Click here for previous

SPECIES

RICE	66	х
(60)	71	>
	EO	
PIGEON P	20	,
(61)	93	2
COWPEA	103	
(62)	100	
CUTCVDEA	81	
CHICKPEA	03	
(63)	95	
GRNDNUT	103	
(64)	93	
COVADEAN	125	
SUIADEAN	100	
(65)	100	
COTTON	86	
(66)	100	
TITE	92	
(67)	100	
	75	
KENAF	100	
(68)	100	
SESAMUM	117	
(70)	93	
TOMATO	110)
(71)	86	,
(11)		
OR PUNCT	55	5
(73)	64	1

1.4.1

.

.

HOE 22870 is clofop acid, HOE 23408	is diclofop-r	nethyl, RH 2915 is oxyfluorfen		
		HOE 23408		HOI
HOE 23408		O OO KG/HA		5.4
0.15 KG/HA		U. 70 RU/ 1146		
XXXXXXXXXXXX	40 36	XXXXXXXXX XXXXXXXX	0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	126 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	116 100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX	111 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111 86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxx * xxxxxxxxxxxxxxxxx	103 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX	137 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107 100	xxxxxxxxxxxxxxxxxxx * xxxxxxxxxxxxxxxxx	107 100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	39 71	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72 79	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXX +	104 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 86	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	5 14	x xxx	00	

23408

40 KG/HA

XXXXXXXXXXXX * XXXXXXXXXXXXX

XXXXXXXXXXXX * XXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXX

XXX XXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXX

.

PRE-EMERGENCE SELECTI V IT R EXPER IMENT

ELEU IND	14	3
(74)	50	3
BCH CRUS	44	;
(75)	57	2
ROT EXAL	85	
(76)	79	3
DIG SANG	62	
(77)	64	3
AMAR RET	143	:
(78)	93	:
TAG MIN	94	:
(80)	93	:
CYP ROTU	95	
(86)	100	

HOE 23408

0.15 KG/HA

*

.

0		0	
0		0	
0		0	
0		0	
85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXX
43	XXXXXXXXX	21	XXXX
19	XXXX	0	
21	XXXX	0	
64	XXXXXXXXXXXXXX	50	XXXXXXX
93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
64	XXXXXXXXXXXXXX	51	XXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
	0 0 0 85 43 19 21 64 93 64 100 87 100	0 0 0 0 85 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

-

HOE 23408

0.90 KG/HA

A		5.4
	0	
	0	
	0	
	0	
	00	

-

HOE 23408 O KG/HA

XXXXXXXXX

XXXX XXXXXXXXXXXX

XXXX XXXXXXXXXX

.

XXXXXXXXXXXXXX XXXXXXXXXXXXXX PRE R GBN H SEI EXPER IMENT

31

.

- 32 -

RH 2915

Chemical name

2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-trifluoromethyl benzene

.

Structure

Source

Rohm and Haas (UK) Ltd Lennig House 2 Masons Avenue Croydon Surrey CR9 3NB

Information available and suggested uses

RH 2915 is active pre- and post-emergence against a wide range of annual grass and broad-leaved weeds and certain perennials e.g. <u>Convolvulus arvensis</u>. Greater activity occurs with post-emergence treatments, when <u>Cyperus esculentus</u> is also controlled. However some perennials may regrow after earlier top kill. Residual pre-emergence control of new germinating weeds can occur as a result of post-emergence spraying. It is suggested for use in: soybeans, cotton and peanuts at 0.56-1.12 kg a.i./ha pre-plant incorporated, 0.28-0.84 kg/ha pre-emergence and 0.28-1.12 kg/ha directed post-emergence; wheat and rice at 0.14-0.28 kg/ha post-emergence; dormant forage legumes at 0.28-2.24 kg/ha; sugar beet at 0.28-1.12 kg/ha directed post-emergence; tree, vine and plantation crops at 0.56-2.24 kg/ha directed post-emergence. It is also compatible with several other herbicides including paraquat, to which it adds pre-emergence soil activity.

Formulation used 24% w/v a.i. emulsifiable concentrate

<u>Spray volume</u> for activity experiment 305 1/ha for selectivity experiment 417 1/ha

RESULTS

Full results are given in the histograms on pages 35-40 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
1.8	none	none listed as no crops tolerant

(Table continued overleaf)

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
0.3	field bean chick pea groundnut soyabean	Alopecurus myosuroides Poa annua Sinapis arvensis Polygonum lapathifolium Galium aparine Stellaria media

- 33 -

		Solanum nigrum Rottboellia exaltata Tagetes minuta + species below
0.05	species above + barley oat dwarf bean pea rape kale maize rice pigeon pea cow pea cotton	Poa trivialis Tripleurospermum maritimum Chenopodium album Veronica persica Rumex obtusifolius Holcus lanatus Allium vineale Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Amaranthus retroflexus

Comments on results

Activity experiment (see page 35)

A high level of activity was found on the annual species, particularly on perennial ryegrass, Avena fatua and kale. With all six species phytotoxicity to established plants was greater as a result of the foliar spray than with the soil drenches, the latter showing very little effect on any of the three broad-leaved species. With perennial ryegrass, A. fatua and kale, much more pre-emergence activity occurred with the surface spray than when the herbicide was incorporated into the soil, suggesting the possibility of uptake by the emerging shoots. However with dwarf bean more activity was found when the herbicide was incorporated into the soil.

Symptoms

.

Severe scorch symptoms developed fairly rapidly on leaves as a result of the foliar spray. However buds and shoots were not always inactivated, suggesting little translocated effect, while leaves which did develop were often trapped and therefore deformed. With the preemergence treatments die-back occurred soon after emergence, while at lower doses leaf trapping was again a feature. A darker green colour of leaves was often seen with all types of application.

Thus the pattern of activity and the symptoms produced are very typical of dinitrophenyl-ether herbicides e.g. nitrofen. However RH 2915 is much more active.

Soil persistence

Holcus lanatus was selected as the test species to monitor persistence because of its extreme sensitivity (100% kill at the low dose of 0.05 kg/ha). This dose was undetected when the soil was assayed, sixteen weeks later, but the higher doses of 0.3 and 1.8 kg/ha were still causing 65 and 100% shoot fresh weight reductions respectively fifty weeks after treatment.

- 34 -

Selectivity among temperate species

In the selectivity test, control of several mainly small seeded broad-leaved and grass weeds was found. Composite and polygonaceous weeds were very sensitive, all being controlled at 0.05 kg/ha. Annual grasses were also sensitive with the exception of <u>A. fatua</u>, which required the highest dose for adequate control.

In the perennial species, <u>Allium vineale</u> proved to be very susceptible, shoots dying back after emergence at 0.05 kg/ha and only one very weak plant survived. All other underground bulbils failed to produce new shoots and eventually died. <u>Convolvulus arvensis</u> suffered 54 and 100% kill initially from doses of 0.3 and 1.8 kg/ha, observations showing that most of the shoots were killed just before or after emergence. All other perennial species were resistant.

Most crops were severely damaged by RH 2915. However large seeded legumes showed some tolerance, field bean at 0.3 kg/ha; dwarf bean and pea at 0.05 kg/ha. The cereals, barley and oat, and the brassicaæ, kale and rape, were the only other tolerant crops but only at the low dose of 0.05 kg/ha.

Although this test indicates that selectivity is marginal, the high level of weed control might justify further experimentation perhaps as a contact pre-emergence spray in bean crops. The relatively long period of persistence could prove advantageous for control of late germinating weeds, while danger to subsequent crops could probably be overcome by ploughing/incorporating before the latter are sown. Some further experimentation on <u>A. vineale</u>, at least in pots, may be worth while, in view of its increasing importance in many areas and the lack of adequate control measures. A further pot experiment, at lower doses than used here, may also be worth while to investigate the possible control of <u>Holcus lanatus</u>, Poa trivialis and <u>Rumex obtusifolius</u> in perennial ryegrass.

Selectivity among tropical species

Extremely high activity was shown on the small-seeded annual grasses and on <u>Amaranthus</u> and jute, these being killed at 0.05 kg/ha. <u>Tagetes</u> and <u>Rottboellia</u> were also controlled at 0.3 kg/ha and selectivity was excellent at this dose in groundnut, soyabean and chickpea. A slightly lower dose would be selective against a smaller range of weeds in maize, rice and pigeon pea. Although not truly selectively controlled, <u>O.</u> <u>punctata</u> was considerably more susceptible than rice and there might be some useful degree of control of this serious weed. Only very low doses would be completely safe in cotton and cowpea. There was negligible activity on <u>Cyperus rotundus</u>, but the very high activity of this herbicide on annual weeds will warrant further testing in a wide range of tropical crops.

ACTIVITY EXPERIMENT

- 35 -

RH 2915

		0.1 kg/ha	0.5 kg/ha	2.5 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BEAN	-		WYXXXXXXXXXXXXXXX +	XXXXXXXXXXXXXXXX

BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX	8
I	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM I	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX	XXXXXXXX

	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX XXXX
PERENNIAL S	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXXX	8	8
	I	XXXXXXXXXXXXXXXX +	XXXXX XXXXXXXXXX	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
AVENA FATUA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX XXXXXXXXXX	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROP YRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

2 Pr 2 . .

I

XXXXXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

HEAT	111
(1)	79
BARLEY	102
(2)	86
DAT	87
(3)	86
PER RYGR	55
(4)	50
ONION	14
(8)	14
DIF BEAN	100
(9)	100
FLD BEAN	91
(10)	100
PEA	91
()	100
W CLOVER	3
RAPE	95 100
KALE	103
(1))	00
CARROT	82
(10)	19

• • •

RH 2915		RH 2915		R
0.05 KG/HA		0.3 KG/HA		1.
wwwwwwwwwwwwwwwwwww	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXX
CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXX
	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX	43	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	27	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7	X	0	
XXXXXXXXXX	7	X	0	
XXX	0		0	
XXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXX
XXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXX	78	XXXXXXX
XXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXX
XXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXX	104	XXXXXX
XXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXX	64	XXXXXX
X	0		0	
XXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32	XXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	61	XXXXXXXXXXXXX	33	XXXXXXX
XXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	15	ххх
XXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	29	XXXXXXX

RH 2915

.8 KG/HA

XXXXXXXXXXXXXXXX + XXX

XXXXXXXXX XXX

XXXXXXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXX XXXXXXXXX

* XXXXXXXXXXXXXXX * XXXXXXXX

PR E BM BRG ENC 1... SEL RIMENT

36

.

LETTUCE	79	x
(20)	57	x
SUG BEET	101	x
(21)	79	x
AVE FATU	99	x
(26)	86	x
ALO MYOS	81	x
(27)	79	x
POA ANN	31	x
(28)	36	x
POA TRIV	0	
(29)	0	
SIN ARV	200	×
(30)	71	>
RAPH RAP	100	,
(31)	79	>
TRIP MAR	49	,
(33)	29	3
POL LAPA	52	3
(35)	36	3
GAL APAR	55	3
(38)	71	:
CHEN ALB	13	
(39)	21	

RH 2915		RH 2915		RI
0.05 KG/HA		0.3 KG/HA		1.3
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29 29	XXXXXX XXXXXX	000000000000000000000000000000000000000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	39 29	XXXXXXXX XXXXXXX	4 7	x
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000000000000000000000000000000000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	22 36	XXXX XXXXXXX	1 7	x
XXXXX XXXXXX	00		0 0	
	00		000000000000000000000000000000000000000	
XXXXXXXXXXXXXXXXXX +	30 14	XXXXXX XXX	0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 29	XXXXX XXXXXX
XXXXXXXXXX XXXXXXX	000		0 0	
CXXXXXXXXX CXXXXXXX	0 0		0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 29	XXXX XXXXXX	000000000000000000000000000000000000000	
xxx xxx	0 0		0 0	

- 2915
- 8 KG/HA

1 37 1

.

STEL MED	70
(40)	86
VER PERS	0
(42)	0
SOL NIG	35
(43)	50
RUM OBTU	5
(44)	7
HOLC LAN	0
(45)	0
AG REPEN	91
(47)	86
ALL VIN	10
(49)	14
CIRS ARV	82
(50)	93
TUS FARF	87
(51)	100
CONV ARV	81
(52)	86
MAIZE	100
(58)	100
SORGHUM	105
(59)	79

.

RH 2915		RH 2915		R
0.05 KG/HA		0.3 KG/HA		1,
XXXXXXXXXXXXX	3	x	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX	0	
	0		0	
	0		0	
VVVVXXX	0		0	
XXXXXXXXXX	0		0	
	0		0	
X	0		0	
	0		0	
	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXX
xx	0		0	
XXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	68	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	46	XXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	47	XXXXXX
XXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	29	XXXXXX

RH 2915 .8 KG/HA

XXXXXXXXXXXX XXXXXXX

.

XXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXX XXXX

XXXX

*

.

PR [H] EMERGENCE SEL EC TIV IT EXPER IMENT

ICE	79
(60)	93
PIGEON P	87
(61)	86
COWPEA	111
(62)	93
CHICKPEA	97
(63)	93
GRNDNUT	93
(64)	93
SOYABEAN	112
(65)	86
COTTON	107
(66)	86
	0
JULE	0
(67)	0
KENAF	110
(68)	79
SESAMUM	33
(70)	50
TOMATO	52
(71)	64
OP DINCT	83
(73)	50
(15)	50

2

.

RH 2915		RH 2915		
0.05 KG/HA		0.3 KG/HA		1
	75	XXXXXXXXXXXXX	71	XXXXXX
XXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
	05	YXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	47	XXXXXX
XXXXXXXXXXXXXXXXXXXXXX	57	VVVVVVVVVVVVV	21	xxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51	XXXXXXXXXXX		
****XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXX
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				
YYYYYYYYXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxxxxxxxxxxxxxx	64	XXXXXX
	125	VVVVVVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	125	XXXXXX
XXXXXXXXXXXXXXXXXXXXX *	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXX
XXXXXXXXXXXXXXXX	100	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	43	XXXXXX
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				
	0		0	
	0		0	
	20	XXXXXX	- 6	x
XXXXXXXXXXXXXXXXXXXXXXX	57	VYYYYYYYXXX	21	XXXX
XXXXXXXXXXXXXXXX	51	AAAAAAAAAA		
XXXXXXX	0		0	
XXXXXXXXXX	0		0	
xxxxxxxxx	6	x	6	x
XXXXXXXXXXXX	14	XXX	7	x
*****	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9	xx
	36	XXXXXXX	29	XXXXX
XXXXXXXXXX	00			

RH 2915

.

.

.8 KG/HA

XXXXXXXXX CXXXX

XXXX

XXXXXXXXXX XXXXXX

XXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXX + XXXXXXXX

XXXXXXXXXXXXXX XXXX

PR [H] EMERGENCE SEL T CTI H EX PER IMENT

ELEU IND	3
(74)	7
ECH CRUS	10
(75)	7
ROT EXAL	105
(76)	86
DIG SANG	0
(77)	0
AMAR RET	0
(78)	0
TAG MIN	99
(80)	71
CYP ROTU	95
(86)	100

RH 2915

0.05 KG/HA

•

.

x	0		0	
x	0		0	
vv	0		0	
X	0		0	
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	15	YYY	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	0	
	0		0	
	0		0	
	0		0	
	0		0	
	0	~~~	0	
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	36	XX XXXXXXX	0	
****	118	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXX

RH 2915

0.3 KG/HA

RH 2915 1.8 KG/HA

e.

xxxxxxxxxx xxxxxxxxxxx

.

.

.

.

PRE-EMERGENCE SELECTIVITY EXPERIMENT

40 -

- 41 -

RP 20630

RP 20630

Trade name -

Chemical name

3-(2,4-dichloro-5-prop-2-ynyloxyphenyl)-5-t-butyl -1,3,4-oxadiazolin-2-one

Structure

HCECCH20 0 C(CH3)3

Source

.

Rhône Poulenc Division Phytosanitaire 25 quai Paul Doumer 92408 Courbevoie France via May and Baker Ltd Ongar Research Station Fyfield Road Ongar Essex

Information available and suggested uses

AND A STAR AND A REAL AND A REAL

Suggested for pre- and post-emergence weed control in soyabean, sunflower, aubergine, onion (bulb) and certain other crops, between 0.75 and 1.5 kg/ha. Pre-emergence application is said to be better than post-emergence.

Formulation used 40% w/

40% w/v a.i. flowable cream

Spray volume

for activity experiment 305 1/ha for selectivity experiment 417 1/ha

RESULTS

Full results are given in the histograms on pages 45-50 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	Weeds: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
1.8	groundnut	<u>Avena fatua</u> <u>Raphanus raphanistrum</u> <u>Tripleurospermum maritimum</u> Galium aparine

<u>Stellaria media</u> <u>Allium vineale</u> <u>Rottboellia exaltata</u> + species below

5

(Table continued overleaf)

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
0.3	species above + wheat barley	Alopecurus myosuroides Poa annua Poa trivialis Sinapis arvensis Polygonum lapathifolium Convolvulus arvensis

Anna munchata

- 42 -

		Eleusine indica Echinochloa crus-galli + species below
0.05	species above + oat perennial ryegrass* dwarf bean field bean pea kale carrot lettuce sugar beet radish	<u>Chenopodium album</u> <u>Veronica persica</u> <u>Solanum nigrum</u> <u>Rumex obtusifolius</u> <u>Holcus lanatus</u> <u>Digitaria sanguinalis</u> <u>Amaranthus retroflexus</u>

rice
pigeon pea
chick pea
soyabean
tomato

* but note a stand reduction of 24%

Comments on results

Activity experiment (see page 45)

RP 20630 exhibited a high level of activity, particularly with pre-emergence applications. Activity occurred also on established plants, the soil drench treatments being more damaging than the foliar spray for all species except dwarf bean, this difference being particularly noticeable with the grasses. The foliar spray was more effective on the broad-leaved species than on the grasses. In the pre-emergence treatments, the surface spray was markedly more active than when incorporated into the soil for perennial ryegrass, kale and Polygonum amphibium, suggesting the possibility of shoot uptake for these species. The other three species showed a similar degree of response to both pre-emergence treatments.

A comparison of the activity tests of RP 20630 and the chemically related oxadiazon shows that the latter is more active as a foliar spray but in the soil treatments, particularly the soil drenches, RP 20630 is more effective. However the level of activity of pre-emergence surface sprays on the two annual grasses was similar for both herbicides (Richardson and Dean, 1974, Richardson and Dean 1976 in press).

Symptoms

Contact scorch damage as a result of the foliar spray and wilting with soil drench treatments occurred within a few days of spraying. Preemergence applications at higher doses caused death soon after the plants emerged. At lower doses leaves were often trapped and consequently deformed. An intensification of the green colour of leaves was seen with all of the soil treatments. However the most characteristic symptom occurring in all application methods, but mainly with the soil treatments, was a severe browning or necrosis in the region of the vascular tissue (midrib and veins) of stems and leaves. There was also a tendency for plants to recover from initially quite severe damage, suggesting little systemic or translocated effect. Thus the symptoms produced on susceptible species are very similar to those caused by the dinitrophenyl ethers and oxadiazon.

- 43 -

Soil persistence

*____

.

<u>Holcus lanatus</u> was the most sensitive of the temperate grass species tested and was selected to monitor persistence. The dose of 0.05 kg/ha gave an 88% kill of plants initially, survivors suffering a 95% reduction in fresh weight of their shoots. This dose was undetectable sixteen weeks later. After twenty seven weeks, 0.3 kg/ha was also undetectable but the highest dose of 1.8 kg/ha caused a 90% reduction in shoot fresh weight, fifty weeks after application. Thus there is a moderate period of persistence in the soil but it would appear to be less than that found previously with oxadiazon (Richardson and Dean, 1976, in press).

Selectivity among temperate species

In the selectivity experiment, several annual grass and broad-leaved weeds were controlled, although some gaps in the weed spectrum are apparent. A certain weakness is apparent with the resistance of Stellaria media, a weed which is usually controlled by most pre-emergence herbicides except dinitrophenyl ethers and oxadiazon. However this weed is not quite as resistant to RP 20630 as to oxadiazon. The crucifers (Sinapis arvensis and Raphanus raphanistrum) were also not as easily controlled as other small seeded weed species, again comparing with the above mentioned herbicides. Another similarity to these is the sensiti- . vity of the two perennials, Allium vineale and Convolvulus arvensis, and the resistance of Agropyron repens, Cirsium arvense and Tussilago farfara. Generally, broad-leaved weeds were more sensitive to RP 20630 than to oxadiazon but annual grass weeds showed a similar degree of response to both herbicides. However the cereals, wheat and barley were more tolerant to RP 20630 than they were to oxadiazon, while large seeded legumes (peas and beans) were more tolerant to oxadiazon (Richardson and Dean, 1976 in press). Onion (from seed) proved to be sensitive.

Potential selectivities found in this test which are of interest and deserve some further investigation are the control of <u>Alopecurus</u> <u>myosuroides and Poa</u> species in wheat and barley; <u>Veronica persica</u> and <u>Chenopodium album in sugar beet</u>; <u>Holcus lanatus and Rumex obtusifolius</u> in perennial ryegrass; <u>Solanum nigrum in pea.</u> The possible control of this latter species in tomato, i.e. a solanaceous weed in a crop of the same botanical family, is interesting and suggests that investigations in potatoes might be worth while.

Selectivity among tropical species

Extremely high activity was shown on jute, <u>Amaranthus retroflexus</u> and <u>Digitaria sanguinalis</u> and there was good control of other annual grasses at 0.3 kg/ha. Good selective control of a wide range of weeds should be possible at about this dose in cotton, groundnut and chick pea. Rice does not appear outstandingly tolerant but selectivity of RP 2063C against grass weeds in this crop should be comparable to that of oxadiazon. There was also some indication of selectivity against the wild rice <u>O. punctata</u>. In most respects this compound behaves in a very similar manner to oxadiazon on the tropical species. It has interesting potential selectivities and high activity but will have to be cheaper than oxadiazon to have any good prospect of widespread use.

- 44 -

ACTIVITY EXPERIMENT a the second of the second of

- 45 -

二、 愛信

RP 20630

0.1 kg/ha

0.5 kg/ha

2.5 kg/ha

	·F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
DW AR F BEAN	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

XXXXXXXXXXXXXXX XXXXXXXX

00

		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX XX	
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
		S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
•	KALE	P	XXXX XXXXXXX		X XX	8	
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX XXXXXXX	
•		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1. 1. M.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	POL YGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	and a set	XXXX XXXXXX	XX XXX	
	AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XX	8	
		I	XXXXXXXXXXXXXXXXX +		XXXXXXXXXXXXXX +	XX XX	
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	A. N. A.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX XX	
	RYEGRASS	P	XX XXXXX	40	8	8	
		I	XXXXXXXXXXXXXXXXXX +		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX XX	
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
•	AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX XXXX	
	FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX XXX	
•		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX XX	
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	AGROP YR ON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
				2 4	and the second sec		

XXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

•

. .

XXXXXXXXXXXXX XXXXXXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

And Anton

WHEAT	111
(1)	93
BARLEY	83
(2)	100
OAT	100
(3)	100
PER RYGR	76
(4)	100
ONION	68
(8)	57
DIF BEAN	83
(9)	100
FLD BEAN	91
(10)	
PEA	104
(11)	no
W CLOVER	36
(12)	50
RAPE	95
(14)	71
KALE	80
(15)	86
CARROT	87
(18)	100

.

RP 2063C		RP 20630		I
0.05 KG/HA		0.30 KG/HA		1
* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7	x
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	7	x
XXXXXXXXXXXXXX	31	XXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	6	
XXXXXXXXXXXXXXXXX	0		C	
XXXXXXXXXXX	0		C	
XXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	c	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	c	
****	104	XXXXXXXXXXXXXXXXXX +	52	XXXXXX
************	71	XXXXXXXXXXXXX	43	XXXXXX
XXXXXXXXXXXXXXXXXXXX +	78	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	39	XXXXXX
XXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	** ** **
XXXXXX	C		0	
XXXXXXXXX	C		6	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX	c	
XXXXXXXXXXXXX	29	XXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	42	XXXXXXXX	10	xxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXX +	44	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXX

RP 20630

.80 KG/HA

XXXXXXXXXXXXX XXX

XXXXXXXX XXXX

XXXXX XXX

XX XXXXXX PRI (m EMERGENCE SEL 124 ~ EXPERIMENT

46

XXXX XXXXX

.

-

(20)	86
SUG BEET	90
(21)	86
AVE FATU	99
(26)	100
ALO MYOS	96
(27)	86
POA ANN	90
(28)	80
DOA TOTU	105
(20)	50
,	50
SIN ARV	-180
(30)	100
RAPH RAP	95
(31)	93
TRIP MAR	108
(33)	100
	1.00
POL LAPA	100
(33)	100
GAL APAR	89
(38)	93
	A REAL
CHEN ALB	10
(39)	21

RP 20630

.

.

0.05 KG/HA

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	25	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	36	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	66	XXXXXXXXXXXXX	19	xxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	29	XXXXXX
xxxxxxxxxxxxxxxxx	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
xxxxxxxxxxxxxxxxx	64	XXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	xx	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	23	XXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXX +	С		0	
XXXXXXXXX	C		0	
XXXXXXXXXXXXXXXXXX +	50	XXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	35	XXXXXXX	25	xxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXX +	36	XXXXXXX	7	x
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXX +	0		0	
xxxxxxxxxxxxxxxx	0		0	
xxxxxxxxxxxxxxxxx	34	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
xx	0		0	
XXXX	0		0	

RP 20630

.

C.30 KG/HA

RP 20630 1.80 KG/HA

XX

PRE-EMERGENCE SELECTIVITY EXPERIMENT

1 47 .

1

1

STEL MED	82	x
(40)	100	x
VER PERS	5	x
(42)	14	x
SOL NIG	17	x
(43)	4.3	x
RUM OBTU	5	x
(44)	14	x
HOLC LAN	12	x
(45)	21	x
AG REPEN	100	x
(47)	100	x
ALL VIN	83	x
(49)	79	x
CIRS ARV	55	x
(50)	93	x
TUS FARF	100	x
(51)	100	x
CONTE ADTE	60	
CONV ARV	71	X
(32)	11	X
MAIZE	100	x
(58)	86	X
SORGHUM	100	x
(59)	100	x

.

. .

RP 20630		RP 20630		RP 20630
0.05 KG/HA		C.30 KG/HA		1.80 KG/HA
XXXXXXXXXXXXXX	44	XXXXXXXXX	26	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	50	XXXXXXXXX
	0		C	
xx	C		0	
xx	С		0	
XXXXXXXX	0		С	
	С		0	
XX	0		0	
x	0		0	
xxx	0		0	
xxxxxxxxxxxxxxx +	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXX +
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	50	XXXXXXXXXX
xxxxxxxxxxxxxx	31	XXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX
xxxxxxxxx	109	XXXXXXXXXXXXXXXXXXXXX +	68	XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxx	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxx	. 0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	36	XXXXXXX
xxxxxxxxxxxxxxxx	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	47	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	29	XXXXXX

4

48

5

EMERG

EN

T

B

5

ER

IMEN

FI

RICE	97	;
(60)	100	3
PIGEON P	97	;
(61)	100	3
COWPEA	95	;
(62)	79	
CHICKPEA	97	
(63)	86	
GRNDNUT	93	
(64)	93	3
SOYABEAN	125	
(65)	100	12
COTTON	96	
(66)	79	~
JUTE	0	
(67)	0	
KENAF	63	
(68)	71	
SESAMUM	65	
(70)	71	
TOMATO	92	
(71)	93	
OR PUNCT	106	
(73)	. 57	:

RP 20630

. .

0.05 KG/HA

xxxxxxxxxxxxxxxxxx	84	xxxxxxxxxxxxxxxx	31	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	48	XXXXXXXXX	C	
xxxxxxxxxxxxxxxxxx	50	XXXXXXXXX	0	
xxxxxxxxxxxxxxxxx	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX	71	XXXXXX
xxxxxxxxxxxxxxxx	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX
XXXXXXXXXXXXXXXXXXXXX +	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	64	XXXXXX
xxxxxxxxxxxxxxx	107	XXXXXXXXXXXXXXXXXXXXXX +	75	XXXXXX
xxxxxxxxxxxxxxx	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXX
	0		0	
	0		0	
xxxxxxxxxxxx	0		0	
XXXXXXXXXXXX	0		0	
XXXXXXXXXXXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
xxxxxxxxxxxxxxx	0		0	
xxxxxxxxxxxxxxxxxx	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	55	XXXXXXXXXXX	14	XXX
XXXXXXXXXX	29	XXXXXX	14	XXX

RP	20	63	0

.

٠

0.30 KG/HA

RP 20630 1.80 KG/HA

XXXXXXXX XXXX

XXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXX

XXXXXXXXXX XXXXX

ENT

49

- 21

PH

		RP 20630		RP 20630		RP
SPECIES		0.05 KG/HA		C.30 KG/HA		1.8
ELEU IND	76	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6	x	0	
(74)	50	XXXXXXXXXX	14	XXX	0	
ECH CRUS	47	XXXXXXXXX	3	x	0	
(75)	43	XXXXXXXXX	21	XXXX	0	
ROT EXAL	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	35	xxxxxxx	0	
(76)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	. 0	
DIG SANG	12	XX	0		0	
(77)	21	XXXX	0		0	
AMAR RET	21	XXXX	0		0	
(78)	21	XXXX	0		0	
TAG MIN	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56	XXXXXXXXXXX	64	XXXXXXXXX
(80)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXX	57	XXXXXXXX
CYP ROTU	79	xxxxxxxxxxxxxx	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	134	XXXXXXXX
(86)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX

.

20630 80 KG/HA

XXXXXX XXXX

1

• •

XXXXXXXXXXXX + XXXXXXXXX

Ę

1.3

.

.

50

In

ACKNOW LEDGEMENTS

We are grateful to the Statistics Department, ARC Letcombe Laboratory, for processing the experimental data; to Mr. T.M. West, Miss A.-M. Hitchcock, Miss F. Hutchison and Messrs. R.H. Webster, R.M. Porteous and A. Grace for technical and practical assistance; to Miss P.J. Kitching and Miss B.E. Watson for the preparation and typing of this report and to the various commercial firms for providing the chemicals and relevant technical data.

- 51 -

The work of the ODM Tropical Weeds Group was carried out under Research Scheme R 2617 financed by H.M. Ministry of Overseas Development.

REFERENCES

.

.

RICHARDSON, W.G. and DEAN, M.L. (1973). The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. Technical Report Agricultural Research Council Weed Research Organization, (25), pp. 57.

RICHARDSON, W.G. and DEAN, M.L. (1974). The activity and post-emergence selectivity of some recently developed herbicides: oxadiazone, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidan. Technical Report Agricultural Research Council Weed Research Organization, (32), pp. 74.

RICHARDSON, W.G. and DEAN, M.L. (1976 in press). The activity and preemergence selectivity of some recently developed herbicides: RP 20,810, oxadiazon, chlornitrofen, nitrofen and flamprop-isopropyl. Technical Report Agricultural Research Council Weed Research Organization.

Appendix 1. Species, abbreviations, cultivars and stage of growth at assessment

- 52 -

Designa- tion and computer serial	Cultivar or source	No. per pot	Depth of plant- ing	Stage of growth at assessment (untreated controls, leaf numbers
number			(cm)	lear numbers

10 0 CHONG PL - PL CD

exclusive of cotyledons)

Temperate species					
Wheat (Triticum aestivum)	WHEAT (1)	Maris Huntsman	8	1.2	5 leaves
Barley (Hordeum vulgare)	BARLEY (2)	Maris Mink	8	1.2	5 leaves
Oat (Avena sativa)	OAT (3)	Condor	.8	1.2	$4\frac{1}{2}$ -5 leaves
Perennial ryegrass (Lolium perenne)	PER RYGR (4)	S 23	15	0.6	6 leaves, tillering

IAO TIAO

.

.

Onion (Allium cepa)	(8)	Robusta	15	0.6	2 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	3	1.8	1 ¹ / ₂ trifoliate
Field bean (Vicia faba)	FLD BBAN (10)	Maris Bead	4	1.8	6 leaves
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	4	1.2	8 leaves
White clover (Trifolium repens)	W CLOVER (12)	S 100	20	0.6	3 trifoliate leaves
Rape (Brassica napus oleifera)	RAPE (14)	Victor	12	0.6	3½ leaves

Kale (Brassica oleracea acephala	KALE (15)	Marrowstem	12	0.6	3½ leaves
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	12	0.6	2 ¹ / ₂ -3 leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Borough Wonder	12	0.6	5-6 leaves

+ temperate species raised under higher temperature regime

Designa-Cultivar tion and computer serial source number

Depth of No. planper ting pot (cm)

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Sugar beet

SUG BEET

'Klein E' 15 0.6 $2\frac{1}{2}-3$ leaves

- 53 -

or

(Beta vulgaris)	(21)	MACIN M			
Avena fatua	AVE FATU (26)	Ditchley 1969	15	1.2	$3\frac{1}{2}-4$ leaves
Alopecurus myosuroides	ALO MYOS (27)	B and S supplies 1972	100	0.6	5 leaves, tillering
Poa annua	POA ANN (28)	WRO 1972	30	0.6	6 leaves, tillering
Poa trivialis	POA TRIV (29)	Watts 1972	45	0.6	6 leaves, tillering
Sinapis arvensis	SIN ARV (30)	WRO 1965	25	0.6	$3\frac{1}{2}-4$ leaves

I and Dlack

Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	12	0.6	2 ¹ / ₂ leaves
<u>Tripleurospermum</u> maritimum	TRIP MAR (33)	WRO 1971	20	Sur- face	10 leaves
Senecie vulgaris	SEN VULG (34)	WRO 1972	40	0.6	6 leaves
Polygonum lapathifolium	POL LAPA (35)	WRO 1971	20	0.6	4 ¹ / ₂ leaves
Polygonum aviculare	POL AVIC (36)	WRO 1971	30	0.6	6 leaves
Galium aparine	GAL APAR (38)	WRO 1972	20	0.6	6-8 whorls

Chenopodium album	CHEN ALB (39)	WRO 1972	25	0.6	8 leaves
Stellaria media	STEL MED (40)	B and S supplies 1972	20	0.6	16 leaves
Veronica persica	VER PERS (42)	WRO 1973	20	0.6	6 leaves
Solanum nigrum ⁺	SOL NIG (43)	B and S supplies 1973	30	0.3	5½-6½ leaves

+ temperate species raised under higher temperature regime

Designa-Cultivar tion and computer or serial source number

- 54 -

Depth of No. planper ting (cm) pot

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

ALL OF A CLASSE ROLL TO CARDON DO

.

.

.

RUM OBTU

1.5 1000000 0 2 15

<u>Rumex</u> obtusifolius	(44)	WRO 1969	15	0.3	4-5 leaves,
Holcus lanatus	HOLC LAN (45)	WRO 1973	40	0.6	6 leaves, tillering
Agropyron repens	AG REPEN (47)	WRO Clone 31	6	1.2	$4\frac{1}{2}$ -5 leaves
Allium vineale	ALL VIN (49)	WRO 1973	22*	1.2	$2\frac{1}{2}$ -3 leaves
Cirsium arvense	CIRS ARV (50)	WRO Clone 1	4#	1.2	6 leaves
<u>Tussilago farfara</u>	TUS FARF (51)	WRO Clone 1	4	1.2	4-5 leaves
Convolvulus	CONV ARV	WRO	_++	1 7	12 100000

Convolvulus	CONV ARV	WRO	SFF	1.2	12 leaves
	1571	Clana 1	-		
arvense	(24)	CTOUE 1			

Tropical species (grow	n under high	her temperature	regime	2	
Maize (Zea mays)	MAIZE (58)	Caldera	5	1.8	$5-5\frac{1}{2}$ leaves
Sorghum (Sorghum bicolor)	SORGHUM (59)	YE-90-L	10	1.2	4 ¹ / ₂ leaves
Rice (Oryza sativa)	RICE (60)	IR5	12	0.6	$3\frac{1}{2}-4$ leaves
Pigeon pea (Cajanus cajan)	PIGEON P (61)	Jamaica 1974	7	1.2	6-7 leaves
Cowpea (Vigna unguiculata)	COWPEA (62)	Nigeria 1974	7	1.2	1-1 ¹ / ₂ trifol- iate leaves
Chickpea (Cicer arietinum)	CHICKPEA (63)	Ethiopia 1970	6	1.2	8 ¹ / ₂ -9 leaves
Groundnut (Arachis hypogea)	GRNDNUT (64)	S.38	5	1.8	$4-6\frac{1}{2}$ leaves
Soyabean (<u>Glycine max</u>)	SOYABEAN (65)	Wayne	6	1.2	1-2 trifol- iate leaves

4 one node rhizome fragments 44 cm root fragments * aerial bulbils Designa-Cultivar tion and computer serial source number

COTTON

No. per pot

Depth

plan-

ting

(cm)

of

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

۲

-

.

Cotton

Samaru

- 55 -

Or

5

1.2 1-2 leaves

Gossypiu	m hirsutum)	(66)
----------	-------------	------

26J

Jute (<u>Corchorus</u> olitorius)	JUTE (67)	Egypt 1971	12	0.6	$2\frac{1}{2}$ -3 leaves
Kenaf (<u>Hibiscus</u> cannabinus)	KENAF (68)	Thai Native 1968	10	0.6	$2-2\frac{1}{2}$ leaves
Sesamum (Sesamum indicum)	SESAMUM (70)	Uganda 1972	10	0.6	4 leaves
Tomato (Lycopersicum esculentum)	TOMATO (71)	Ailsa Craig	10	0.6	$2-2\frac{1}{2}$ leaves
Oryza punctata	OR PUNCT (73)	Swaziland 1974	18	0.6	$2\frac{1}{2}$ -3 leaves

(...)

ELEU IND $3\frac{1}{2}-4$ leaves 0.6 18 WRO 1964 (74) ECH CRUS $4-4\frac{1}{2}$ leaves 0.6 WRO 1970 15 (75) Rhodesia ROT EXAL $3\frac{1}{2}-4$ leaves 1.2 12 1971 (76) Shell Research DIG SANG $3\frac{1}{2}-4$ leaves 20 0.1 Ltd. 1965 (77) AMAR RET $5-7\frac{1}{2}$ leaves 0.1 WRO 1969 20 (78) Sur-TAG MIN

Digitaria sanguinalis

Echinochloa

crus-galli

Rottboellia

exaltata

Eleusine indica

Amaranthus retroflexus

Tagetes minuta	TAG MIN (80)	Kenya 1974	15	face	2-4 leaves
<u>Cyperus</u> esculentus	CYP ESCU (85)	WRO Clone 2 (ex South Africa)	6**	1.8	3 ¹ / ₂ -5 leaves/ shoot
Cyperus rotundus	CYP ROTU (86)	WRO Clone 1 (ex Rhodesia)	5**	1.8	$7-7\frac{1}{2}$ leaves/ shoot
Oxalis latifolia	OXAL LAT (87)	WRO Clone 2 (Cornwall)	20 bulbs	1.2	nil germination

** tubers

ABBREVIATIONS

	angström	8	freezing point	f.p.
	Abstract	Abs.	from summary	F.s.
	acid equivalent*	a.e.	gallon	gal
	acre	ac	gallons per hour	gal/h
	active ingredient#	a.i.	gallons per acre	gal/ac
	approximately equal to*	\sim	gas liquid chromatography	GLC
	aqueous concentrate	a.c.	gramme	g
	bibliography	bibl.	hectare	ha
	boiling point	b.p.	hectokilogram	hkg
•	bushel	bu	high volume	HV
•	centigrade	C	horse power	hp
•	centimetre*	cm	hour	h
	concentrated	concd	hundredweight#	curt
	concentration	concn	hydrogen ion concentration#	рĦ
	time product	ct	inch	in.
	concentration		infra red	i.r.
	required to kill	TOTO	kilogramme	kg
	50% test animals	3	kilo (x10 ³)	k
	cubic centimetre*	cm 3	less than	<
	cubic foot*	It 3	litre	1.
	cubic inch*	in 3	low volume	LV
	cubic metre*	m - 3	maximum	max.
•	cubic yard*	yd	median lethal dose	LD50
~	cultivar(s)	CV.	medium volume	MV
•	curie*	Ci	malting point	m.p.
	degree Celsius*	C	metre	m
	degree centigrade*	C	$micro(x10^{-6})$	11
	degree Fahrenheit*	F	miorogrammat	
	diameter	diam.	mionomiono	
	diameter at breast	J.h.h	(pico: x10 ⁻¹²)*	pipe .
	height	d.D.n.	micrometre (micron)*	jum (or ja)
	divided by*	e or	micron (micrometre)*X	pm (or pl)
	dry matter	Q.M.	miles per hour#	mile/h
	emulsifiable	e.c.	milli $(x10^{-3})$	m
	equal tox		milliequivalent*	m.equiv.
	Pluid	fl.	milligramme*	mg
	East	ft.	millilitre	ml

124

* The name micrometre is preferred to micron and µm is preferred to p.

millimetre* mm millimicro* (nano: x10⁻⁹) n or mu min. mini mm minus min minute M (small cap) molar concentration* mol. molecule, molecular

relative humidity r.h. rev/min revolution per minute* second 8 soluble concentrate 8.C. soluble powder 8.p. soln solution species (singular) sp. species (plural) spp.

more than	>	specific gravity	sp. gr.
multiplied by*	×	square foot*	ft ²
normal concentration*	N (small cap)	square inch*	in ²
not dated	n.d	square metre*	m ²
oil miscible concentrate	O.M.C. (tables only)	square root of*	5.
organic matter	o.m.	sub-species*	88p.
ounce	02	summary	S
ounces per gallon	oz/gal	temperature	temp.
page	p.	ton	ton
Dages	pp.	tonne	t
parts per million*	DDM	ultra-low volume	ULV
narts per million		ultra violet.	u.v.
by volume*	bbua	vapour density	v.d.
parts per million		vapour pressure	v.p.
by weight*	ppmw	varietas	var.
percent(age)*	\$	volt	V
pico	N 07 1993	volume	vol.
(micromiero: xio)	p or m	volume per volume	√/√
pint pints per acre	pints/ac	water soluble powder	W.S.P. (tables only)
plus or minus*	*	watt	W
post-emergence	post-en.	weight	wt
pound	1b	weight per volume*	w/v
pound per acre*	lb/ac	weight per weight*	w/w
pounds per minute	lb/min	wettable powder	w.p.
pound per square inch*	$1b/in^2$	yard	yd
powder for dry application	p. (tables only)	yards per minute	yd/min
power take off	p.t.o.		
precipitate (noun)	ppt.		
pre-emergence	pre-em.		
quart	quart		

- 2 -

vapour density	v.d.
vapour pressure	v.p.
varietas	var.
volt	V
volume	vol.
volume per volume	√/√
water soluble powder watt	W.S.P. (tables W
weight	wt
weight per volume*	w/w
weight per weight*	w/w

* Those marked * should normally be used in the text as well as in tables, etc.

AGRICULTURAL RESEARCH COUNCIL

ORGANIZATION RESEARCH WEED

TECHNICAL REPORTS (Price includes surface mail; airmail £0.50 extra)

- The botany, ecology, agronomy and control of Poa trivialis L. rough-6. stalked meadow-grass. November 1966. G P Allen. Price - £0.25
- 7. Flame cultivation experiments 1965. October, 1966. G W İvens. Price - £0.25

٠

.

.

.

-

.

- 8. The development of selective herbicides for kale in the United Kingdom. 2. The methylthiotriazines. Price - £0.25
- The liverwort, Marchantia polymorpha L. as a weed problem in 10. horticulture; its extent and control. July 1968. I E Henson. Price - £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price - £0.25

- Studies on the regeneration of perennial weeds in the glasshouse; 12. I. Temperate species. May 1969. I E Henson. Price - £0.25
- Changes in the germination capacity of three Polygonum species 13. following low temperature moist storage. June 1969. I E Henson. Price. - £0.25
- Studies on the regeneration of perennial weeds in the glasshouse. 14. II. Tropical species. May 1970. I E Henson. Price - £0.25
- Report on a joint survey of the presence of wild oat seeds in cereal 16. seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
- The pre-emergence selectivity of some newly developed herbicides, 17. Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - £0.25
- A survey from the roadside of the state of post-harvest operations in 18. Oxfordshire in 1971. November 1971. A Phillipson. Price - £0.12
- The pre-emergence selectivity of some recently developed herbicides 19. in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price - £0.25

A survey of cereal husbandry and weed control in three regions of 20. England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0.35

- 2 -

- An automatic punching counter. November 1972. R C Simmons. 21. Price - £0.30
- The pre-emergence selectivity of some newly developed herbicides: 22. bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0.25
- A survey of the presence of wild oats and blackgrass in parts of the 23. United Kingdom during summer 1972. A Phillipson. Price - £0.25
- The conduct of field experiments at the Weed Research Organization. 24. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- The pre-emergence selectivity of some recently developed herbicides: 25. lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.

10

.

- The post-emergence selectivity of some recently developed herbicides: 26. bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price - £1.05

- The post-emergence selectivity of eight herbicides between pasture 28. grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- The pre-emergence selectivity between pasture grasses of twelve 29. herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30
- Herbicides for the control of the broad-leaved dock (Rumex obtusifolius 30. L.). November 1973. A M Blair and J Holroyd. Price - £1.06
- Factors affecting the selectivity of six soil acting herbicides against 31. Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10
- 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone,

AC 50-191, AC 84,777 and iprymidan. June 1974. W G Richardson and M L Dean. Price - £3.62

- A permanent automatic weather station using digital integrators. 33. September 1974. R C Simmons. Price £0.63.
- The activity and pre-emergence selectivity of some recently developed 34. herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2.50

35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1.39

- 3 -

- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25

٠

AGRICULTURAL RESEARCH COUNCIL

WEED RESEARCH ORGANIZATION

BEGBROKE HILL, YARNTON, OXFORD