Dowco 290 is clopyralid, HOE 22870, K1441 is methyldymron, WL29226 is benzglycereth

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.8	species above + cowpea soyabean	Sinapis arvensis Tripleurospermum maritimum Polygonum aviculare Chenopodium album Stellaria media Rumex obtusifolius Agropyron repens Cyperus esculentus + species below
0.2	species above + wheat barley oat dwarf bean field bean pea carrot sugar beet groundnut cotton maize	Alopecurus myosuroides Poa annua Poa trivialis Senecio vulgaris Veronica persica Holcus lanatus Oryza punctata Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Amaranthus retroflexus Snowdenia polystachya

Comments on results

Activity experiment (see page 37)

The foliar spray caused minor symptoms at the higher doses, more so on the broad-leaved than on the grass species. Soil drenches to established plants were much more effective on the grasses but differences were small on the broad-leaved species. The most active type of application on most species was the pre-emergence surface spray but the incorporated treatment was equally effective on Agropyron. Dwarf bean was relatively tolerant regardless of application method.

Symptoms

Minor scorch and necrosis occurred on leaves as a result of the foliar spray. With all three soil treatments, main shoots and buds were inhibited, with some leaves trapped and consequently deformed. A darker green colour of foliage developed. At higher doses, there was often no emergence from the soil. These symptoms are typical of herbicides of the amide or carbamate groups.

Soil persistence

Using perennial ryegrass as the test species, surface and incorporated treatments of 0.2 and 0.8 kg a.i./ha were undetectable 10 weeks after application contrasting with the severe effects caused initially. The incorporated treatment of 3.2 kg/ha was also undetectable, 10 weeks after application. The surface treatment at this same dose persisted a little longer than the incorporated treatment, but even this was barely detectable after 19 weeks and undetectable after 35.

Pre-emergence selectivity among temperate species

The smaller seeded grass weeds, including A. myosuroides were either killed or controlled at the lowest dose of 0.2 kg/ha. Senecio vulgaris and Veronica persica were the only broad-leaved weeds controlled at this dose, although several more of these were susceptible at the higher doses.

No crop tolerated more than 0.2 kg/ha. At this dose, all three cereals and large seeded legumes were tolerant as were sugar beet and carrot. Wheat and field bean were only slightly affected by 0.8 kg/ha however, while dwarf bean was reduced in vigour by only 21% at 3.2 kg/ha. The control of A. myosuroides and other small seeded grass weeds by epronaz in cereals, notably wheat, is interesting and, as suggested for K 1441 and WL 29226, comparison with other black-grass herbicides, would be worthwhile. Poor control of broadleaved weeds is a disadvantage of epronaz however. Although the potential control of the annual grass weeds in several broad-leaved crops is interesting, no advantages over herbicides currently used in these crops are apparent.

Pre-emergence selectivity among tropical species

Amaranthus and the small seeded annual grasses (but not Rottboellia) were well controlled at the lowest dose and good selectivity is indicated in several crops at 0.8 kg/ha. Chickpea was outstandingly tolerant and the manufacturer's claims for safety in groundnut and soyabean are well supported. Selectivity in cotton and maize on the other hand would appear to be marginal.

Cyperus esculentus could perhaps be selectively suppressed in several of the legume crops at about 0.8 kg/ha. The higher dose of 3.2 kg/ha controlled both Cyperus species for 1-2 months but healthy recovery was occurring at 10 weeks.

ACTIVITY EXPERIMENT

EPRONAZ

		0.1 kg/ha	0.6 kg/ha	3.6 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF BEAN	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VATE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL YGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0
	I	XXXXXXXXXXXXX * XXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL RYEGRASS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RIEGRASS	P	XXXXXX	0	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA FATUA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
TATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0
	I	XXXXXXXXXXXXXX * XXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROP YRON REPENS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX	0
	I	XXXXXXXXXXXXX *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0

Key: F = post-emergence, foliar application

S = post-emergence, soil drench

P = pre-emergence, surface film

I = pre-planting, incorporated

SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
WHEAT	78	XXXXXXXXXXXX	91	xxxxxxxxxxxx	78	xxxxxxxxxxx
(1)	93	XXXXXXXXXXXXXX	79	xxxxxxxxxxx	36	XXXXXXX
BARLEY	104	xxxxxxxxxxxxxx +	91	xxxxxxxxxxxx	91	xxxxxxxxxxxx
(2)	100	XXXXXXXXXXXXXXX	64	XXXXXXXXXX	36	XXXXXXX
OAT	98	xxxxxxxxxxxxx	98	xxxxxxxxxxxxx	7	x
(3)	86	XXXXXXXXXXXXX	57	XXXXXXXXX	7	x
PER RYGR	11	xx	0		0	
(4)	21	XXXX	0		0	
ONION	90	XXXXXXXXXXXXXX	0		0	
(8)	71	XXXXXXXXXXX	0		0	
DWF BEAN	106	xxxxxxxxxxxxx +	106	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	106	xxxxxxxxxxxxx +
(9)	93	XXXXXXXXXXXXXX	79	XXXXXXXXXXXX	79	XXXXXXXXXXXX
FLD BEAN	79	xxxxxxxxxxx	126	xxxxxxxxxxxxx +	111	xxxxxxxxxxxxxx +
(10)	100	XXXXXXXXXXXXXXX	71	XXXXXXXXXXX	50	XXXXXXXX
PEA	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78	XXXXXXXXXXXX	104	xxxxxxxxxxxxx +
(11)	100	XXXXXXXXXXXXXXXX	64	XXXXXXXXXX	57	XXXXXXXXX
W CLOVER	90	xxxxxxxxxxxxx	17	xxx	0	
(12)	57	XXXXXXXXX	43	XXXXXXXX	0	
RAPE	85	xxxxxxxxxxxx	0		0	
(14)	50	XXXXXXXX	0		0	
KALE	76	xxxxxxxxxxx	4	x	0	
(15)	64	XXXXXXXXXXX	14	XXX	0	

PRE-EMERGENCE SELECTIVITY EXPERIMENT

SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
CARROT (18)	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
LETTUCE	68	XXXXXXXXXXX	0		0	
(20)	36	XXXXXX	0		0	
SUG BEET	86	xxxxxxxxxxxx	86	XXXXXXXXXXXXX	0	
(21)	86	XXXXXXXXXXXXX	36	XXXXXX	0	
AVE FATU	94	XXXXXXXXXXXXXX	84	XXXXXXXXXXXXX	45	XXXXXXXX
(26)	86	xxxxxxxxxxxx	57	XXXXXXXXX	29	xxxxxx
ALO MYOS	21	xxxx	0		0	
(27)	21	xxxx	0		0	
POA ANN	0		0		0	
(28)	0		0		0	
POA TRIV	0		0		0	
(29)	0		0		0	
SIN ARV	85	XXXXXXXXXXXXX	0		0	
(30)	64	xxxxxxxxxx	0		0	
RAPH RAP	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51	XXXXXXXXX	0	
(31)	71	XXXXXXXXXXX	36	XXXXXX	0	
TRIP MAR	69	XXXXXXXXXXXX	66	XXXXXXXXXXX	0	
(33)	64	XXXXXXXXXXXX	29	XXXXXXX	0	
			2.7	***************************************	·	
SEN VULG	30	XXXXXX	0		0	
(34)	29	XXXXXX	0		0	

EPRONAZ

SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
POL LAPA	107	xxxxxxxxxxxxxx +	77	xxxxxxxxxxx	0	
(35)	100	XXXXXXXXXXXXXXX	50	XXXXXXXXX	0	
POL AVIC	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	24	xxxxx	0	
(36)	86	XXXXXXXXXXXXX	14	XXX	0	
GAL APAR	79	XXXXXXXXXXXX	88	xxxxxxxxxxxx	40	xxxxxxx
(38)	93	XXXXXXXXXXXXXX	79	XXXXXXXXXXXX	29	XXXXXX
CHEN ALB	85	xxxxxxxxxxxx	23	xxxxx	0	
(39)	57	XXXXXXXXX	29	XXXXXX	0	
STEL MED	60	XXXXXXXXXX	0		0	
(40)	50	XXXXXXXX	0		0	
VER PERS	23	xxxxx	8	xx	0	
(42)	29	XXXXXX	14	XXX	0	
RUM OBTU	56	XXXXXXXXX	0		0	
(44)	71	XXXXXXXXXXX	0		0	
HOLC LAN	0		0		0	
(45)	0		0		0	
AG REPEN	116	xxxxxxxxxxxxx +	19	xxxx	10	xx
(47)	100	XXXXXXXXXXXXXXX	29	XXXXXX	14	xxx
ALL VIN	82	XXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXX +	30	xxxxxx
(49)	71	XXXXXXXXXXX	71	XXXXXXXXXXX	36	XXXXXXX
CIRS ARV	124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXX	53	xxxxxxxxx
(50)	79	XXXXXXXXXXXXX	71	XXXXXXXXXXX	50	XXXXXXXXX

SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
TUS FARF (51)	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXX	0	
		A A A A A A A A A A A A A A A A A A A	1	XXXXXXXXXXX	O	
MAIZE	100	XXXXXXXXXXXXXXXX	80	XXXXXXXXXXXX	100	XXXXXXXXXXXXXXX
(58)	93	XXXXXXXXXXXXXXX	50	XXXXXXXX	29	XXXXXX
SORGHUM	71	XXXXXXXXXXX	11	xx	^	
(59)	64	XXXXXXXXXXX	21	XXXX	0	
				AAAA		
RICE	62	XXXXXXXXXX	0		0	
(60)	43	XXXXXXXX	0		0	
DICTON D	100					
PIGEON P	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXX	29	XXXXXX
(61)	71	XXXXXXXXXXX	57	XXXXXXXXX	21	XXXX
COWPEA	83	xxxxxxxxxxxx	50	XXXXXXXXX	17	AFAFAF
(62)	93	XXXXXXXXXXXXXX	86	XXXXXXXXXXXXXX	29	XXX
					27	XXXXXX
CHICKPEA	116	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXX	87	XXXXXXXXXXXXX
(63)	100	XXXXXXXXXXXXXXXX	79	XXXXXXXXXXXX	86	XXXXXXXXXXXXXXX
GRNDNUT	75	XXXXXXXXXXXX	75	XXXXXXXXXXXX	94	XXXXXXXXXXXXXXXX
(64)	100	XXXXXXXXXXXXXXXX	64	XXXXXXXXXXX	71	XXXXXXXXXXX
SOYABEAN	126					
(65)	136	XXXXXXXXXXXXXXXX +	150	XXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXX +
, ,	100	XXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	64	XXXXXXXXXX
COTTON	112	XXXXXXXXXXXXXXXXX +	66	VVVVVVVVVVV	27	
(66)	100	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXXX	37	XXXXXXX
			11	XXXXXXXXXXXX	29	XXXXXX
JUTE	35	XXXXXXX	0		0	
(67)	50	XXXXXXXXX	0		0	
					0	

EPRONAZ

SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
KENAF (68)	70 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
SESAMUM (70)	8 21	XX XXXX	8 21	XX XXXX	0	
TOMATO (71)	112 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	xxx	0	
OR PUNCT (73)	24 50	XXXXXX XXXXXXXXX	0		0	
ELEU IND (74)	3 14	X XXX	0		0	
ECH CRUS (75)	22	XXXX	0		0	
ROTT EXA (76)	85 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	35 43	XXXXXXX
DIG SANG (77)	32 29	XXXXXX	0		0	
AMAR RET (78)	0		0		0	
SNOW POL (83)	0		0		0	
CYP ESCU (85)	75 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
CYP ROTU	75	XXXXXXXXXXXX	82	XXXXXXXXXXXX	0	

XXXXXXXXXXX

(86)

100

XXXXXXXXXXXXXXXX

PRE-EMERGENCE SELECTIVITY EXPERIMENT

- 42 -

DOWCO 290

Code number

DOWCO 290

Trade name

Lontrel

Chemical name

3,6-dichloropicolinic acid

Structure

Source

Dow Chemical Co (UK) Ltd Heathrow House Bath Road Hounslow London, TW5 9QY

Information available and suggested uses

Post-emergence control of broad-leaved weeds, with a spectrum confined mainly to members of the Compositae, Polygonaceae, Umbelliferae and Papilionaceae. Tolerant crops are:- cereals, maize, sorghum, flax, grasses and brassicae such as oil seed rape. In most situations, it will form part of a herbicide mixture with products such as dalapon and benazolin. Mixtures with mecoprop and dichlorprop are also available.

Formulation used 30% w/v a.i. aqueous concentrate (alkanolamine salt)

Spray volume

for activity experiment 305 1/ha for selectivity experiment 417 1/ha

RESULTS

Full results are given in the histograms on pages 46-51 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by less than 15%	WEEDS: number or vigour reduced by 70% or more
2.5	oat	Poa trivialis Polygonum lapathifolium Polygonum aviculare Galium aparine Veronica persica Agropyron repens Digitaria sanguinalis + species below
0.5	species above + kale wheat radish maize sorghum	Chenopodium album Allium vineale + species below

(Table continued overleaf)

RATE (kg a.i./ha)	CROPS: vigour reduced by less than 15%	WEEDS: number or vigour reduced by 70% or more
0.1	species above + barley perennial ryegrass rape rice	Tripleurospermum maritimum Senecio vulgaris Rumex obtusifolius Cirsium arvense Tussilago farfara Amaranthus retroflexus

Comments on results

Activity experiment (see page 46)

Dwarf bean and Polygonum were very sensitive to all four methods of application. Grasses were resistant to post-emergence treatments and the higher doses pre-emergence had only minor effects. With dwarf bean all four application methods showed a similar degree of activity. Polygonum was most affected by pre-emergence suface treatments, all plants being killed eventually; even remaining rhizome fragments failed to develop when replanted in untreated soil. Kale showed considerable resistance to all treatments.

Symptoms

Symptoms were identical to those caused by picloram. Dwarf bean and Polygonum developed a pronounced epinasty of leaves, petioles and stems within a few hours of spraying. These symptoms developed within a few days in soil drench treatments. Thickening and subsequent splitting of stems occurred, and on dwarf bean, root primordia developed. Newly developing leaves were often strap shaped with prominent and abnormal veination. Some chlorosis and necrosis developed later. At higher doses, pre-emergence, many broad-leaved species failed to emerge, while at lower doses, although emergence occurred, there was a severe inhibition of growth and development of stems and leaves, large seeded legumes in particular showing severely swollen stems.

Grasses treated pre-emergence at the higher doses, were generally lacking in vigour. Narrow leaf blades which tended to curl over were often seen.

Soil persistence

White clover was selected to monitor persistence because of its sensitivity to Dowco 290. Both surface and incorporated treatments caused complete kill even at the lowest dose. After 10 weeks, incorporated treatments of 0.1 and 0.5 kg/ha were undectable, but 2.5 kg/ha still killed plants after 35 weeks. At the lower doses, surface treatments also showed some signs of dissipation, although not quite as rapid as with the incorporated treatments. Thus, while 0.1 kg/ha had disappeared in 19 weeks, 0.5 and 2.5 kg/ha were still causing 50 and 80% shoot fresh weight reductions respectively, 35 weeks after spraying. These results lend support to the manufacturer's claim that persistence of Dowco 290 is much less than with the chemically related picloram.

Pre-emergence selectivity among temperate species

Composite weeds showed outstanding sensitivity, the annuals S. vulgaris and T. maritimum being controlled at 0.1 kg/ha while the perennials C. arvense and T. farfara were killed at this dose. Polygonaceous weeds were also sensitive especially Rumex obtusifolius. Although the high dose was required for adequate control of P. lapathifolium and P. aviculare, their vigour was reduced by 50% or more at the lower doses. (The perennial, P. amphibium was highly sensitive in the activity experiment). Galium aparine and Veronica persica were susceptible at 2.5 kg/ha and reduced in vigour by 50% or more at 0.5 kg/ha. Grass weeds were relatively resistant, but Poa trivialis and Agropyron repens were controlled at the high dose. The control of Allium vineale at only 0.5 kg/ha is of interest. A certain weakness exists with the resistance of Stellaria media.

Crop tolerance was found in the cereals, brassicas and perennial ryegrass. Oat was the most tolerant of the cereals, being unaffected at 2.5 kg/ha. Wheat was reduced in vigour by only 29% at this dose. Among the brassicas, kale and radish tolerated 0.5 kg/ha and were only marginally reduced at 2.5 kg/ha. Rape tolerated 0.1 kg/ha and suffered only 20% to 30% vigour reductions at higher doses. Carrot, lettuce and the leguminous crops were very susceptible.

The possible control of composite and polygonaceous weeds (perennials as well as annuals) in cereals, perennial ryegrass and brassicae crops is of considerable interest in view of their importance in these crops and the lack of adequate control measures. Although Dowco 290 is more likely to be used post-emergence, pre-emergence application could also be of interest and because of the reputed, more rapid breakdown in the soil, the problem of residues in the crop plant may then be less acute. The control of Allium vineale in cereals is interesting as only a few herbicides such as 2,4-D are used, not always successfully, against this weed which is still a problem in certain areas.

Pre-emergence selectivity among tropical species

All grass species and Cyperus spp were relatively unharmed while all broad-leaved species, especially the leguminous crops, were severely damaged or killed at 0.5 kg/ha.

The safety in maize and sorghum might be exploited for control of problem broad-leaved weeds but such problems are not wide spread. Safety in rice was not quite so great. Further work will be of interest in a wider range of tropical crops including perennials such as sugar cane, but post-emergence applications may be of greater relevance where there are broad-leaved perennial weeds.

ACTIVITY EXPERIMENT

DOWCO 290

		0.1 kg/ha	0.5 kg/ha	2.5 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
****	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	**************************************	**************************************
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXX	0	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXXXXXXXXXXXXX +	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Key: F = Post-emergence, foliar application

S = Post-emergence, soil drench

P = Pre-emergence, surface film

I = Pre-planting, incorporated

DOWCO 290

SPECIES		C.1 kg/ha		0.5 kg/ha		2.5 kg/ha
WHEAT	85	XXXXXXXXXXXX	78	XXXXXXXXXXXX	85	xxxxxxxxxxx
(1)	93	xxxxxxxxxxxxx	86	XXXXXXXXXXXXXX	71	XXXXXXXXXXXX
BARLEY	91	xxxxxxxxxxxx	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(2)	93	XXXXXXXXXXXXXXX	71	XXXXXXXXXXXX	64	XXXXXXXXXXX
OAT	91	xxxxxxxxxxxxx	85	xxxxxxxxxxxx	98	XXXXXXXXXXXXXXXXX
(3)	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXX
PER RYGR	109	xxxxxxxxxxxxxx +	97	xxxxxxxxxxxx	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(4)	100	XXXXXXXXXXXXXXX	79	XXXXXXXXXXXX	64	XXXXXXXXXXX
ONION	60	xxxxxxxxx	0		0	
(8)	36	XXXXXX	0		0	
DWF BEAN	0		0		0	
(9)	0		0		0	
FLD BEAN	47	xxxxxxxx	0		0	
(10)	29	XXXXXX	0		0	
PEA	26	xxxxx	0		0	
(11)	7	X	0		0	
W CLOVER	0		0		0	
(12)	0		0		0	
RAPE	96	xxxxxxxxxxxxx	102	xxxxxxxxxxxxx	113	xxxxxxxxxxxxx +
(14)	86	XXXXXXXXXXXXX	79	XXXXXXXXXXXX	71	XXXXXXXXXXX
KALE	97	xxxxxxxxxxxxxx	93	xxxxxxxxxxxxx	93	xxxxxxxxxxxxx
(15)	100	XXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	79	XXXXXXXXXXXX

SPECIES		0.1 kg/ha		0.5 kg/ha		2.5 kg/ha
CARROT	0		0		0	
(18)	0		0		0	
LETTUCE	0		0		0	
(20)	0		0		0	
SUG BEET	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	115	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	58	xxxxxxxxxx
(21)	71	XXXXXXXXXXX	57	XXXXXXXXX	43	XXXXXXX
AVE FATU	105	xxxxxxxxxxxxxx +	101	XXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(26)	100	XXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX
ALO MYOS	77	XXXXXXXXXXXX	101	xxxxxxxxxxxxx	77	XXXXXXXXXXX
(27)	100	XXXXXXXXXXXXXX	71	XXXXXXXXXXX	43	XXXXXXXX
POA ANN	115	xxxxxxxxxxxxx +	108	xxxxxxxxxxxxx +	97	XXXXXXXXXXXXXXX
(28)	100	XXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	36	XXXXXX
POA TRIV	92	xxxxxxxxxxxx	58	xxxxxxxxx	8	xx
(29)	71	XXXXXXXXXXX	50	XXXXXXXX	14	xxx
SIN ARV	97	XXXXXXXXXXXXXXX	85	xxxxxxxxxxxx	65	XXXXXXXXXXX
(30)	93	XXXXXXXXXXXXXX	57	XXXXXXXXX	43	XXXXXXXX
RAPH RAP	102	xxxxxxxxxxxxxxx	97	XXXXXXXXXXXXXXX	92	XXXXXXXXXXXXX
(31)	93	XXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	64	XXXXXXXXXXX
TRIP MAR	100	XXXXXXXXXXXXXXX	31	XXXXXX	6	x
(33)	14	XXX	14	XXX	7	x
SEN VULG	22	XXXX	0		7	x
(34)	7	X	0		7	x

SPECIES		0.1 kg/ha		0.5 kg/ha		2.5 kg/ha
POL LAPA	127	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXX	57	XXXXXXXXXX
(35)	43	XXXXXXXX	43	XXXXXXXX	29	XXXXXX
POL AVIC	141	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXX	73	XXXXXXXXXXXX
(36)	50	XXXXXXXXX	36	XXXXXXX	29	XXXXXX
GAL APAR	99	XXXXXXXXXXXXXXX	59	XXXXXXXXXX	8	xx
(38)	79	XXXXXXXXXXXXX	36	XXXXXX	7	X
CHEN ALB	88	XXXXXXXXXXXXXX	62	XXXXXXXXXXX	27	xxxxx
(39)	57	XXXXXXXXXX	29	XXXXXX	14	XXX
STEL MED	130	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	65	XXXXXXXXXXX
(40)	86	XXXXXXXXXXXXX	64	XXXXXXXXXXX	43	XXXXXXXXX
VER PERS	92	XXXXXXXXXXXXXX	108	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(42)	64	XXXXXXXXXX	50	XXXXXXXXX	0	
RUM OBTU	9	xx	0		0	
(44)	14	XXX	0		0	
HOLC LAN	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXX	87	XXXXXXXXXXXXX
(45)	100	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXX	50	XXXXXXXXX
AG REPEN	116	XXXXXXXXXXXXXXXXXXXXXXX +	116	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	XX
(47)	86	XXXXXXXXXXXXXX	57	XXXXXXXXX	14	xxx
ALL VIN	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXX	15	XXX
(49)	79	XXXXXXXXXXXXX	29	XXXXXX	29	xxxxxx
CIRS ARV	0		0		0	
(50)	0		0		0	

DOWCO 290

SPECIES		0.1 kg/ha		0.5 kg/ha		2.5 kg/ha
TUS FARF	0		0		0	
(51)	0		0		0	
MAIZE	100	XXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXX	100	xxxxxxxxxxxxxx
(56)	93	XXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	71	XXXXXXXXXXX
SORGHUM	104	xxxxxxxxxxxxx +	98	XXXXXXXXXXXXXXX	87	XXXXXXXXXXXXX
(59)	100	XXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	57	XXXXXXXXX
RICE	97	xxxxxxxxxxxxx	106	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	79	XXXXXXXXXXXX
(60)	100	XXXXXXXXXXXXXXX	57	XXXXXXXXX	43	XXXXXXXX
PIGEON P	44	XXXXXXXX	0		0	
(61)	29	XXXXXX	0		0	
COWPEA	17	xxx	0		0	
(62)	7	x	0		0	
CHICKPEA	0		0		0	
(63)	0		0		0	
GRNDNUT	75	XXXXXXXXXXXX	0		0	
(64)	43	XXXXXXXX	0		0	
SOYABEAN	0		0		0	
(65)	0		0		0	
COTTON	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	28	xxxxxx	0	
(66)	43	XXXXXXXX	14	xxx	0	
JUTE	76	XXXXXXXXXXXX	24	xxxxx	0	
(67)	50	XXXXXXXXX	29	xxxxxx	0	

-	CEAT	00	200	
D	On	CU	290	

SPECIES		0.1 kg/ha		0.5 kg/ha		2.5 kg/ha
KENAF	91	XXXXXXXXXXXXXXX	33	xxxxxx	3	x
(68)	36	XXXXXX	21	XXXX	7	X
					0	
SESAMUM	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(70)	36	XXXXXX	0			
TOMATO	49	XXXXXXXXX	0		0	
(71)	21	XXXX	0		0	
OR PUNCT	101	XXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXXX
(73)	86	XXXXXXXXXXXXXX	64	XXXXXXXXXXX	36	XXXXXXX
			100	XXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXX
ELEU IND	94	XXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXX
(74)	79	XXXXXXXXXXXX	,,,	AAAAAAAAAAAAAAAA		
ECH CRUS	110	xxxxxxxxxxxxx +	91	xxxxxxxxxxxxx	121	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(75)	86	xxxxxxxxxxxx	79	XXXXXXXXXXXX	50	XXXXXXXXX
					00	
ROTT EXA	98	XXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXX
(76)	86	XXXXXXXXXXXXXXX	71	XXXXXXXXXXX	50	XXXXXXXXX
DEC CANC	70	XXXXXXXXXXXX	89	xxxxxxxxxxxx	51	xxxxxxxx
DIG SANG (77)	70 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	21	XXXX
(' ')	00	AAAAAAAAAAAAA				
AMAR RET	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	34	XXXXXX	13	XXX
(78)	29	XXXXXX	14	xxx	7	x
					70	
SNOW POL	84	XXXXXXXXXXXXX	74	XXXXXXXXXXXX	79	XXXXXXXXXXXXX
(83)	71	XXXXXXXXXXX	64	XXXXXXXXXXX	57	XXXXXXXXX
CYP ESCU	195	xxxxxxxxxxxxx +	150	XXXXXXXXXXXXXXXXXXXXXX +	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(85)	100	XXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	86	XXXXXXXXXXXXX
, ,						
CYP ROTU	82	XXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXX +	90	XXXXXXXXXXXXXXX
(86)	86	XXXXXXXXXXXXXX	86	XXXXXXXXXXXXX	57	XXXXXXXXX

Code number

DOWCO 233

Chemical name

3,5,6-trichloro-2-pyridyloxyacetic acid

Structure

Source

Dow Chemical Co (UK) Ltd

Heathrow House Bath Road Hounslow

London, TW5 9QY

Information available and suggested uses

A highly active herbicide on woody plants and brush species including ash (Fraxinus spp) which is relatively tolerant to picloram. It has utility for control of unwanted brush and perennial weeds in industrial areas, pastures, rangeland and forestry.

Formulation used 36% w/v a.e. aqueous concentrate (triethylamine salt)

Spray volume

for activity experiment 305 1/ha for selectivity experiment 417 1/ha

RESULTS

Full results are given in the histograms on pages 55-60 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
3.2	none	none listed as no crops tolerant
0.8	wheat	Sinapis arvensis Raphanus raphanistrum Tripleurospermum maritimum Chenopodium album Rumex obtusifolius Holcus lanatus Oryza punctata Eleusine indica Echinochloa crus-galli + species below

(Table continued overleaf)

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.2	species above + barley oat field bean pea	Poa trivialis Stellaria media Cirsium arvense Digitaria snaguinalis Amaranthus retroflexus Snowdenia polystachya

Comments on results

Activity experiment (see page 55)

All broad-leaved species were susceptible to the foliar spray but grasses were resistant. Soil drenches had less activity than foliar sprays on dwarf bean and kale and virtually no effect on grasses or Polygonum. Most phytotoxicity was found with pre-emergence treatments (except in dwarf bean), broad-leaved species again being sensitive, as was Agropyron. Avena was more resistant however. Incorporation into the soil reduced activity slightly on kale, perennial ryegrass and Polygonum, but made little difference on the other species.

Symptoms

Symptoms were generally similar to those described for Dowco 290, with severe growth regulator type symptoms developing on all broad-leaved species. In contrast to Dowco 290, however, no epinasty was found with soil drench treatments to dwarf beans and kale. These treatments caused retardation of growth and a mild chlorosis or yellowing of the unifoliate leaves of dwarf bean while trifoliates, which were also retarded, were dark green in colour. In kale, retarded growth was accompanied by a slight swelling of stems above the cotyledons, the plants thus tending to collapse.

Pre-emergence treatments at high doses prevented many species emerging from the soil. At lower doses severe stunting of broad-leaved species was noted, many dying back from the cotyledon leaf stage. Elongation of the mesocotyl occurred with most of the grass species, this often being visible above soil level. Leaf blades were narrow and usually tended to curl over.

Soil persistence

White clover was highly sensitive, being killed by surface and incorporated treatments initially, even at the lowest dose. The incorporated treatments of 0.2 and 0.8 kg/ha were undetectable after 10 weeks and 3.2 kg/ha after 19 weeks. Surface treatments tended to be more persistent than when incorporated, but these also tended to dissipate steadily with time. Thus surface treatments of 0.2 and 0.8 kg/ha were undetectable when assayed 35 weeks later, while 3.2 kg/ha, although still detectable at this time, was causing only a 40% reduction in shoot fresh weight.

Pre-emergence selectivity among temperate species

Several weeds were controlled, including annual broad-leaved species such as S. media, T. maritimum, C. album, R. obtusifolius and the crucifers S. arvensis and R. raphanistrum as well as annual grasses, ie P. trivialis and H. lanatus. As with Dowco 290, Cirsium arvense was very sensitive. In contrast Tussilago farfara recovered from initially severe symptoms at the lower doses. Convolvulus arvensis failed to emerge and root fragments eventually rotted.

Crop tolerance was limited to only five species (cereals and legumes) and then only at the lower doses. Wheat was the most tolerant to 0.8 kg/ha and barley and oat to 0.2 kg/ha. The large seeded legumes, field bean and pea were tolerant to 0.2 kg/ha, while dwarf bean survival was only marginally reduced at this dose. White clover, onion, carrot and lettuce were very sensitive.

This herbicide shows some potential use for the selective control of certain broad-leaved perennial weeds, eg Cirsium and Convolvulus, in cereals and in view of the increasing importance of these species in arable situations, further experiments would seem worthwhile.

Pre-emergence selectivity among tropical species

Triclopyr showed much less distinct selectivity than Dowco 290, the grasses being almost as much damaged as the broad-leaved species. Maize was the most tolerant crop but only small seeded broad-leaved species (Amaranthus, jute and sesamum) were susceptible at the low dose of 0.2 kg/ha which might just be safe.

The Cyperus species were partially suppressed at the high dose of 3.2 kg/ha but were recovering within 10 weeks.

The usefulness of this compound as a soil applied herbicide in the tropics would seem very doubtful.

ACTIVITY EXPERIMENT

TRICLOPYR

		0.05 kg/ha		0.25 kg/ha	1.25 kg/ha
	F	XXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
	F	XXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX
	F	XXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXX		XXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROPYRON	S	XXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX

Key: F = Post-emergence, foliar application

S = Post-emergence, soil drench

P = Pre-emergence, surface film

I = Pre-planting, incorporated

SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
WHEAT	85	XXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXX
(1)	100	XXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX
BARLEY	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXX
(2)	100	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	50	XXXXXXXXXXX
OAT	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	** XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85	XXXXXXXXXXXXXXXXX
(3)	100	XXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXX	57	XXXXXXXXXXXX
PER RYGR	86	XXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXX
(4)	79	XXXXXXXXXXXXX	50	XXXXXXXX	29	XXXXXX
ONION	34	XXXXXXX	26	XXXXX	9	xx
(8)	21	XXXX	29	XXXXXX	14	XXX
DWF BEAN	88	XXXXXXXXXXXXXXXX	18	XXXX	0	
(9)	79	XXXXXXXXXXXXX	36	XXXXXXX	0	
FLD BEAN	95	XXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXX
(10)	100	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
PEA	91	XXXXXXXXXXXXXXXX	52	XXXXXXXXXX	13	XXX
(11)	93	XXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	14	xxx
W CLOVER	7	x	0		0	
(12)	14	XXX	0		0	
RAPE	74	XXXXXXXXXXXXXXXX	28	XXXXXXX.	0	
(14)	50	XXXXXXXXX	14	XXX	0	
KALE	51	XXXXXXXXX	46	XXXXXXXX	13	XXX
(15)	43	XXXXXXXX	29	XXXXXXX	7	x

PRE-EMERGENCE SELECTIVITY EXPERIMENT

	0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
15 21	XXXX	0		0	
32	XXXXXX	0		0	
78 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 50	XXXXXXXXXXXXXXXXXX
98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	66 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33	XXXXXXXX	9	xx
17 50	XXXXXXXXX	8	XXX XXX	0	
41 36	XXXXXXXXXXX	0		0	
92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	5 14	x	0	
60	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11	xx
82	XXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXX	0	
	32 21 78 57 98 100 98 64 112 86 17 50 41 36 92 50 60 43	15 xxx 21 xxxx 32 xxxx 78 xxxxx 78 xxxxxx 78 xxxxxxxxxx	15 XXX 0 21 XXXX 0 32 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	15	15

SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
POL LAPA (35)	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	113	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL AVIC (36)	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 36	XXXXXXXXXXXXXXX	0	
GAL APAR (38)	91 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	99 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7	x
CHEN ALB (39)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	23	XXXXX	0	
STEL MED (40)	25 29	XXXXXX	0		0	
VER PERS (42)	108	**************************************	31 43	XXXXXXXXXX	0	
RUM OBTU (44)	52 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
HOLC LAN (45)	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17 21	XXXX
AG REPEN (47)	106	** XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	68 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
ALL VIN (49)	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64 57	XXXXXXXXXXXXXXX	49 36	XXXXXXXXXX
CIRS ARV (50)	18	XXXXXX	0		0	

SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
TUS FARF	57	XXXXXXXXXXX	43	XXXXXXXXXX	0	
(51)		XXXXXXXXXXXXX	50	XXXXXXXXXX		
MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(58)		XXXXXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXX
CODCLILINA	87	XXXXXXXXXXXXXXXXX	76	XXXXXXXXXXXXXX	5	
SORGHUM (59)		XXXXXXXXXXXXXXXXX	50	XXXXXXXXX	21	XXXX
DICE	115	* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	18	xxxx	0	
RICE (60)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	0	
DICEON D	59	XXXXXXXXXXXXX	0		0	
PIGEON P (61)	64	XXXXXXXXXXXXX	0		0	
COWPEA	100	XXXXXXXXXXXXXXXXXXX	0		0	
(62)	71	XXXXXXXXXXXXXX	0		0	
CHICKPEA	29	XXXXXX	0		0	
(63)	36	XXXXXXX	0			
GRNDNUT	112	* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXX	0	
(64)	71	XXXXXXXXXXXXXXXXX	43	XXXXXXXXX		
SOYABEAN	55	XXXXXXXXXXXX	0		0	
(65)	57	XXXXXXXXXXX	0			
COTTON	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37	XXXXXXX	0	
(66)	79	XXXXXXXXXXXXXXXX	21	XXXX		
JUTE	0		0		0	
(67)	0		0			

SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
KENAF	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12	xx	0	
(68)	64	XXXXXXXXXXXXXXX	29	XXXXXX	0	
SESAMUM	0		0		0	
(70)	0		0		0	
TOMATO	112	* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(71)	71	XXXXXXXXXXXXXXX	0		0	
OR PUNCT	53	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	28	XXXXXX	0	
(73)	50	XXXXXXXXX	29	XXXXXX	0	
ELEU IND	103	** XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44	XXXXXXXXX	0	
(74)	57	XXXXXXXXX	29	XXXXXX	0	
ECH CRUS	99	XXXXXXXXXXXXXXXXXXX	18	XXXX	7	×
(75)	50	XXXXXXXX	7	X	7	X
ROTT EXA	95	XXXXXXXXXXXXXXXX	41	XXXXXXXX	9	XX
(76)	71	XXXXXXXXXXXXX	36	XXXXXXX		X
DIG SANG	86	XXXXXXXXXXXXXXXXX	10	XX	0	
(77)	29	XXXXXX	14	XXX	0	
AMAR RET	4	x	0		0	
(78)	21	XXXX	0		0	
SNOW POL	30	XXXXXX	0		0	
(83)	43	XXXXXXXXX	0		0	
CYP ESCU	180	* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120	** XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	45	XXXXXXXX
(85)	86	XXXXXXXXXXXXXX	71	XXXXXXXXXXXX	43	XXXXXXXX
CYP ROTU	82	XXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXX	22	XXXX
(86)	93	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXXX	43	XXXXXXXX

PRE-EMERGENCE SELECTIVITY EXPERIMENT

ACKNOWLEDGEMENTS

We are grateful to the Statistics Department, ARC Letcombe Laboratory, for processing the experimental data; to Mr T M West, Miss A-M Hitchcock, Miss F Hutchison and Messrs R H Webster, R M Porteous and A Grace for technical and practical assistance; to Miss J Thompson and Miss B E Watson for the preparation and typing of this report and to the various commercial firms for providing the chemicals and relevant technical data.

The work of the ODM Tropical Weeds Group was carried out under Research Scheme R 3029 financed by H M Ministry of Overseas Development.

REFERENCES

- COPPING, L.G. and BROOKES, R.F. (1974). BTS 30843 a new pre-emergence grass herbicide. Proceedings 12th British Weed Control Conference, 2, 809-815.
- KIRBY, P. and TURNER, R.G. (1974). WL 29226 a new selective herbicide for use in cereals. Proceedings 12th British Weed Control Conference, 2, 817-824.
- RICHARDSON, W.G. and DEAN, M.L. (1973). The pre-emergence selectivity of some recently developed herbicides; lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. Technical Report Agricultural Research Council Weed Research Organization, (25), pp 57.

Appendix 1. Species, abbreviations, cultivars and stage of growth at assessment

	Designa- tion and computer serial number	Cultivar or source	No. per pot	Depth of plant-ing (cm)	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Temperate species					
Wheat (Triticum aestivum)	WHEAT (1)	Maris Huntsman	8	1.2	3-4½ leaves
Barley (Hordeum vulgare)	BARLEY (2)	Maris Mink	8	1.2	3½ leaves
Oat (Avena sativa)	OAT (3)	Peniarth	8	1.2	3½ leaves
Perennial ryegrass (Lolium perenne)	PER RYGR (4)	S 23	15	0.6	5-6 leaves, tillering
Onion (Allium cepa)	ONION (8)	Robusta	15	0.6	2 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	3	1.8	2-3 trifoliate leaves
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	4	1.8	4 leaves
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	4	1.2	6 leaves
White clover (Trifolium repens)	W CLOVER (12)	S 100	20	0.6	1½-2½ trifol- iate leaves
Rape (Brassica napus oleifera)	RAPE (14)	Victor	12	0.6	3½ leaves
Kale (Brassica oleracea acephala)	KALE (15)	Marrowstem	12	0.6	2½-3½ leaves
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	12	0.6	2½ leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Borough Wonder	12	0.6	3½-4½ leaves

⁺ temperate species raised under higher temperature regime

Appendix 1 (cont.)	Designation and computer serial number	Cultivar or source	No. per pot	Depth of plant-ing (cm)	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Sugar beet (Beta vulgaris)	SUG BEET (21)	'Klein E'	15	1.2	2½-3 leaves
Avena fatua	AVE FATU (26)	B and S supplies 1972	15	1.2	3½ leaves
Alopecurus myosuroides	ALO MYOS (27)	B and S supplies 1972	25	0.6	4 leaves, tillering
Poa annua	POA ANN (28)	WRO 1974	30	0.6	4-6 leaves, tillering
Poa trivialis	POA TRIV (29)	Watts 1972	75	0.6	6 leaves, tillering
Sinapis arvensis	SIN ARV (30)	WRO 1965	30	0.6	$3\frac{1}{2}-4\frac{1}{2}$ leaves
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	12	0.6	2½-3 leaves
Tripleurospermum maritimum	TRIP MAR (33)	WRO 1975	30	Sur- face	6-8 leaves
Senecio vulgaris	SEN VULG (34)	WRO 1972	25	0.3	$2\frac{1}{2}-3\frac{1}{2}$ leaves
Polygonum lapathifolium	POL LAPA (35)	WRO 1974	25	0.6	$2\frac{1}{2}-3\frac{1}{2}$ leaves
Polygonum aviculare	POL AVIC (36)	WRO 1971	100	0.6	5-6 leaves
Galium aparine	GAL APAR (38)	WRO 1973	25	0.6	4-6 whorls
Chenopodium album	CHEN ALB (39)	WRO 1972	25	0.15	6-7 leaves
Stellaria media	STEL MED (40)	B and S supplies 1974	50	0.6	8 leaves
Veronica persica	VER PERS (42)	WRO 1972	20	0.6	5 leaves

Appendix 1 (cont.)	Designation and computer serial number	Cultivar	No. per pot	Depth of plant-ing (cm)	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Rumex obtusifolius	RUM OBTU (44)	Tackley 1972	15	0.15	2½-4 leaves
Holcus lanatus	HOLC LAN (45)	WRO 1973	40	0.6	4-5 leaves, tillering
Agropyron repens	AG REPEN (47)	WRO Clone 31	6	1.2	3½-4 leaves
Allium vineale	ALL VIN (49)	WRO 1974	15*	1.2	2-3 leaves
Cirsium arvense	CIRS ARV (50)	WRO Clone 1	4++	1.2	5-6 leaves
Tussilago farfara	TUS FARF (51)	WRO Clone 1	4	1.2	3-4 leaves
Convolvulus arvensis	CONV ARV (52)	WRO Clone D	5++	1.2	8 leaves
Tropical species (gr	own under h	igher temperat	ure re	egime)	
Maize (Zea mays)	MAIZE (58)	Caldera	5	1.8	4-4½ leaves
Sorghum (Sorghum bicolor)	SORGHUM (59)	YE-90-L	12	1.2	4-4½ leaves
Rice (Oryza sativa)	RICE (60)	Blue Bonnet	12	0.6	$2-2\frac{1}{2}$ leaves .
Pigeon pea (Cajanus cajan)	PIGEON P (61)	Jamaica 1974	8	1.2	2-3 trifoliate, leaves
Cowpea (Vigna unguiculata)	COWPEA (62)	Nigeria 1974	8	1.2	2-3 trifoliate, leaves
Chickpea (Cicer arietinum)	CHICKPEA (63)	Ethiopia 1970	6	1.2	10-12 leaves
Groundnut (Arachis hypogea)	GRNDNUT (64)	s.38	5	1.8	5 leaves
Soyabean (Glycine max)	SOYABEAN (65)	Amsoy	6	1.2	2-3 trifoliate leaves

/ one node rhizome fragments // 4 cm root fragments * aerial bulbils

Appendix 1 (cont.)	Designa- tion and computer serial number	Cultivar or source	No. per pot	Depth of plant-ing (cm)	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Cotton (Gossypium hirsutum)	COTTON (66)	Samaru 26J	6	1.2	2-3 leaves
Jute (Corchorus olitorius)	JUTE (67)	Egypt 1971	12	0.6	4-5 leaves
Kenaf (Hibiscus cannabinus)	KENAF (68)	Thai Native 1968	20	0.6	2-3 leaves
Sesamum (Sesamum indicum)	SESAMUM (70)	Uganda 1972	10	0.6	2-4 leaves
Tomato (Lycopersicum esculentum)	TOMATO (71)	Ailsa Craig	8	0.6	4 leaves
Oryza punctata		Swaziland 1974	20	0.6	$2\frac{1}{2}$ -3 leaves
Eleusine indica	ELEU IND (74)	Rhodesia 1967	18	0.6	4-4½ leaves
Echinochloa crus-galli	ECH CRUS (75)	WRO 1973	15	0.6	4 leaves
Rottboellia exaltata	ROT EXAL (76)	Rhodesia 1971	20	0.6	4 leaves
Digitaria sanguinalis	DIG SANG (77)	WRO 1971	20	0.3	3-5 leaves
Amaranthus retroflexus	AMAR RET (78)	WRO 1972	20	0.15	5-6 leaves
Solanum nigrum+	SOL NIG (81)	B and S supplies 1973	20	0.15	7 leaves
Snowdenia polystachya	SNOW POL (83)	Ethiopia 1974	50	sur- face	5½ leaves
Cyperus esculentus	CYP ESCU (85)	WRO Clone 2 (ex South Africa)	6**	1.8	6 leaves/ shoot
Cyperus rotundus	CYP ROTU (86)	WRO Clone 1 (ex Rhodesia)	5**	1.8	7 leaves/ shoot

⁺ Temperate species raised under higher temperature regime

** Tubers

ABBREVIATIONS

angstrem	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
	ac	gallons per hour	gal/h
acre active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*	~~	gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushel	bu	high volume	HA
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration	concn	hydrogen ion concentration*	pH
concentration x time product	ct	inch	in.
concentration		infra red	i.r.
required to kill		kilogramme	kg
50% test animals	LC50	kilo (x10 ³)	k
cubic centimetre*	cm ³	less than	<
cubic foot*	ft3	litre	1.
cubic inch*	in ³	low volume	LV
cubic metre*	m	maximum	max.
cubic yard*	yd3	median lethal dose	LD50
cultivar(s)	CV.	medium volume	MV
curie	Ci	melting point	m.p.
degree Celsius*	°C	metre	
degree centigrade*	°C	micro (x10 ⁻⁶)	A1
degree Fahrenheit*	°F	microgramme*	pg
diameter	diam.		
diameter at breast height	d.b.h.	micromicro (pico: x10-12)*	Mu (or M)
divided by*	- or /	micrometre (micron)*	Nm (or M)
dry matter	d.m.	micron (micrometre)*	mile/h
emulsifiable		miles per hour*	
concentrate	e.c.	milli (x10 ⁻³)	m acrist
equal to*		milliequivalent*	m.equiv.
fluid	fl.	milligramme*	mg
foot	ft	millilitre	ml

x The name micrometre is preferred to micron and pm is preferred to p.

millimetre*	mm	relative humidity	r.h.
millimicro* (nano: x10-9)		revolution per minute*	rev/min
(nano: x10')	n or mu	second	8
mini mm	min.	soluble concentrate	8.C.
minus		soluble powder	8.p.
minute	min	solution	soln
molar concentration*	M (small cap)	species (singular)	ep.
molecule, molecular	mol.	species (plural)	spp.
more than	>	specific gravity	sp. gr.
multiplied by*	×	square foot*	ft ²
normal concentration*	N (small cap)	square inch*	in ²
not dated	n.d	square metre*	m ²
oil miscible	0.R.C.	square root of*	
concentrate	(tables only)	sub-species*	ssp.
organic matter	O.M.	summary	3.
ounce	OZ	temperature	temp.
ounces per gallon	oz/gal	ton	ton
page	p.	tonne	t
pages	pp.	ultra-low volume	ULV
parts per million*	ppm	ultra violet	u.v.
parts per million by volume*	ppmv	vapour density	v.d.
parts per million	F. Lucra a	vapour pressure	v.p.
by weight*	ppmw	varietas	var.
percent(age)*	8	volt	V
pico -12		volume	vol.
(micromicro: x10 ⁻¹²)	p or un	volume per volume	v/v
pint	pint	water soluble powder	W.S.P.
pints per acre	pints/ac		(tables only)
plus or minus*	4	watt	W
post-emergence	post-em.	weight	wt
pound	lb	weight per volume*	W/V
pound per acre#	lb/ac	weight per weight*	M/M
pounds per minute	lb/min	wettable powder	w.p.
pound per square inch	lb/in ²	yard	yd
powder for dry application	p. (tables only)	yards per minute	yd/min
power take off	p.t.o.		
precipitate (noun)	ppt.		
pre-emergence	pre-em.		
quart	quart		

^{*} Those marked * should normally be used in the text as well as in tables, etc.

AGRICULTURAL RESEARCH COUNCIL

WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS (Price includes surface mail; airmail £0.50 extra)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. rough-stalked meadow-grass. November 1966. G P Allen. Price £0.25
- 7. Flame cultivation experiments 1965. October, 1966. G W Ivens. Price £0.25
- 8. The development of selective herbicides for kale in the United Kingdom.
 2. The methylthiotriazines. Price £0.25
- 10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price £0.25
- 12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - £0.25
- 13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price. £0.25
- 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price £0.25

.

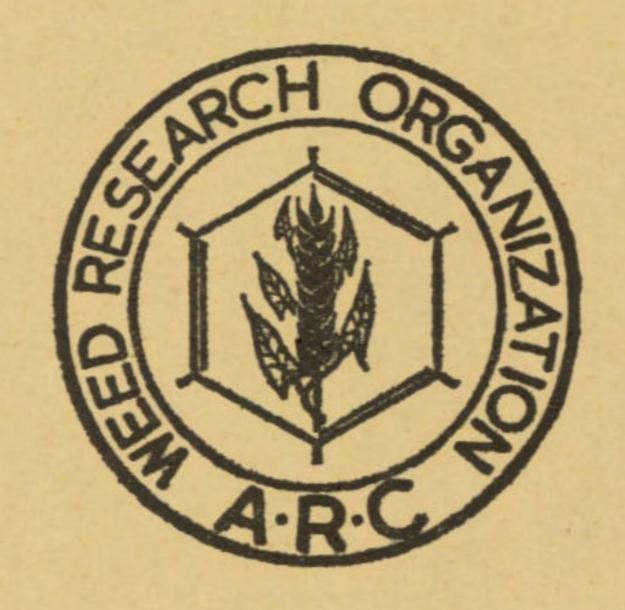
- Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during Spring 1970. November 1970.

 J G Elliott and P J Attwood. Price £0.25
- 17. The pre-emergence selectivity of some newly developed herbicides,
 Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112,
 pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker
 and K Holly. Price £0.25
- 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price £0.12
- 19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price £0.25

- 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott.

 Price £0.35
- 21. An automatic punching counter. November 1972. R C Simmons. Price £0.30
- 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price £0.25
- 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price £0.25
- 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £1.25
- 25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price £3.31
- 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price £1.05
- 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price £1.00
- 29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price £1.30
- 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price £1.06
- 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price £1.10
- 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidan. June 1974. W G Richardson and M L Dean. Price £3.62
- 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
- 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean.

 Price £2.50


- 35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price £1.39
- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975.

 W G Richardson and M L Dean. Price £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630.

 March 1976. W G Richardson, M L Dean and C Parker. Price £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop-isopropyl. August 1976. W G Richardson, M L Dean and C Parker.

 Price £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price £3.40.

AGRICULTURAL RESEARCH COUNCIL WEED RESEARCH ORGANIZATION

BEGBROKE HILL, YARNTON, OXFORD