Click here for previous

SPECIES

-

MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(58)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX
SORGHUM	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(59)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	36	XXXXXXX
RICE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(60)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXX
PIGEON P	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXX
(61)	57	XXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXXXXX
COWPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 83	XXXXXXXXXXX
(62)	50	XXXXXXXXXX	43	XXXXXXXX	21	XXXX
CHICKPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(63)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	14	XXX
GRNDNUT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(64)	57	XXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXXXXX
COTTON	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXX
(66)	43	XXXXXXXXX	29	XXXXXX	14	XXX
JUTE	0		0		0	
(67)	0		0		0	
KENAF	31	XXXXXX	0		0	
(68)	14	XXX	0		0	
TOBACCO	20	XXXX	0		0	
(69)	29	XXXXXX	0		0	
SESAMUM	0		0		0	
(70)	0		0		0	

RH	520
and the second second	

0.05 kg/ha

.

C	1	
-	'	•

)5

.2 kg/ha

0.8 kg/ha

XXXXXXXXXXX

XXXXXXXXX

XXXXXXXX

XXXXXXXXXX

XXXXXXXXXXX

XXX

POST-EMERGENCE SELECTIVITY EXPERIMENT

.

TOMATO (71)	60 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 36	XXXX XXXXXXXX	0	
OR PUNCT (73)	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELEU IND (74)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ECH CRUS (75)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ROTT EXA (76)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DIG SANG (77)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	.94 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMAR RET (78)	87 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 50	XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
PORT OLE (79)	00		000		000	
SOL NIG (81)	92 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 7	XXXXX
SNOW POL (83)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU (86)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

RH 5205

0.05 kg/ha

0.2 kg/ha

0.8 kg/ha

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXX

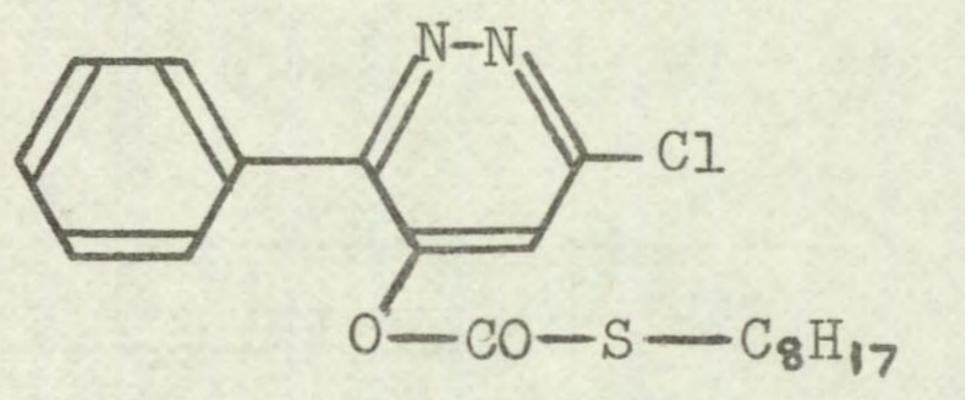
POST -EMERGENCE SELECTI TTY EXPERIMENT

PYRIDATE

- 24 -

Code number

CL 11344


Former common name

Fenpyrate

Chemical name

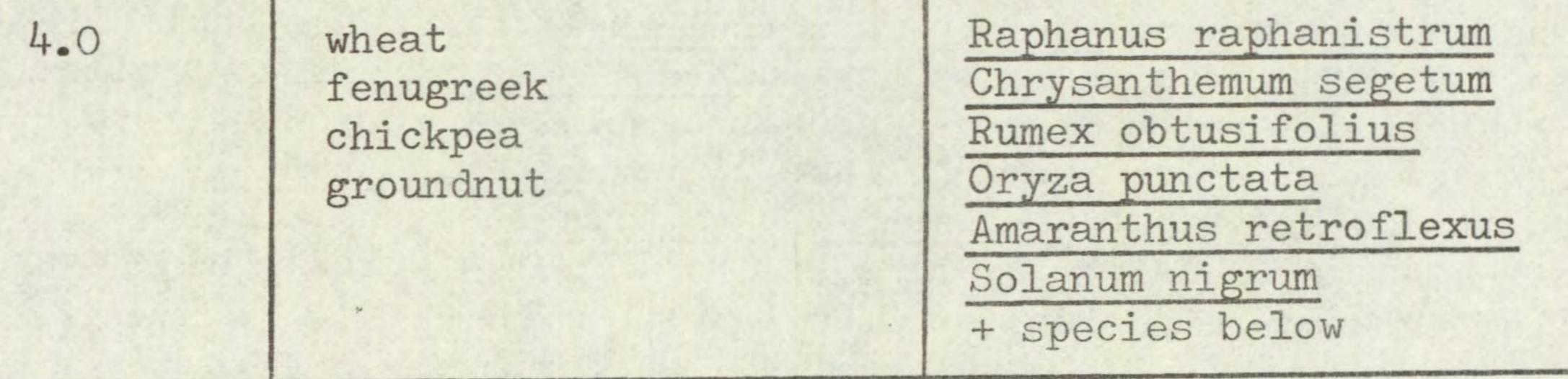
n-octyl(6 chloro-3-phenylpyridazin-4-yl)oxycarbothioate

Structure

Source

Chemie Linz AG P O Box 296 A-4021 Linz Austria

Information available and suggested uses


Diskus, A. et al (1976) reported good post-emergence (contact action) control of hard to kill weeds such as <u>Galium aparine</u>, <u>Galeopsis</u>, <u>Lamium</u> and <u>Veronica</u> spp., at 1.0 to 1.5 kg a.i./ha, with tolerance of cereals and maize. It also controls tropical grass weeds eg <u>Echinochloa crus-galli</u>, <u>Digitaria</u> spp, Setaria viridis and <u>Panicum miliaceum</u>. There is no activity via the soil.

Formulation used Wettable powder 50% w/w a.i.

Spray volume 345 1/ha for post-emergence selectivity experiment 340 1/ha for activity experiment RESULTS

Full results are given in the histograms on pages 27-32 and potential selectivities are summarised in the following table.

RATE CROPS: vigour reduced	WEEDS: number or vigour
(kg a.i./ha) by 15% or less	reduced by 70% or more

(Table continued overleaf)

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
1.0	species above + barley oat onion pea white clover rape kale cabbage maize	Sinapis arvensis Galium aparine Spergula arvensis Veronica persica + species below
0.25	species above + perennial ryegrass carrot radish sorghum rice pigeon pea	<u>Tripleurospermum maritimum</u> <u>Senecio vulgaris</u> <u>Chenopodium album</u> <u>Stellaria media</u>

- 25 -

Comments on results

Activity experiment

Most activity was observed with the foliar spray on the broad-leaved

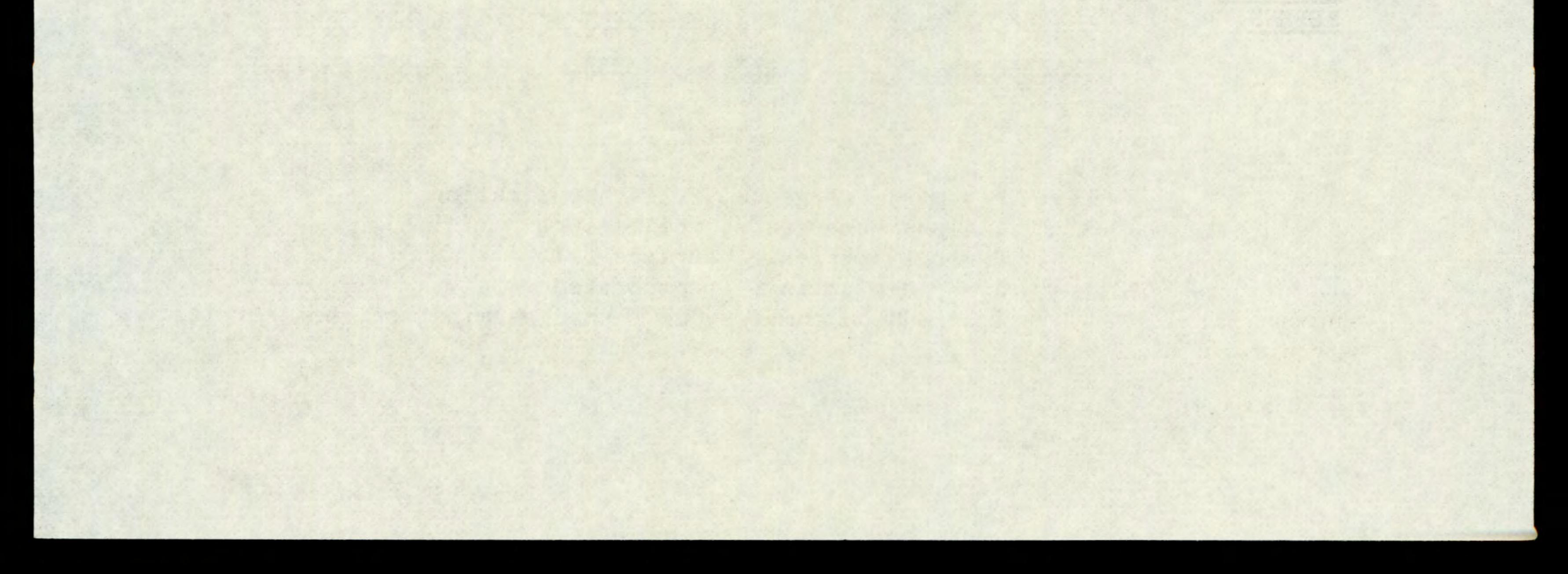
species, with lethal effects on dwarf bean and kale at the high dose. Grasses exhibited only minor symptoms following the foliar spray. Activity via the soil was generally low but perennial ryegrass showed some symptoms with soil drenches and pre-emergence surface sprays at the high dose.

Symptoms

Foliar treatments caused scorch and chlorosis or yellowing within a few days of treatment. Symptoms due to soil treatments were seen only at the higher doses, chlorosis or yellowing usually preceding necrosis. In one instance, perennial ryegrass treated pre-emergence exhibited alternate green and white "bars" across the leaf blade, possible related to a diurnal effect.

Selectivity among temperate species

Several annual broad-leaved weeds were selectively controlled but <u>Polygonum</u> species were quite resistant as were grass weeds. Two composite weeds, <u>Senecio vulgaris</u> and <u>Tripleurospermum maritimum</u>, were controlled at the lowest dose of 0.25 kg/ha but <u>Chrysanthemum segetum</u> was controlled by only the highest dose of 4.0 kg/ha and was completely resistant to 0.25 and 1.0 kg/ha. Similarly, among the crucifers, <u>Sinapis arvensis</u> was controlled at 1.0 kg/ha but <u>Raphanus raphanistrum</u> needed 4.0 kg/ha before control was achieved. <u>Galium aparine</u> was killed at 1.0 kg/ha and severely affected (43% vigour reduction) at 0.25 kg/ha.


Crop tolerance was found among the cereals, with wheat tolerating 4.0 kg/ha and barley and oat being only marginally reduced in vigour at this dose. Certain of the leguminous species were tolerant; fenugreek to 4.0 kg/ha, pea and white clover to 1.0 kg/ha, but both dwarf and field beans were sensitive. The brassicas, rape, kale and cabbage, tolerated 1.0 kg/ha. Radish was reduced in vigour only marginally but a 25% stand reduction occurred at this dose. Other tolerant crops were onion, to 1.0 kg/ha and perennial ryegrass and carrot to 0.25 kg/ha.

- 26 -

Pyridate has some interesting features, one of the most notable being the control of the problem weed <u>Galium aparine</u> in crops such as cereals, certain legumes and brassicas. Also it shows some differential effects among closely related species. This may result in some disadvantages, for example control of certain, but not all, composites. Control of <u>Sinapis</u> <u>arvensis</u> in brassicas, however, would be very important and needs further study. The lack of grass weed control is a disadvantage and consideration will have to be given to using pyridate as one component of a mixture in the above mentioned tolerant crops. Further work on control of broad-leaved perennial weeds and even volunteer potato may also be worthwhile as the two solanaceous species in this test, <u>Solanum nigrum</u> and tomato, showed some sensitivity.

Post-emergence selectivity among tropical species

Some small-seeded broad-leaved species, including jute, were very susceptible, but <u>Amaranthus</u>, <u>Portulaca</u> and <u>Solanum</u> were not controlled by 1 kg/ha. There was not the activity against annual grasses, such as <u>Echinochloa</u>, which had been expected from the published information. Selective control of <u>Amaranthus</u> and <u>Solanum</u> could be expected at about 2 kg/ha but even at 4 kg/ha all the annual grasses other than <u>Oryza punctata</u> were still tolerant and maize was slightly, but distinctly, weakened. In chickpea and groundnut there is potential for selective control of a range of broad-leaved weeds including <u>Solanum</u>, which could be of some interest. It is unfortunate that, owing to bad germination, no information was obtained on soyabean.

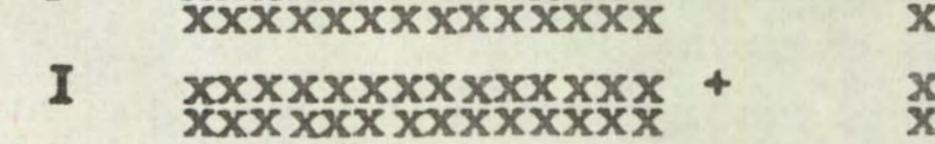
ACTIVITY EXPERIMENT

- 27 -

PYRIDATE

0.2 kg/ha

1.0 kg/ha


5.0 kg/ha

S

DWARF

BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VATE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXX *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX +
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM AMPHIBIUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
DOD OBJILIT AT	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
PERENNIAL RYEGRASS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXX XXXXX	
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Ŧ	XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Ŧ	XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

XXXXXXXXXXXXX

XXXXXXXXXXX

Key: F = post-emergence, foliar application
S = post-emergence, soil drench
P = pre-emergence, surface film
I = pre-planting, incorporated
I = reduced numbers due to bad germination, not herbicide

.

WHEAT (1)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
(2)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXX
OAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
(3)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXX
PER RYGR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	XX
(4)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	14	XXX
ONION	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(8)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
DWF BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX
(9)	50	XXXXXXXXXX	57	XXXXXXXXXXX	7	x
FID BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33	XXXXXXX	0	
(10)	64	XXXXXXXXXXXXX	57	XXXXXXXXXX	0	
PEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17	XXX
(11)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX
W CLOVER	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	37	XXXXXXX
(12)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	43	XXXXXXXXX
RAPE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17	XXX
(14)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX
KALE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(15)	86	XXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXX
CABBAGE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56	XXXXXXXXXXX
(16)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXX

PYRIDATE

0.25 kg/ha

1.0 kg/ha

4.0 kg/ha

XXXXXXXXXX XXXXXXX

XXXXXXXXXX XXXXXX

XXXXXXXXXX XXXX POST-EMERGENCE SELECTIVITY EXPERIMENT

28.

XXXXXXXXXX XXX

XXXXX

SPECIES		0.25 kg/ha		1.0 kg/ha
CARROT (18)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PARSNIP (19)	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
LETTUCE (20)	83 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17 21	XXX XXXX
SUG BEET (21)	50 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
FENUGREK (22)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVE FATU (26)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS (27)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA ANN (28)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA TRIV (29)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SIN ARV (30)	70 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10 29	XX XXXXXX
RAPH RAP (31)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG (32)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

PYRIDATE

0

4.0 kg/ha

XXXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXX

XXXXXXXXXX XXX

XXXXXXXXXX XXX

XXX

POST-EMERGENCE SELECTIVITY EXPER IMENT

29

TRIP MAR (33)	15 21	XXX XXXX	000000000000000000000000000000000000000	
SEN VUIG (34)	40 21	XXXXXXXXX XXXX	000	
POL LAPA (35)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL AVIC (36)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR (38)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
CHEN ALB (39)	17 36	XXX XXXXXXX	000	
STEL MED (40)	19 21	XXXX XXXX	000000000000000000000000000000000000000	
SPER ARV (41)	45 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
VER PERS (42)	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
RUM OBTU (44)	80 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AG REPEN (47)	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AG STOLO (48)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

PYRIDATE

0.25 kg/ha

1.0 kg/ha

XXXX	XXXXX	XXX
XXXX	XXXX	

0 0	
00	
31 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
92 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
000	
. 0	
00	
000	
000	
00	
100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

4.0 kg/ha

XXXXXXXXXXX XXXXXXXXX

POS H EMERGENCE SELECTI < H TY EXPER IMENT

30

XXXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXXX XXXXXX

MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(58)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXX
SORGHUM	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(59)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX
RICE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44	XXXXXXXXX
(60)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
PIGEON P	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXX
(61)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	57	XXXXXXXXXXX
COWPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXX
(62)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	64	XXXXXXXXXXX
CHICKPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(63)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXX
GRNDNUT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(64)	71	XXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXX
COTTON	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXXX	0	
(66)	57	XXXXXXXXXX	29	XXXXXX	0	
JUTE	0		0		0	
(67)	0		0		0	
KENAF	19	XXXX	6	X	0	
(68)	43	XXXXXXXXXXX	21	XXXX	0	
TOBACCO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 70	XXXXXXXXXXXXXX	10	XX
(69)	57	XXXXXXXXXXXXX	50	XXXXXXXXXX	21	XXXX
SESAMUM	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12	XX	6	x
(70)	50	XXXXXXXXXX	14	XXX	21	XXXX

PYRIDATE

0.25 kg/ha

1.0 kg/ha

3 2135

4.0 kg/ha

XXXXXXXXXX XXXXXX

XXXXXXXXXX X

XXXXXXXXX

XXXXXXXX XXXX

XXXXXXXXXXX XXXXXXXX

XXXXXXXXXXX XXXXXXXX

POST--EMERGENCE SELECTIVITY EXPERIMENT

TOMATO (71)	100 57	XXXXXX
OR PUNCT (73)	100 86	XXXXXX
ELEU IND (74)	100 86	XXXXXX
ECH CRUS (75)	100 100	XXXXXX
ROTT EXA (76)	100 100	XXXXXX
DIG SANG (77)	100 86	XXXXXX
AMAR RET (78)	100 64	XXXXXX
PORT OLE (79)	100 86	XXXXX
SOL NIG (81)	100 79	XXXXX
SNOW POL (83)	100 100	XXXXX
CYP ROTU (86)	100 100	XXXXX

PYRIDATE

0.25 kg/ha

1.0

XXXXXXXXXXXXXXXX	60	XXXXXXXXXXXX	0	
XXXXXXX	43	XXXXXXXXX	0	
XXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6	x
XXXXXXXXXXXXX	57	XXXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
XXXXXXXXXXXX	79	XXXXXXXXXXXXXX	64	XXXXXXXXXX
XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX
XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	43	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXX	86	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
XXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56	XXXXXXXXXXX	0	
XXXXXXXXX	50	XXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40	XXXXXXXX
XXXXXXXXXXXXX	57	XXXXXXXXXXX	50	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXX	57	XXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
XXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXX

0	1-0	./r	-
0	kg	11	Ia

XXXXXXXXXX XX

XXXXXXXXXX XXXXXXX

XXXXXXXXXX XXX

XXXXXXXXXX

XXXXXXXXXX XXXXX

POST EMERGENCE SELECT -3 4 EXPERIMENT

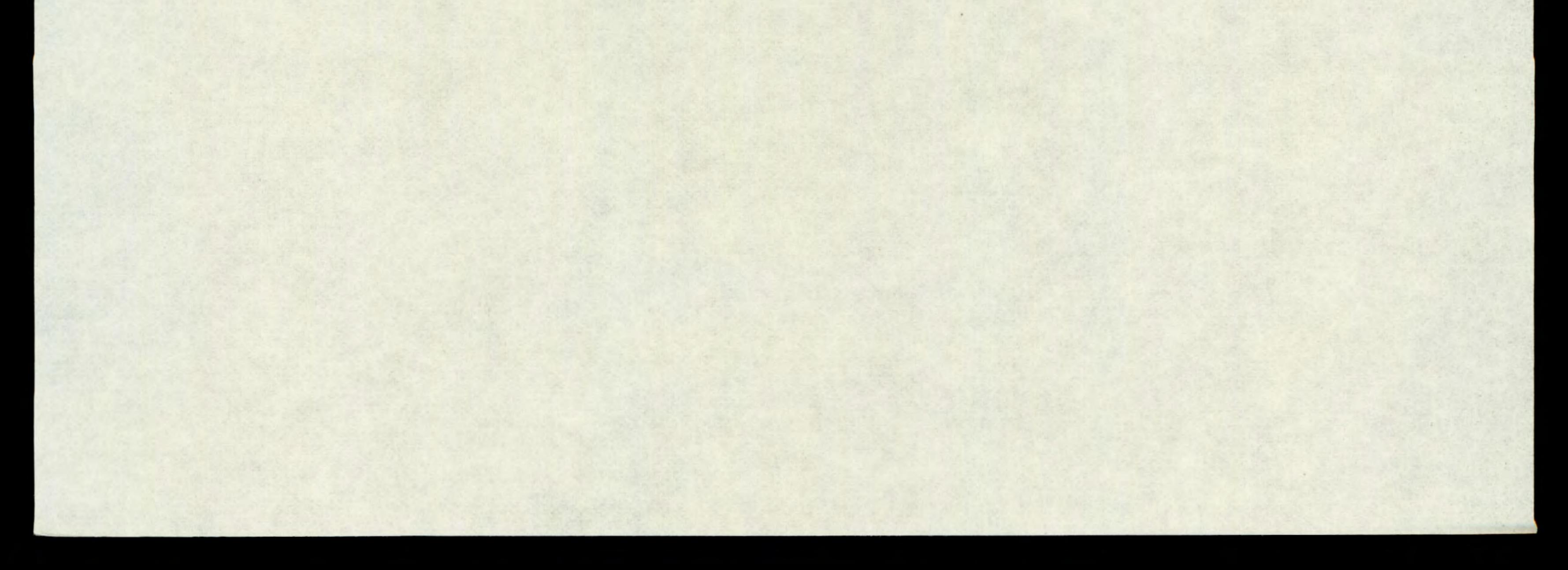
ACKNOWLEDGEMENTS

We are most grateful to the joint Letcombe/WRO Statistics Section for processing the experiment data; to Mr T M West, Miss F Hutchison, Miss B Emery and Messrs R H Webster, R M Porteous and A Grace for technical and practical assistance; to Mrs J Souch for the preparation and typing of this report and to the commercial firms who provided the herbicides and relevant technical data.

- 33 -

The work of the ODM Tropical Weeds Group was carried out under Research Scheme R 3029 financed by HM Ministry of Overseas Development.

REFERENCES


DISKUS, A., SCHONBECK, R., AUER, E. and KLOIMSTEIN, E. (1976) CL 11.344 - a new selective herbicide for use in cereals and maize. Proceedings 1976 British Crop Protection Conference - Weeds, 2, 717-722.

RICHARDSON, W.G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam. Technical Report Agricultural Research Council Weed Research Organization, (32), pp 74.

RICHARDSON, W.G. and PARKER, C. (1977a) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and Dowco 290. Technical Report Agricultural Research Council Weed Research Organization, (42), pp 53.

RICHARDSON, W.G. and PARKER, C. (1977b) The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. <u>Technical Report</u> Agricultural Research Council Weed Research Organization, (43), pp 62.

RICHARDSON, W.G. and PARKER, C. (1978) The activity and pre-emergence selectivity of some recently developed herbicides: alachlor, metolachlor, RH 5205, dimethachlor, NP 48 and fluridone. <u>Technical Report Agricultural Research</u> Council Weed Research Organization (in press)

Appendix 1.

Species, abbreviations, varieties and stages of growth at spraying and assessment for post-emergence selectivity test

> Designa-Stage of tion and Cultivar computer growth at or serial spraying source number

- 34 -

Stage of growth at assessment (untreated controls, leaf numbers exclusive of

cotyledons)

Temperate species

Wheat (Triticum aestivum)	WHEAT (1)	Maris Dove	$2\frac{1}{2}$ -3 leaves	5 leaves
Barley (Hordeum vulgare)	BARLEY (2)	Maris Mink	$2\frac{1}{2}$ leaves	5 leaves
Oat (Avena sativa)	OAT (3)	Maris Tabard	$2\frac{1}{2}$ leaves	5 leaves, tillering
Perennial ryegrass (Lolium perenne)	PER RYGR (4)	S 23	$4\frac{1}{2}$ leaves	9 leaves, tillering
Onion (Allium cepa)	ONION (8)	Robusta	2 leaves	2 ¹ / ₂ leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	2 unifoliate leaves	112-22 tri- foliate leaves
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	$2\frac{1}{2}$ leaves	7 leaves
Pea (<u>Pisum sativum</u>)	PEA (11)	Dark Skinned Perfection	3 ¹ / ₂ leaves	8 leaves
White clover (Trifolium repens)	W CLOVER (12)	S 100	2 trifoliate leaves	7 trifoliate leaves
Rape (Brassica napus oleifera)	RAPE (14)	Rapora	1 ¹ / ₂ leaves	$4-4\frac{1}{2}$ leaves

Kale (Brassica oleracea acephala)	KALE (15)	Maris Kestrel	2 leaves	$4-4\frac{1}{2}$ leaves
Cabbage (Brassica oleracea capitata)	CABBAGE (16)	Primo (Golden Acre)	$1\frac{1}{2}-2$ leaves	$4-4\frac{1}{2}$ leaves
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	2 leaves	$3\frac{1}{2}$ leaves

Designation and computer serial number

Cultivar or source

- 35 -

Stage of growth at spraying Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Parsnip (<u>Pastinaca sativa</u>)	PARSNIP (19)	Evesham	$1\frac{1}{2}-2$ leaves	3-4 leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Borough Wonder	$2\frac{1}{2}$ leaves	7-8 leaves
Sugar beet (<u>Beta vulgaris</u>)	SUG BEET (21)	Monotri	2 leaves	6-7 leaves
Fenugreek (<u>Trifolium</u> ornithopodioides)	FENUGREK (22)	Paul	1 ¹ / ₂ trifoliate leaves	7 trifoliate leaves
<u>Avena</u> fatua	AVE FATU (26)	Farthinghoe 1972	$3-3\frac{1}{2}$ leaves	6-7 leaves, tillering
<u>Alopecurus</u> myosuroides	ALO MYOS (27)	South Leigh, 1972	2-3 leaves	10 leaves, tillering
Poa annua	POA ANN (28)	WRO 1972	3 leaves	15 leaves, tillering
Poa trivialis	POA TRIV (29)	cv. Omega	5 leaves, tillering	9 leaves, tillering
Sinapis arvensis	SIN ARV (30)	WRO 1971	$2\frac{1}{2}-3\frac{1}{2}$ leaves	8 leaves
<u>Raphanus</u> <u>raphanistrum</u>	RAPH RAP (31)	Long Black Spanish	$1\frac{1}{2}$ -2 leaves	$4-4\frac{1}{2}$ leaves
<u>Chrysanthemum</u> <u>segetum</u>	CHRY SEG (32)	WRO 1976	6 leaves	10 leaves
<u>Tripleurospermum</u> maritimum	TRIP MAR (33)	WRO 1975	4 leaves	7 leaves
Senecio vulgaris	SEN VULG (34)	WRO 1974	$1\frac{1}{2}-6$ leaves	7 leaves
<u>Polygonum</u> lapathifolium	POL LAPA (35)	WRO 1974	$1\frac{1}{2}$ leaves	7 leaves
Polygonum aviculare	POL AVIC (36)	B and S Supplies 1976	2 ¹ / ₂ leaves	10 leaves
Galium aparine	GAL APAR (38)	B and S Supplies 1976	5-7 whor 1s	18 whor1s

Designation and Cultivar computer serial source number

Stage of growth at spraying

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Chenopodium album	CHEN ALB (39)	B and S Supplies 1975	4-5 leaves	8 leaves
<u>Stellaria media</u>	STEL MED (40)	B and S Supplies 1975	4-5 leaves	20 leaves
Spergula arvensis	SPER ARV (41)	WRO 1966	$1\frac{1}{2}$ whor 1s	16 whor1s
Veronica persica	VER PERS (42)	WRO 1975	4-5 leaves	15 leaves, flowering
Rumex obtusifolius	RUM OBTU (44)	Tackley 1972	1-2 leaves	4-5 leaves
Holcus lanatus	HOLC LAN (45)	WRO 1973	erratic germination	

- 36 -

or

AG REPEN (47)	WRO Clone 31*	$2\frac{1}{2}$ -3 leaves	7 leaves, tillering
AG STOLO (48)	B and S Supplies 1975	$3-3\frac{1}{2}$ leaves	3-4 tillers
CIRS ARV (50)	WRO Clone 1**	erratic growth	
own under hi	igher temperatur	e regime)	
own under his MAIZE (58)	igher temperatur Julia	<u>e regime)</u> 3 ¹ / ₂ leaves	6-7 leaves
	(47) AG STOLO (48) CIRS ARV	 (47) Clone 31* AG STOLO B and S (48) Supplies 1975 CIRS ARV WRO 	(47)Clone $31*$ $2\frac{1}{2}-3$ leavesAG STOLOB and S $3-3\frac{1}{2}$ leaves(48)Supplies 1975 $3-3\frac{1}{2}$ leavesCIRS ARVWROerratic

Rice (<u>Oryza sativa</u>)	RICE (60)	Blue Bonnet	$2-2\frac{1}{4}$ leaves	$4\frac{1}{2}$ -5 leaves
Pigeon pea (<u>Cajanus cajan</u>)	PIGEON P (61)	Jamaica 1976	<pre> 1/2 trifoliate 1 eaf </pre>	3-4 trifoliate leaves
Cowpea (Vigna unguiculata)	COWPEA (62)	Nigeria 1974	1 trifoliate leaf	3 trifoliate leaves
Chickpea (Cicer arietinum)	CHICKPEA (63)	India 1976	12-14 pinnate leaves	17-18 pinnate leaves

** root fragments * one node rhizome pieces

Designation and Cultivar computer or serial source number

- 37 -

Stage of growth at spraying Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Groundnut (Arachis hypogaea)	GRNDNUT (64)	S 38	4 pinnate leaves	6-7 pinnate leaves
Soyabean (<u>Glycine max</u>)	SOYABEAN (65)	Amsoy	germination failed	
Cotton (<u>Gossypium hirsutum</u>)	COTTON (66)	26 J	1-1 leaf	4 leaves
Jute (Corchorus olitorius)	JUTE (67)	Egypt 1971	2-3 leaves	8 leaves
Kenaf (<u>Hibiscus cannabinus</u>)	KENAF (68)	Thailand 1968	<pre> 1/2 trifoliate 1 eaf </pre>	5-6 leaves
Tobacco (<u>Nicotiana tabacum</u>)	TOBACCO (69)	Yellow Mammoth	1-2 leaves	5-7 leaves
Sesamum (<u>Sesamum indicum</u>)	SESAMUM (70)	India 1977	2 leaves	6-8 leaves
Tomato (<u>Lycopersicum</u> esculentum)	TOMATO (71)	Eurocross BB	2 pinnate leaves	7-8 pinnate leaves
Oryza punctata	OR PUNCT (73)	Swaziland 1974	$2-2\frac{1}{2}$ leaves	5 leaves, tillering
Eleusine indica	ELEU IND (74)	Rhodesia 1967	$3\frac{1}{2}$ leaves	$8-8\frac{1}{2}$ leaves
<u>Echinochloa</u> crus-galli	ECH CRUS (75)	WRO 1973	$3-3\frac{1}{2}$ leaves	$7-7\frac{1}{2}$ leaves
<u>Rottboellia</u> <u>exaltata</u>	ROT EXAL (76)	Rhodesia 1974	$2\frac{1}{2}$ -3 leaves	$5\frac{1}{2}$ leaves

<u>Digitaria</u> sanguinalis

<u>Amaranthus</u> retroflexus

Portulaca oleracea

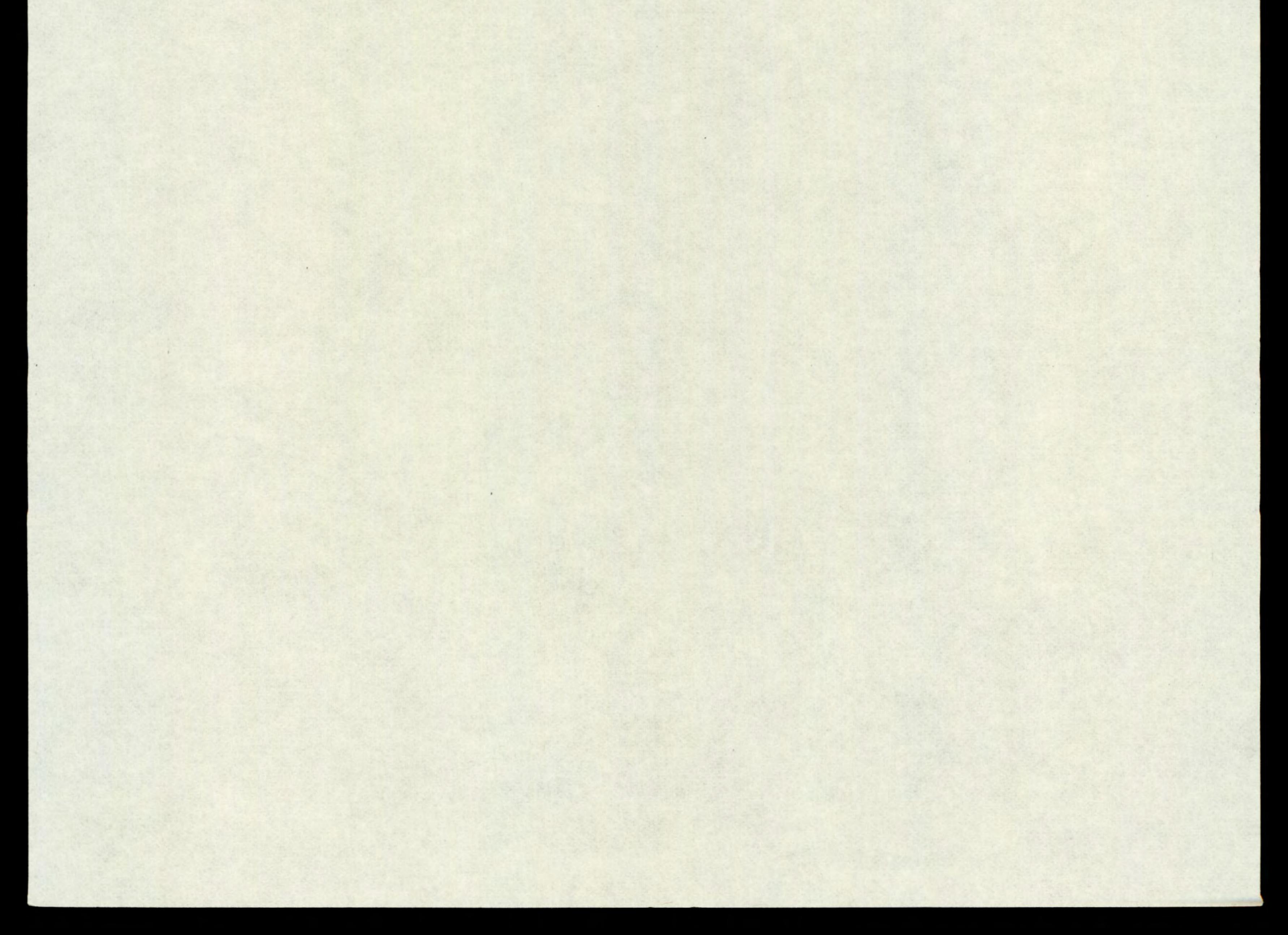
Solanum nigrum

DIG SANG 6-7 leaves, $3-4\frac{1}{2}$ leaves WRO 1973 tillering (71) 11-12 AMAR RET WRO 1972 3-4 leaves (78) leaves PORT OLE numerous leaves, WRO 1973 4-6 leaves (79) some flowering 8-9 leaves, SOL NIG WRO 5-6 leaves flowering (81) 1976

Designation and computer serial number

Stage of growth at spraying Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

<u>Snowdenia</u> polystachya	SNOW POL (83)	Ethiopia 1974	$3\frac{1}{2}-4\frac{1}{2}$ leaves	7-8 leaves, tillering
<u>Cyperus</u> esculentus	CYP ESCU (85)	WRO Clone 2* (ex South Africa)	failed to grow	
Cyperus rotundus	CYP ROTU (86)	WRO Clone 1* (ex Rhodesia)	6 leaves	12-14 leaves
<u>Oxalis</u> <u>latifolia</u>	OXAL LAT (87)	WRO Clone 2** (ex Cornwall)	1-4 tri- foliate leaves	4-5 trifoliate leaves, flowering


- 38 -

Cultivar

source

or

* tubers ** bulbs

ABBREVIATIONS

angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	gal/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*		gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushe1	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration x	concn	hydrogen ion concentration*	pH
time product	ct	inch	in.
concentration		infra red	ioro
required to kill 50% test animals	LC50	kilogramme	kg
cubic centimetre*	cm ³	kilo (x10 ³)	k
cubic foot*	ft ³	less than	<
cubic inch*	in ³	litre	1.
cubic metre*	m ³	low volume	LV
cubic yard*	yd ³	maximum	max.
cultivar(s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	°c	melting point	m.p.
degree centigrade	°c	metre	m
degree Fahrenheit*	°F	micro (x10 ⁻⁶)	μ
diameter	diam.	microgramme*	μg
diameter at breast height	d.b.h.	micromicro (pico: x10 ⁻¹²)*	μμ
divided by*	s or /	micrometre (micron)*	μm (or μ)
dry matter	d.m.	micron (micrometre)*†	μm (or μ)
emulsifiable		miles per hour*	mile/h
concentrate	e.c.	milli $(x10^{-3})$	m
equal to*	=	milliequivalent*	m.equiv.
fluid	f1.	milligramme	mg
foot	ft	millilitre	m1
t The name micrometre is	preferred to mic		to µ.

4

-

millimetre*	mm	pre-emergence	pre-em.
millimicro* _0		quart	quart
$(nano: x10^{-9})$	n or mµ	relative humidity	r.h.
minimum	min.	revolution per minute*	rev/min
minus	-	second	5
minute	min	soluble concentrate	S.C.
molar concentration*	M (small cap)	soluble powder	
molecule, molecular	mol.	cornore bowner	s.p.
morcource morcourdr	more	solution	soln
more than	>	species (singular)	sn.

species (plural) N (small cap) normal concentration* specific gravity not dated n.d. ft² square foot* oil miscible in² O.M.C. square inch (tables only) concentrate m² square metre* organic matter O.M. square root of* 5 OZ ounce sub-species* oz/gal ounces per gallon summary S. page p. temperature pages pp. ton ton parts per million ppm tonne t parts per million by volume ultra-low volume ULV ppmv parts per million ultra violet u.v. by weight ppmw vapour density v.d. % percent(age) vapour pressure v.p. pico (micromicro: x10⁻¹²) varietas var. p or µµ volt V pint pint volume vol. pints/ac pints per acre volume per volume v/v + plus or minus* water soluble powder W.S.P. post-em post-emergence (tables only) pound 16 W watt lb/ac pound per acre* weight wt lb/min pounds per minute weight per volume* w/w

species (singular) multiplied by* x

sp. spp. sp. gr. ssp. temp.

pound per square inch*	lb/in ^c	weight per weight*	w/w
powder for dry application	p. (tables only)	wettable powder	w.p.
power take off	p.t.o.	yard	yd
precipitate (noun)	ppt.	yards per minute	yd/min

* Those marked * should normally be used in the text as well as in tables etc.

AGRICULTURAL RESEARCH COUNCIL

WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS (Price includes surface mail; airmail £0.50 extra)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. roughstalked meadow-grass. November 1966. G P Allen. Price - £0.25
- 7. Flame cultivation experiments 1965. October, 1966. G W Ivens. Price - £0.25
- The development of selective herbicides for kale in the United Kingdom.
 The methylthiotriazines. Price £0.25
- 10. The liverwort, <u>Marchantia polymorpha L.</u> as a weed problem in horticulture; <u>its extent and control.</u> July 1968. I E Henson. Price - £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price - £0.25
- 12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - £0.25
- 13. Changes in the germination capacity of three <u>Polygonum</u> species following low temperature moist storage. June 1969. I E Henson. Price. - £0.25
- Studies on the regeneration of perennial weeds in the glasshouse.
 II. Tropical species. May 1970. I E Henson. Price £0.25
- 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
- 17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - £0.25
- 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price - £0.12
- 19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price - £0.25

20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0.35

- 2 -

- 21. An automatic punching counter. November 1972. R C Simmons. Price - £0.30
- 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0.25
- 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price - £0.25
- 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- 25. The pre-emergence selectivity of some recently developed herbicides: lenaci1, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- 27. Selectivity of benzene sulphonyl carbamate herbicides between various

pasture grasses and clover. October 1973. A M Blair. Price - £1.05

- 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- 29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30
- 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price - £1.06
- 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10
- 32. The activity and post-emergence selectivity of some recently developed

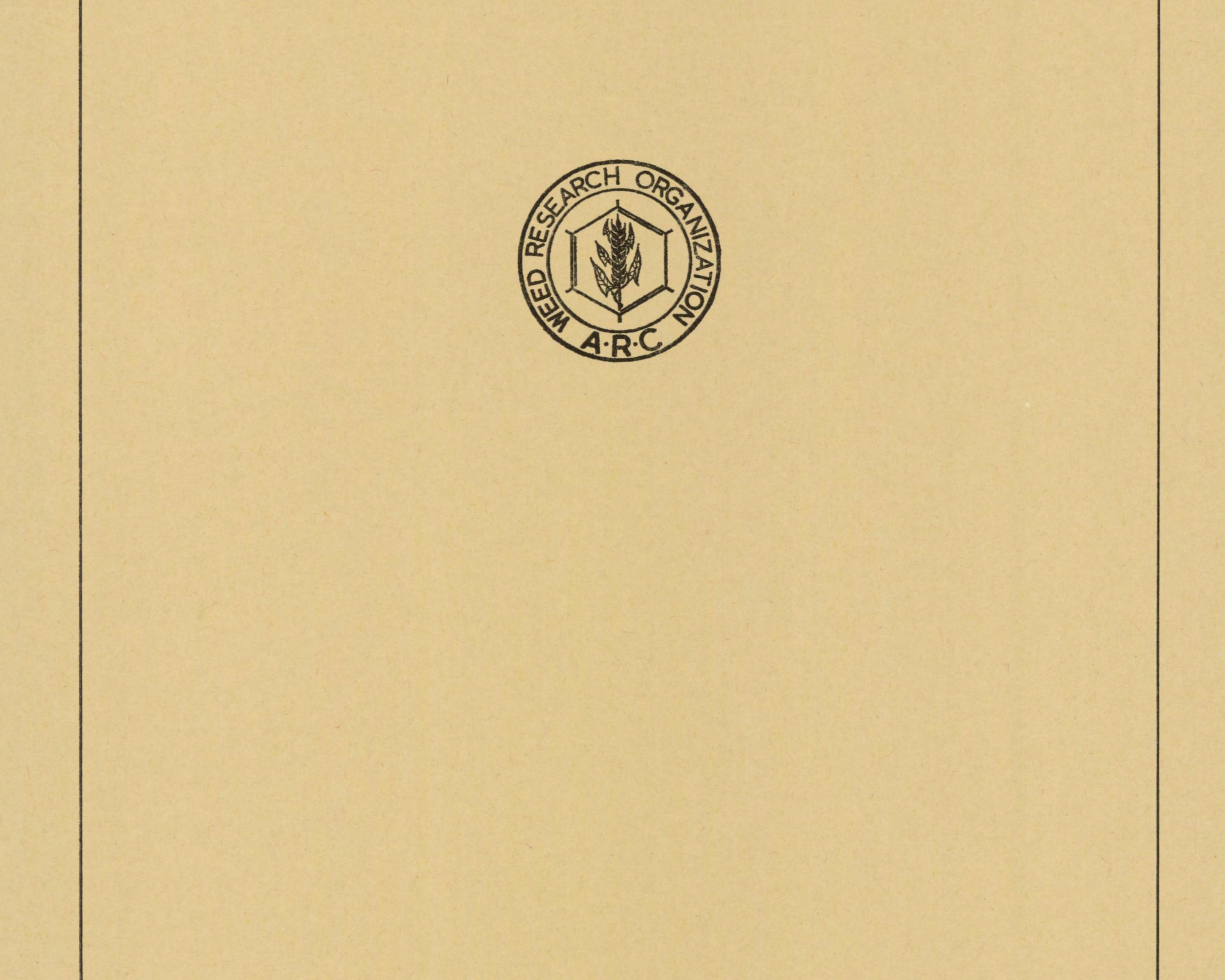
herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3.62

- 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
- 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2.50

A survey of aquatic weed control methods used by Internal Drainage 35. Boards, 1973. January 1975. T O Robson. Price - £1.39

- 3 -

- The activity and pre-emergence selectivity of some recently developed 36. herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1.75
- The activity and pre-emergence selectivity of some recently developed 38. herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25
- The activity and post-emergence selectivity of some recently developed 39. herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3.20
- The activity and pre-emergence selectivity of some recently developed 40. herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
- The activity and pre-emergence selectivity of some recently developed 41. herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.


- The activity and post-emergence selectivity of some recently developed 42. herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - £3.50
- The activity and pre-emergence selectivity of some recently developed 43. herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price - £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H.A Davies, J A P Marsh & G I Wingfield. Price - £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson.

Price - $\pounds 2.70$

- 47. Field experiments to investigate the long-term effects of MCPA, tri-allate, simazine and linuron - the effect on the quality of the produce. (NOT YET PUBLISHED)
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
- The activity and post-emergence selectivity of some recently developed 49. herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50

AGRICULTURAL RESEARCH COUNCIL

WEED RESEARCH ORGANIZATION

BEGBROKE HILL, YARNTON, OXFORD