved species were resistant. Post-emergence, the foliar spray was slightly more active on perennial ryegrass and Agropyron repens than was the soil drench. Most toxicity resulted from the pre-emergence treatments, particularly the surface spray. Incorporating the herbicide into the soil reduced its effectiveness as compared with the surface spray.

Symptoms

A severe inhibition of growth accompanied by chlorosis and later necrosis were the symptoms commonly found on the grasses treated post- and pre-emergence. Sub-lethal doses of the foliar spray resulted in increased tiller production on perennial ryegrass. This species in other treatments at similar doses sometimes exhibited a darker green colour, shininess and twisting of leaves. With <u>A. repens</u> the chlorosis or almost albinism was also accompanied by a pink colouration of leaf tissue. Higher doses pre-emergence prevented grass species either from emerging from the soil or from the coleoptile. At lower doses plants appeared 'dart-like', which was later found to be accompanied by weakened root systems. Only minor symptoms, such as a slight lack of vigour, mild retardation or necrosis, were found on broad-leaved species and then only at the highest dose. Fenugreek actually appeared a darker green colour and looked more vigorous than untreated controls.

Post-emergence selectivity among temperate species


With the exception of <u>Poa annua</u>, control of grass weeds was outstanding. <u>Alopecurus myosuroides and Agrostis stolonifera</u> were controlled even at 0.1 kg/ha. <u>Avena fatua and Holcus lanatus</u> were reduced in vigour by 50% or more at this dose and killed or controlled at 0.4 kg/ha. Although the high dose of 1.6 kg/ha was needed to control <u>Bromus sterilis</u>, <u>Poa trivialis</u> and <u>Agropyron</u> <u>repens</u>, all were severely affected at lower doses. No effects were seen on broad-leaved weeds.

Onion and all broad-leaved crops tolerated the high dose of 1.6 kg/ha. The cereals and perennial ryegrass were sensitive even at the lower doses. NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, R 40244 is flurochloridone

PP 009 thus shows outstanding selective control of annual and perennial grass weeds, including volunteer cereals and ryegrass in onion and broad-leaved crops. The similarity between it and the previous herbicide ARD 34/02 is striking. The latter appears slightly more effective on some grass weeds. Both have the intriguing defect of <u>Poa annua</u> and broad-leaved weed resistance. Thus in the tolerant crops where these weeds are a problem, mixtures and sequences of herbicides will need testing.

Post-emergence selectivity among tropical species

Excellent selectivity against all the tropical grass weeds was demonstrated in all the broad-leaved crops with the exception of tomato which showed a minor retardation of both shoot and root growth at 0.4 kg/ha. The level and type of activity on grasses was almost identical to that of ARD 34/02 and the selectivity correspondingly similar. Also similar activity on some perennial grass species has been demonstrated in further work and this compound should have important uses in a wide range of tropical broad-leaved crops.

ACTIVITY EXPERIMENT

- 45 -

PP009

0.4 kg/ha 0.1 kg/ha

- F S

1.6 kg/ha

Contraction of the second second

うかないというなんです。

10

- and show the second second division straining with

BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		AMALALALALALALAL		
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XXX	8	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX XXXXXXX	8
	-			
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXX XXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX XXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	8
	- 1			

A state to and the state of the state

DWARF

.

* *

00

XXXXXX XXXXXXXXXXXXX XXXXXXXXXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

SPECIES		0.1 kg/ha		0.4 kg/ha		1.6 k
WHEAT (1)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY (2)	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT (3)	00 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30 14	XXXXXX XXX	0	
PER RYGR (4)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
ONION (8)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWF BEAN (9)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN (10)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER (12)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE (14)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	' XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE (15)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CABBAGE (16)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

PP 009

kg/ha

XXXXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXX XXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXX.

XXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXX

POST -EMERGENCE SELECTIVITY EXPERIMENT

SFECIES		
CARROT (18)	100 100	XX
PARSNIF (19)	100 100	XXX
LETTUCE (20)	100 100	XX
SUG BEET (21)	100 100	XX
FENUGREEK (22)	100	XX
BROM STE (24)	100 71	XX
AVE FATU (26)	100 36	xx
ALO MYOS (27)	100 29	xx
POA ANN (28)	100 100	XX
POA TRIV (29)	100 64	XX
SIN ARV (30)	100 100	XX
RAPH RAP (31)	100 100	XX

NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, R 40244 is flurochloridone PP 009

0.1 kg/ha100 XXXXXXX XXXXXXXXXXXXXXXXXXXXXX 100 XXXXXX XXXXXXXXXXXXXXXXXXXXX 100 XXXXXXX XXXXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXXXX XXXXXX 100 XXXXXX XXXXXXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXXX XXXXXX 100 XXXXXXXXXXXXXXXXXXXXX XXXXXX 100 XXXXXXXXXXXXXXXXXXXXXX XXXXXX 100 XXXXXXXXXXXXXXXXXXXXX XXXXXX 100 XXXXXX XXXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXX XXXXXX 36 XXXXXX XXXXXXXXXXXX 0 XXXXXXXXXXXXXXXXXXXXX 0 XXXXXX 71 XXXXXX

XXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX

 XXX

14

100

100

100

43

100

100

100

100

XXXXXX XXXXXX

XXXXXX XXXXXX

XXXXXX XXXXXX

XXXXXX XXXXXX

0.4 kg/ha

1.6 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXX	'86	XXXXXXXXX
XXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXX	100	XXXXXXXXXX
XXXXXXXXXXXXXX	100	XXXXXXXXX
XX	14	XXX
	0	
	0	
XXXXXXXX	0	
	0	
XXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXX	57	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58	· XXXXXXXXX
XXXX	14	XXX
XXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXX	86	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXX

1.53

XXXXXXXXXXXX XXX

XXXX

XXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXXXXXXX

POST-EMERGENCE SELECTI VITY EX PERIMENT

Type text here

dia ta

SFECIES		0.1 kg/ha		0.4 kg/ha		1.6 kg
TRIP MAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(33)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
SEN VULG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(34)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
POL LAPA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(35)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXX
GAL APAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(38)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
CHEN ALB	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
 (39)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXX
STEL MED	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(40)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXX
SPER ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(41)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
VER PERS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(42)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
RUM OBTU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(44)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
HOLC LAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30	XXXXXX	0	
(45)	50	XXXXXXXXXX	14	XXX	0	
AG REPEN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(47)	64	XXXXXXXXXXXXX	36	XXXXXXX	14	XXX
AG STOLO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(48)	29	XXXXXX	14	XXX	0	

24- 11 B. M.

NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, R 40244 is flurochloridone PP 009

1.6 kg/ha

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX

8. 6. 20.

POST EMERGENCE SEL ECT Н TT EX PERIMENT

SPECIES

2115133

CIRS ARV (50)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MILLET	~					
(55)	0		0		0	
					0	
MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(57)	21	XXXX	0		0	
SORGHUM	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33	XXXXXXX	0	
(59)	14	XXX	7	x	0	
PIGEON PEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXX	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(61)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COWPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(62)	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 86	XXXXXXXXXX
CHICKPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(63)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXX
GRNDNUT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(64)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
SOYABEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(65)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXX
COTTON	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(66)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXX
JUTE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(67)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX
KENAF	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(68)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXX

0.1 kg/ha

PP	009
	~~/

0.4 kg/ha

1.6 kg/ha

XXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXXX

XXXXXXXXXXX XXXXX

POST EMERGENCE SELECTIVITY 日 XPERIMENT

SPECIES		0.1 kg/ha		0.4 kg/ha		
TOBACCO (69)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXX
SESAMUM (70)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXX
TOMATO (71)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXX
OR PUNCT (73)	60 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		00	
ELEU IND (74)	87 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	x	000	
ECH CRUS (75)	58 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		0 0	
ROTT EXA (76)	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
DIG SANG (77)	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
AMAR RET (78)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXX
PORT OLE (79)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 71	, XXXX
SOL NIG (81)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXX
SNOW POL (83)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	

PP 009

1.6 kg/ha

XXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX

POS F EMERGENCE SELEC H H H 4 T PERIMENT

SPECIES

the state of the state of the

PHAL MIN (84)	100 71	XX
CYP EXCU (85)	100 100	XX
CYP ROTU (86)	100 100	XX
OXAL LAT (87)	100 100	XX XX
BROM PEC (88)	100 79	XX

and the second

PP 009

LE DUID

0.1 kg/ha

93 XXXXXX XXXXXXXXXXXXXXXXXXXX 21 XXXX XXXXXXXXXXXXX 100 XXXXXX XXXXXXXXXXXXXXXXXXXXX 100 XXXXXX 100 XXXXXX XXXXXXXXXXXXXXXXXXXXX 100 XXXXXX 100 XXXXXX 100 XXXXXX 0 XXXXXXXXXXXXXXXXXXXXXX 0 XXXXXXXXXXXXXXXX

0.4 kg/ha

	-	
1	6	
1	.0	

XXXXXXXXXXXXX	000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	
	0	

0

.

1. 1. N.

1

XXXXXXXXX

kg/ha

POST EMERGENCE SELECTIVITY EXPERIMENT

- Phil

ACKNOWLEDGEMENTS

We are most grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; to Mr G P White, Miss D Stringer and Messrs R H Webster, R M Porteous and S L Burbank for technical and practical assistance; to Mrs J Souch, Mrs L Gawne and Mrs J Wallsworth for the preparation and typing of this report and to the commercial firms who provided the herbicides and relevant data.

- 52 -

The work of the ODA Tropical Weeds Group was carried out under Project D 11 (27) financed by HM Overseas Development Administration.

. .

REFERENCES

FORMIGONI, A., IWATAKI, I. and ISHIHARA, H. (1979) Selective post-emergence grass control in different broad-leaf crops with the new herbicide NP 55. Proceedings EWRS Symposium. The influence of different factors on the development and control of weeds, 403-410.

JOHNSON, W.O., KOLLMAN G.E., SWITHENBANK, C. and YIH, R.H. (1978) RH-6201 (Blazer): A new broad spectrum herbicide for postemergence use in soybeans. Journal of Agricultural and Food Chemistry, <u>26</u>, (1), 285-286.

RICHARDSON, W.G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam. Technical Report Agricultural Research Council Weed Research Organization, 32, pp 74.

RICHARDSON, W.G. and PARKER, C. (1977) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and Dowco 290. Technical Report Agricultural Research Council Weed Research Organization, 42, pp 53.

RICHARDSON, W.G.-and PARKER, C. (1978) The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and pyridate. <u>Technical Report Agricultural Research Council Weed Research</u> Organization, 49, pp 38.

RICHARDSON, W.G., WEST, T.M. and PARKER, C. (1979) The activity and preemergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. Technical Report Agricultural Research Council Weed Research Organization, 57, pp 71.

Species abbreviations, varieties and stages of growth at spraying Appendix 1. and assessment for post-emergence selectivity test.

Stage of

growth at

spraying

- 53 -

Designa-Cultivar tion and computer or serial source number

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Temperate species 20 leaves, 8 leaves, Maris WHEAT Wheat 8 tillers 2-3 tillers Huntsman (1) (Triticum aestivum) 18 leaves, 8 leaves, Sonja BARLEY Barley 6 tillers 2 - 3 tillers (2) (Hordam vulgare) 19 leaves, 6 leaves, Peniarth OAT Oat 8 tillers tillering (3) (Avena sativa) 19 leaves, 4 leaves S 23 PER RYGR Perennial ryegrass 8 tillers (4) (Lolium perenne) $1\frac{1}{2}-2\frac{1}{2}$ leaves 3 leaves Robusta ONION Onion

(Allium cepa)	(8)			
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	2 unifoliate	2-3 tri- foliate leaves
Field bean . (Vicia faba)	FLD BEAN (10)	Maris Bead	3 ¹ / ₂ -4 ¹ / ₂ leaves	10 leaves
Pea Pisum sativum)	PEA (11)	Dark Skinned Perfection	5-6 leaves	9 leaves
White clover (Trifolium repens)	W CLOVER (12)	S 100	2-2 ¹ / ₂ trifoliate leaves	4-5 trifoliate leaves
Rape (Brassica napus oleifera)	RAPE (14)	Rapora	2 ¹ / ₂ leaves	6 leaves

Kale (Brassica oleracea acephala)	KALE (15)	Marrow Stem	2 ¹ / ₂ -3 leaves	5 leaves
Cabbage (Brassica oleracea capitata)	CABBAGE (16)	Derby Day	2 ¹ / ₂ -3 ¹ / ₂ leaves	6 leaves
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	3-3-4 leaves	6 leaves

Appendix 1. (cont.)

10

CONTRACTOR OF THE OWNER

Designation and Cultivar computer or serial source number

Stage of growth at spraying Stage of growth at assessment (untreated controls, leaf numbers exclusive of

cotyledons)

Parsnip (Pastinaca sativa)	PARSNIP (19)	Avonresister	2 ¹ / ₂ leaves	4 leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Reskia	5-6 leaves	10 leaves
Sugar beet (Beta vulgaris)	SUG BEET (21)	Nomo	3 ¹ / ₂ leaves	8 leaves
Fenugreek (Trigonella foenumgraecum)	FENUGREK (22)	Paul	2 ¹ / ₂ trifoliate leaves	6 trifoliate leaves, anthesis
Bromus sterilis	BROM STE (24)	Bourton on the Water	8 leaves, 2 tillers	20 leaves, 5 - 6 tillers

- 54 -

Avena	AVE FATU	WRO 1977	6-8 leaves,	14 leaves,
fatua	(26)		1-2 tillers	3-6 tillers
Alopecurus	ALO MYOS	B & S	8 leaves,	30-40 leaves,
myosuroides	(27)	Supplies 1976	2-3 tillers	up to 15 tillers
Poa annua	POA ANN	B & S	4-6 leaves	15-20 leaves,
	(28)	Supplies 1977	0-1 tiller	up to 10 tillers
Poa trivialis	POA TRIV (29)	WRO 1978	9 leaves, tillering	30 leaves, up to 10 tillers
Sinapis arvensis	SIN ARV (30)	WRO 1971	2 ¹ / ₂ -3 leaves	7 leaves
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	$2\frac{1}{2}-3\frac{1}{2}$ leaves	6 leaves

Tripleurospermum maritimum	TRIP MAR (33)	WRO 1975	5-6 leaves	10 leaves
Senecio vulgaris	SEN VULG (34)	WRO 1977	4-6 leaves	12-14 leaves, anthesis
Polygonum lapathifolium	POL LAPA (35)	WRO 1976	$2\frac{1}{2}-3\frac{1}{2}$ leaves	7 leaves, flowering
Polygonum aviculare	POL AVIC (36)	B & S Supplies 1976	nil germination	
Galium aparine	GAL APAR (38)	WRO 1978	5-6 whorls	16-30 whorls

- 55 -

Appendix 1. (cont.)

.

Designa-Cultivar tion and computer or serial source number

Stage of growth at spraying

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Chenopodium album	CHEN ALB (39)	B & S Supplies 1973	4-5 leaves	7 leaves			
Stellaria media	STEL MED (40)	B & S Supplies 1975	6 leaves	20 leaves			
Spergula arvensis	SPER ARV (41)	WRO 1968	2 whorls	15 whorls			
Veronica persica	VER PERS (42)	WRO 1977	8 leaves	17 leaves, flowering			
Rumex obtusifolius	RUM OBTU (44)	B & S Supplies 1977	2 ¹ / ₂ -3 leaves	3-4 leaves			
Holcus lanatus	HOLC LAN (45)	WRO 1976	4-5 leaves 0-1 tiller	14-20 leaves, up to 7 tillers			
Agropyron repens	AG REPEN (47)	WRO Clone 31*	$3\frac{1}{2}$ -5 leaves, 0 - 1 tiller	10 leaves, up to 3 tillers			
<u>Agrostis</u> stolonifera	AG STOLO (48)	B and S Supplies 1976	2-3 leaves, 0-1 tiller	numerous tillers			
<u>Cirsium arvense</u>	CIRS ARV (50)	WRO Clone 1**	6-8 leaves	7 leaves			
Tropical species (gro	Tropical species (grown under higher temperature regime)						
Millet (Pennisetum americanum)	MILLET (57)	ex Bornu	3 leaves	7½ leaves			
Maize (Zea mays)	MAIZE (58)	Julia	3 ¹ / ₂ leaves	8 leaves			
Sorghum	SORGHUM	Swarna	$3-3\frac{1}{2}$ leaves	7월 leaves			

- g		
(Sorghum	bicolor)	(59)

Rice (Oryza sativa)	RICE (60)	IR 298	3-3-12 leaves	4-5 leaves
Pigeon pea	PIGEON P	India 1977	0-1 trifoliate	4 ¹ / ₂ trifoliate
(Cajanus cajan)	(61)		leaf	leaves
Cowpea	COWPEA	India 1977	0-1 trifoliate	1 ¹ / ₂ -2 trifoliate
(Vigna unguiculata)	(62)		leaf	leaves
Chickpea	CHICKPEA	India 1976	7-9 pinnate	12 pinnate
(Cicer arietinum)	(63)		leaves	leaves

* one node rhizome pieces

** root fragments

Appendix 1. (cont.)

Designa-Cultivar tion and computer or serial source number

- 56 -

Stage of growth at spraying

-

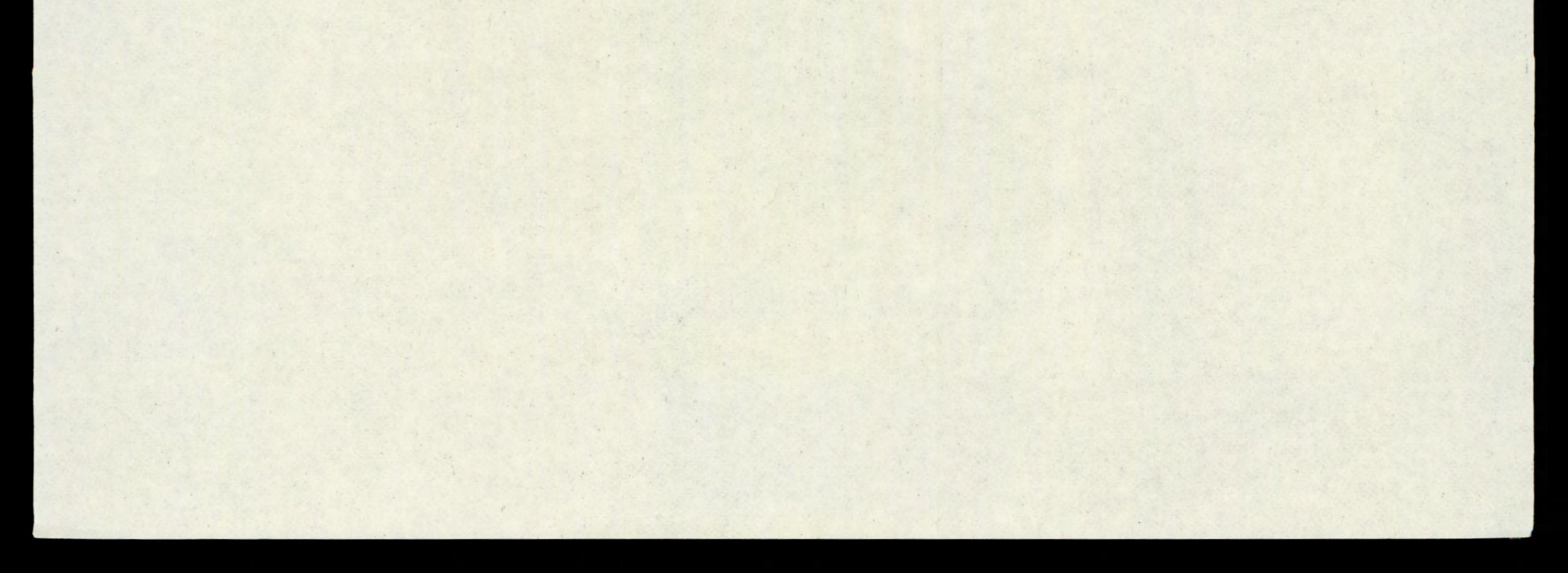
20 1

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Groundnut (Arachis hypogaea)	GRNDNUT (64)	S 38	2-3 pinnate leaves	6 ¹ / ₂ pinnate leaves
Soyabean (Glycine max)	SOYABEAN (65)	Bragg	2 trifoliate leaves	5 trifoliate leaves
Cotton (Gossypium hirsutum)	COTTON (66)	26 J	1-2 leaf	$3\frac{1}{2}-4$ leaves
Jute (Corchorus olitorius)	JUTE (67)	Egypt 1971	4 leaves	9 leaves
Kenaf (Hibiscus cannabinus)	KENAF (68)	A 63-440	4-6 leaves	7-8 leaves
Tobacco (Nicotiana tabacum)	TOBACCO (69)	Yellow Mammoth	5-6 leaves	Many
Sesamum (Sesamum indicum)	SESAMUM (70)	E 8, India 1977	2 leaves	7-8 leaves
Tomato (Lycopersicum esculentum)	томато (71)	Ailsa Craig	4-5 pinnate leaves	6-7 pinnate leaves
<u>Oryza punctata</u>	OR PUNCT (73)	Swaziland 1974	2 leaves	4-5 leaves, some tillering
Eleusine indica	ELEU IND (74)	Zimbabwe 1967	$5-5\frac{1}{2}$ leaves	Tillering vigourously
Echinochloa crus-galli	ECH CRUS (75)	WRO 1970	$3\frac{1}{2}-4$ leaves	6-7 leaves
Rottboellia exaltata	ROT EXAL (76)	Zimbabwe 1974	$2\frac{1}{2}$ -3 leaves	6-7 leaves
Digitaria sanguinalis	DIG SANG (77)	WRO 1973	4 ¹ / ₂ -5 leaves, tillering	Tillering vigourously
Amaranthus retroflexus	AMAR RET (78)	WRO 1972	6-7 leaves	12 leaves, flowering
Portulaca oleracea	PORT OLE (79)	WRO 1973	4-5 leaves	10-12 leaves
Solanum nigrum	SOL NIG (81)	WRO 1976	6 leaves	15 leaves, flowering

Appendix 1. (cont.)

Designation and computer serial number


Cultivar or source

- 57 -

Stage of growth at spraying

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Snowdenia polystachva	SNOW POL (83)	Ethiopia 1978	5 ¹ / ₂ -6 leaves, tillering	8-9 leaves
Phalaris minor	PHAL MIN (84)	Jordan 1977	4-5 leaves, • tillering	Tillering vigourously, anthesis
<u>Cyperus</u> esculentus	CYP ESCU (85)	WRO Clone 2* (ex South Africa)	6 ¹ / ₂ leaves	10 leaves
<u>Cyperus</u> rotundus	CYP ROTU (86)	WRO Clone 1* (ex Zimbabwe)	41-51 leaves	15 leaves
Oxalis latifolia	OXAL LAT (87)	WRO Clone 2** (ex Cornwall)		12 trifoliate leaves
Bromus pectinatus	BROM PEC (88)	Tanzania 1978	2 ¹ / ₂ -3 leaves	6-6 ¹ / ₂ leaves
• tubers ** bu	lbs			

ABBREVIATIONS

	0 . **	R	freezing point	f.p.
	angström		from summary	F.S.
	Abstract	Abs. a.e.	gallon	gal
	acid equivalent*	ac	gallons per hour	gal/h
	acre	a.i.	gallons per acre	gal/ac
At the second se	active ingredient* approximately equal to*		gas liquid chromatography	GLC
	aqueous concentrate	a.c.	gramme	g
	bibliography	bibl.	hectare	ha
	boiling point	b.p.	hectokilogram	hkg
	bushe1	bu	high volume	HV
	centigrade	C	horse power	hp
	centimetre*	cm	hour	h
	concentrated	concd	hundredweight*	cwt
	concentration concentration x	concn	hydrogen ion concentration*	pH
	time product	ct	inch	in.
	concentration required to kill		infra red	i.r.
	50% test animals	LC50	kilogramme	kg
	cubic centimetre*	cm ³	kilo (x10 ³)	k
	cubic foot*	ft ³	less than	<
	cubic inch*	in ³	litre	1.
	cubic metre* -	m ³	low volume	LV
	cubic yard*	yd ³	maximum	max.
	cultivar(s)	cv.	median lethal dose	LD50
	curie*	Ci	medium volume	MV
	degree Celsius*	°c	melting point	m.p.
	degree centigrade	°c	metre	m
	degree Fahrenheit*	°F	micro (x10 ⁻⁰)	μ
	diameter	diam.	microgramme*	μg
	diameter at breast height	d.b.h.	<pre>micromicro (pico: x10⁻¹²)*</pre>	htt
	divided by*	e or /	micrometre (micron)*	μm (or μ)
	dry matter	d.m.	micron (micrometre)*†	μm (or μ)
	emulsifiable concentrate	e.c.	miles per hour* milli (x10 ⁻³)	mile/h m
	equal to*	-	milliequivalent*	m.equiv.
	fluid	f1.	milligramme	mg
	foot	ft	millilitre	ml
	1001		millitre	III L

millimetre*
millimicro*
(nano: x10⁻⁹)
minimum
minus
minute
molar concentration*
molecule, molecular
more than

mm n or mµ min. min M (small cap) mol. >

pre-em. pre-emergence quart quart relative humidity r.h. rev/min revolution per minute* 6 second soluble concentrate S.C. soluble powder s.p. solution soln species (singular) sp. species (plural) spp. specific gravity sp. gr. ft² square foot* in² square inch m² square metre* square root of* sub-species* ssp. summary S. temperature temp. ton ton t tonne ULV ultra-low volume ultra violet u.v. vapour density v.d. vapour pressure v.p. varietas var. V volt vol. volume V/V volume per volume water soluble powder W.S.P. (tables only) W watt weight wt weight per volume* w/w

multiplied by* x normal concentration* not dated n.d. oil miscible O.M.C. concentrate organic matter O.M. OZ ounce oz/gal ounces per gallon page p. pages pp. parts per million ppm parts per million by volume ppmv parts per million by weight ppmw % percent(age) pico (micromicro: x10⁻¹²) p or µµ pint pint pints/ac pints per acre + plus or minus* post-emergence post-em 16 pound 1b/ac pound per acre* lb/min pounds per minute

x sp N (small cap) sp n.d. sq o.m.c. (tables only) sq o.m. sq oz oq oz/gal su p. to ppm to to

pound per square inch*	lb/in ^c	weight per weight*	w/w
powder for dry application	p. (tables only)	wettable powder	w.p.
power take off	p.t.0.	yard	yd
precipitate (noun)	ppt.	yards per minute	yd/min

* Those marked * should normally be used in the text as well as in tables etc.

AGRICULTURAL RESEARCH COUNCIL

RESEARCH ORGANIZATION WEED

TECHNICAL REPORTS (Price includes surface mail; airmail £0.50 extra)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. roughstalked meadow-grass. November 1966. G P Allen. Price - £0.25
- 7. Flame cultivation experiments 1965. October, 1966. G W Ivens. Price - £0.25
- The development of selective herbicides for kale in the United Kingdom. 8. 2. The methylthiotriazines. Price - £0.25
- The liverwort, Marchantia polymorpha L. as a weed problem in 10. horticulture; its extent and control. July 1968. I E Henson. Price - £0.25
- Raising plants for herbicide evaluation; a comparison of compost 11. types. July 1968. I E Henson. Price - £0.25
- Studies on the regeneration of perennial weeds in the glasshouse; 12. I. Temperate species. May 1969. I E Henson. Price - £0.25
- Changes in the germination capacity of three Polygonum species 13. following low temperature moist storage. June 1969. I E Henson. Price. - £0.25
- ALL LINES CONTRACTOR OF THE ALL MAN 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. . I E Henson. Price - £0.25
- 15. Methods of Analysis for herbicide residues. February 1977. (second edition) - price £5.75
- Report on a joint survey of the presence of wild oat seeds in cereal 16. seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
- The pre-emergence selectivity of some newly developed herbicides, 17. Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker

and K Holly. Price - £0.25

- A survey from the roadside of the state of post-harvest operations in 18. Oxfordshire in 1971. November 1971. A Phillipson. Price - £0.12
- The pre-emergence selectivity of some recently developed herbicides 19. in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price - £0.25.

20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0.35

- 2 -

- 21. An automatic punching counter. November 1972. R C Simmons. Price - £0.30
- 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0.25

23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price - £0.25

- 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- 25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- 27. Selectivity of benzene sulphonyl carbamate herbicides between various

pasture grasses and clover. October 1973. A M Blair. Price - £1.05

- 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- 29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30

1 H. 114

- 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price - £1.06
- 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10
- 32. The activity and post-emergence selectivity of some recently developed

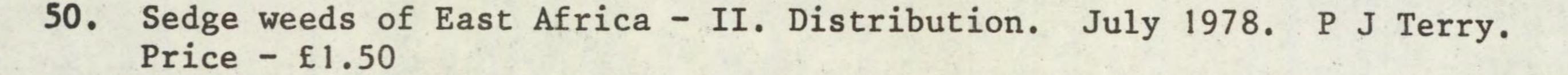
herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3.62

- 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
- 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2.50

35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1.39

- 3 -

- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.

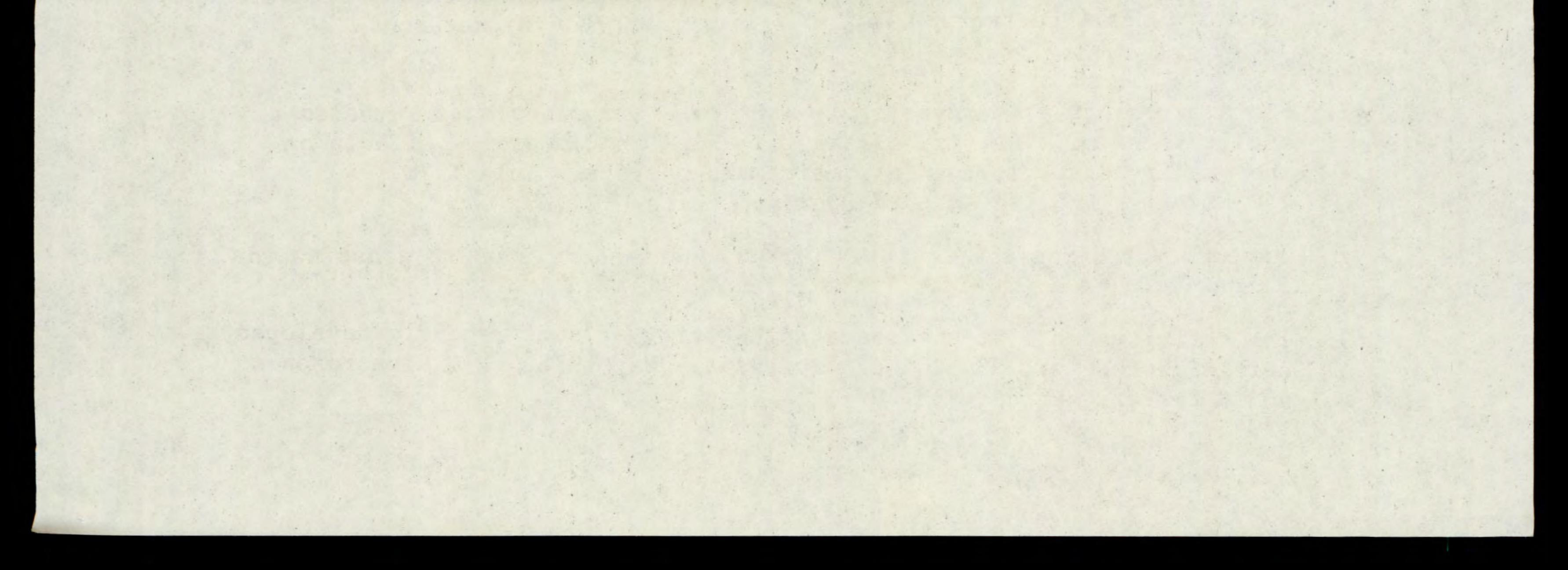

42. The activity and post-emergence selectivity of some recently developed

- herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - £3.50
- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price - £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H A Davies, J A P Marsh & G I Wingfield. Price - £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson.

Price - £2.70

- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maize and carrots. July 1978. J D Fryer, P D Smith and J W Ludwig. Price - £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50

NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, R 40244 is flurochloridone 1.2



51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978. W G Richardson and C Parker. Price - £2.20.

- 4 -

52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price - £1.35

- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price - £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price - £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes. July 1979. R H Webster. Price - £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker -Price - £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price - £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price - £2.00
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price - £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price - £3.75

