Click here for previous

10

		ORYZALIN		ORYZALIN		ORYZ
SPECIES		0.25 KG/HA		1.00 KG/HA		4.00
CARROT (18)	112 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETTUCE (20)	97 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET (21)	80 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	76 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8 14	XX XXX
AVE FATU (26)	95 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS (27)	84 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	54 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA ANN (28)	138 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
SIN ARV (30)	102 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPH RAP (31)	86 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG (32)	73 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29 14	XXXXXX XXXXXX
TRIP MAR (33)	101 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	49 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL LAPA (35)	82 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR (38)	121 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	 86 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
					ALC: NOT	

YZALIN KG/HA

XXXXXXXX XXX

XXXXXXXX

XXXXXXX

XX

XXXXXXXXXX +

+ XXXXXXXXXXX +

PR EMER GENCE S-EL EC HI EXPERIMENT

30

XXXXXXXXXXX +

XXXXXXXX

CHEN ALB	56	XXXXXXXXXXX	6	X	0	
(39)	43	XXXXXXXX	14	XXX	. 0	
STEL MED	68	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72	XXXXXXXXXXXXXXX	8	XX
(40)	36	XXXXXX	29	XXXXXX	7	X
AG REPEN	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX
(47)	64	XXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
ALL VIN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXX
(49)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX	57	XXXXXXXXXXX
CIRS ARV	55	XXXXXXXXXX	136	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	55	XXXXXXXXXXX
(50)	100	XXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX
TUS FARF	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(51)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX
CONV ARV	39	XXXXXXX	13	XXX	0	
(52)	100	XXXXXXXXXXXXXXXXXXXX	14	XXX	0	
MAIZE	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(58)	93	XXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	36	XXXXXXX
SORGHUM	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63	XXXXXXXXXXXXXXX	35	XXXXXXX
(59)	57	XXXXXXXXXX	36	XXXXXXX	14	XXX
RICE	88	XXXXXXXXXXXXXXXXX	76	XXXXXXXXXXXXXXXXX	41	XXXXXXXX
(60)	57	XXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXXX
GRNDNUT	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	150	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	131	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(64)	100	XXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX
SOYABEAN	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXXX
(65)	93	XXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	57	XXXXXXXXXXX
		2				

ORYZALIN

.

.

0.25 KG/HA

ORYZALIN 1.00 KG/HA

. .

ORYZALIN 4.00 KG/HA

.

.

PRE-

EMERGENCE

SELEC

-

IVIT

EXPER

IMENT

+ 200 1.4

31

XXXXXXXXXXX X

XXXXXXXXXXX

XX

COTT((66		90	06
JUTE (67)	11 5	
KENAI (68		9. 7. 7.	
SESAN (70		12 5	
ELEU (74		8· 5(
ECH ((75		9.2	-
ROT 1 (76		8: 7	
DIG S (77	-	8: 4:	
AMAR (78		98 4.	
CYP E (85		120 100	
CYP F (86		11. 10	
OXAL (87		7. 5	

.

ORYZALIN		ORYZALIN		ORI
0.25 KG/HA		1.00 KG/HA		4.00
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXX	100	XXXXXXXXXX
XXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXX	15	XXX
XXXXXXXXXXX	43	XXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXX	. 104	XXXXXXXXX
XXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	1.50	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- 0	
XXXXXXXXXXXX	43	XXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7	X	0	
XXXXXXXXXXX	43	XXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	9	XX
XXXXXX	14	XXX	1	X
XXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX	50	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	22	XXXX	4	x
XXXXXXXXX	43	XXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	65	XXXXXXXXXXXXX	39	XXXXXXXX
XXXXXXXXX	36	XXXXXXXX	7	X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXX	64	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXX	114	XXXXXXXXX
XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7	X	0	
XXXXXXXXXXX	21	XXXX	0	

.

RYZALIN DO KG/HA

XXXXXXXXXXXX X

XXXXXXXXXXX + XX

.

En and the start of

XXXXXX XX

EMERGENCE SELECTIVIT K EXPERIMENT

1

32

1

1.

5 3

N.

PRE-

XXXXXXXXXXX XXXXXX

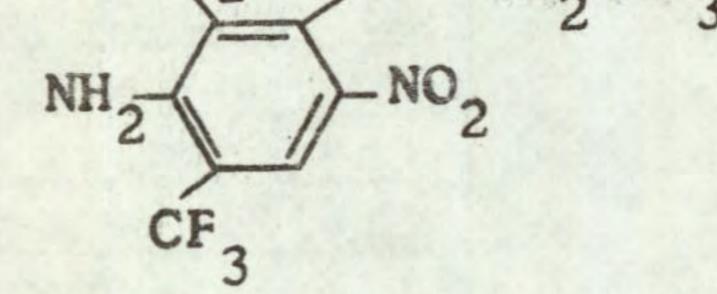
+ XXXXXXXXXXXXXXXXXX XXXXXXXXXX

- 33 -

DINITRAMINE

Trade name Cobex

Code number


USB 3584

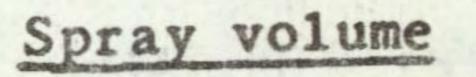
Chemical name

N',N'-diethyl-2,6-dinitro-4-trifluoromethyl-mphenylenediamine

Structure

CH2.CH2 NO_ CH2.CH3

Source

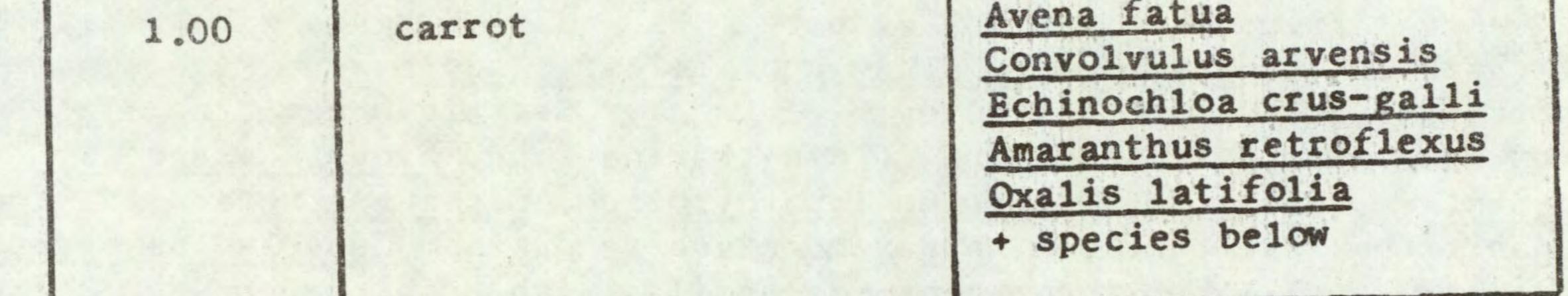

Borax Consolidated Ltd Borax House Carlisle Place London SW1

Information available and suggested uses

Manufacturer's information received in 1973 reports selective control of annual grass and broad-leaved weeds in cotton, soyabeans, groundnut, beans and several other crops. Pre-planting incorporation to 2-4 cm should be carried out within 24 hours of application. Recommended rates are 0.4-0.8 kg/ha depending on soil type.

Formulation used

24% w/v a.i. emulsifiable concentrate


for activity experiment 388 1/ha (34.5 gal/ac) for selectivity experiment 352 1/ha (31.3 gal/ac)

RESULTS

.

Full histogram results are given on pages 36-40 and potential selectivities are summarised in the following Table.

RATE (kg ai/ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.00	None	None listed as no crops tolerant
		6.4

(Table continued overleaf)

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
0.25	species above + dwarf bean field bean pea kale swede lettuce radish groundnut soyabean cotton kenaf	Alopecurus myosuroides Poa annua Chenopodium album Stellaria media Eleusine indica Digitaria sanguinalis

- 34

Comments on results

General

The activity experiment results showed the route of action of dinitramine to be similar to the other dinitro-aniline herbicides tested. The foliar spray caused notably less effect than soil treatments and post-emergence soil drenches were less damaging than pre-emergence applications. Incorporation was more effective than surface application, particularly on Avena fatua and Agropyron repens.

The range of grass and broad-leaved weeds controlled was very similar to the other related dinitro-aniline herbicides tested. Carrot was particularly tolerant but all other crops tested were susceptible at 1.00 kg/ha.

Symptoms

Symptoms on susceptible species were almost identical to those caused by trifluralin.

Temperate weeds and crops

Annual grass weed control at both (.25 and 1.00 kg/ha was similar to that of trifluralin. Chenopodium album and Stellaria media were more sensitive to dinitramine, being controlled by 0.25 kg/ha. Certain other broad-leaved weeds were also more sensitive to dinitramine (i.e. Sinapis arvensis, Chrysanthemum segetum, Polygonum lapathifolium, Cirsium arvense and Raphanus raphanistrum) but trifluralin was more active against Convolvulus arvensis. The response of Agropyron repens was similar with both compounds. Rhizome fragments failed to develop after treatment with 4.00 kg/ha of dinitramine, even when replanted in untreated soil.

Carrot was reduced by only 30% at 4.00 kg/ha and was tolerant at 1.00 kg/ha. Pea and radish were also marginally resistant at 1.00 kg/ha. The large seeded legumes, brassica crops and lettuce were tolerant at only 0.25 kg/ha. Crops were generally more sensitive to dinitramine than to trifluralin.

Potential selective control of several grass and broad-leaved weeds was achieved in carrot, the large seeded legumes, brassica crops and lettuce.

- 35 -

Tropical weeds and crops

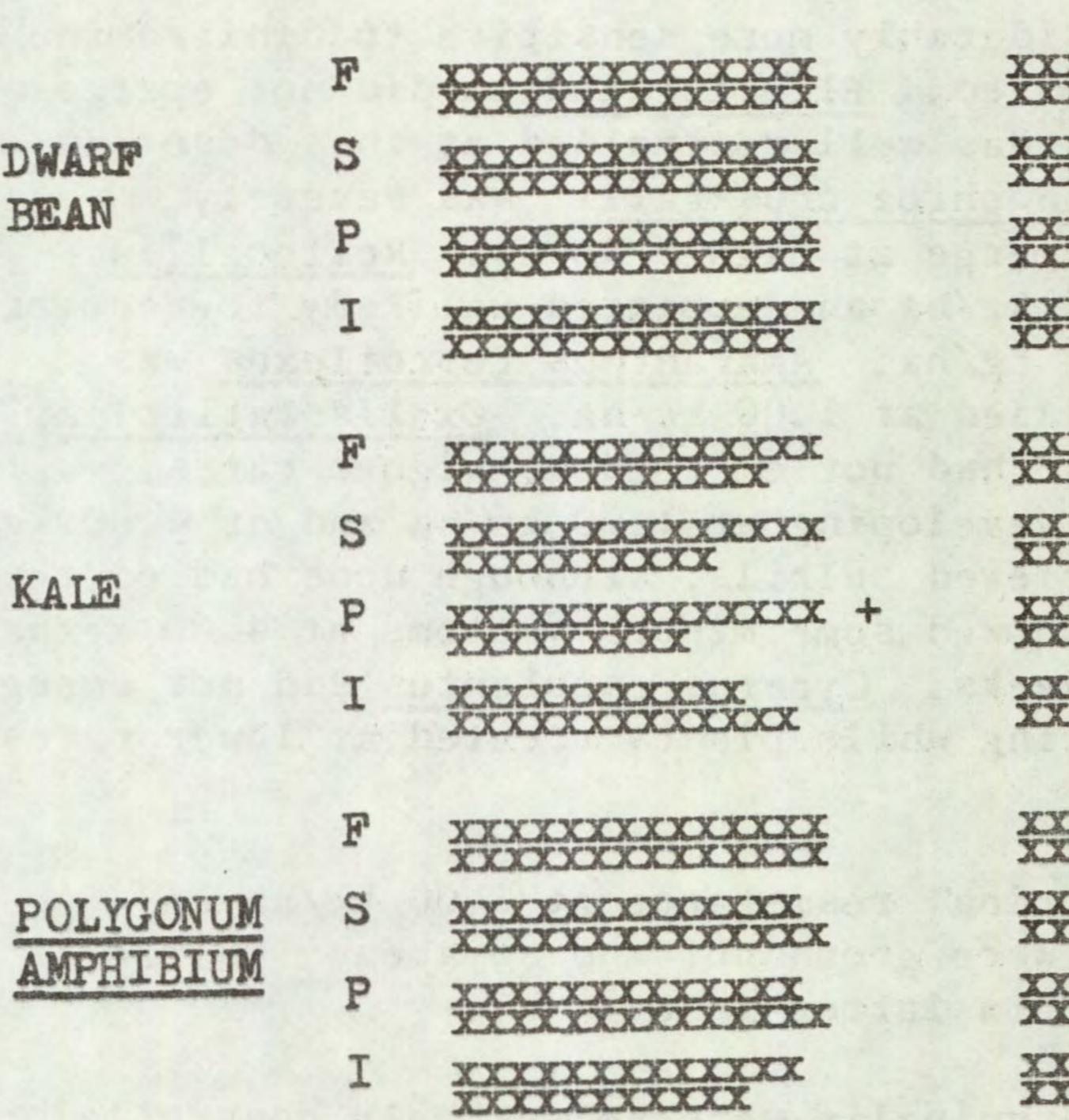
The annual grass weeds were considerably more sensitive to dinitramine than to the other dinitro-anilines tested. <u>Eleusine indica</u> did not emerge at 0.25 kg/ha. <u>Digitaria sanguinalis</u> was well controlled at this dose and did not emerge at higher rates. <u>Echinochloa crus-galli</u> was severely reduced at 0.25 kg/ha and failed to emerge at higher doses. <u>Rottboellia</u> <u>exaltata</u> was just controlled at 4.00 kg/ha and appeared unlikely to recover. It was also severely affected at 1.00 kg/ha. <u>Amaranthus retroflexus</u> was severely reduced at 0.25 kg/ha and killed at 1.00 kg/ha. <u>Oxalis latifolia</u> was severely reduced at 0.25 kg/ha and had not emerged at higher rates. Five weeks later stunted leaves were developing at 1.00 kg/ha and at 4.00 kg/ha leaves were developing slowly on retrieved bulbils, although none had emerged through the soil. <u>Cyperus rotundus</u> showed some minor symptoms at 4.00 kg/ha but plants had recovered after nine weeks. <u>Cyperus esculentus</u> did not emerge at this dose and the tubers were rotting while plants treated at lower rates had recovered.

Both cotton and kenaf showed marginal resistance at 1.00 kg/ha and were fully tolerant at 0.25 kg/ha, as were groundnut and soyabean. Maize also showed some degree of resistance at this latter dose.

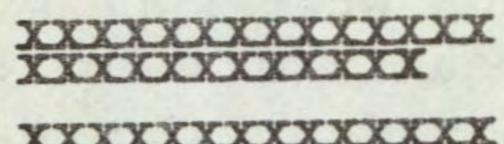
Eleusine indica and Digitaria sanguinalis were selectively controlled at doses tolerated by the above five crops.

Soil persistence

Using perennial ryegrass as the test species, 0.25 and 1.00 kg/ha of dinitramine were not detected after 12 and 31 weeks respectively. Plants still showed symptoms and a 43% reduction in fresh weight 54 weeks after application of 4.00 kg/ha.

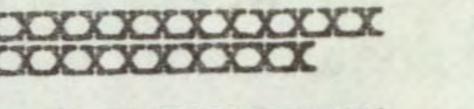

Possible uses and further testing

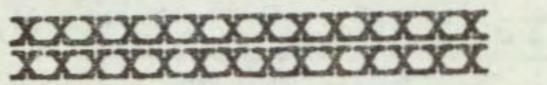
This herbicide has great potential for selective pre-emergence weed control in several broad-leaved crops, particularly carrot which may well tolerate more than 1.00 kg/ha. Most crops did not tolerate such high doses as with trifluralin, but weed control using dinitramine (with the exception of Convolvulus arvensis) appears to be somewhat better.

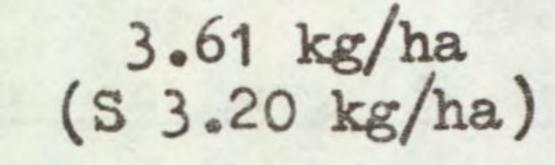

Incorporation of dinitramine, which increased the susceptibility of most species in the activity experiment, should be carried out within 24 hours of application according to the manufacturer's information. This time-period provides greater flexibility which could be an advantage under certain circumstances compared with the more immediate incorporation required following trifluralin application.

Another potential advantage would appear to be the shorter persistence of dinitramine, resulting in less risk to following crops, a hazard which can exist with trifluralin.

No outstanding advantages were found for dinitramine in the tropical situation, but selectivities in several crops were comparable with those of trifluralin and somewhat lower doses could be used to achieve a similar degree of weed control.




0.23 kg/ha(S 0.20 kg/ha)



0.90 kg/ha

(S 0.80 kg/ha)

DINITRAMINE

ACTIVITY EXPERIMENT

- 36 -

XXXXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXX XXXX

XXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXX XXXXXX

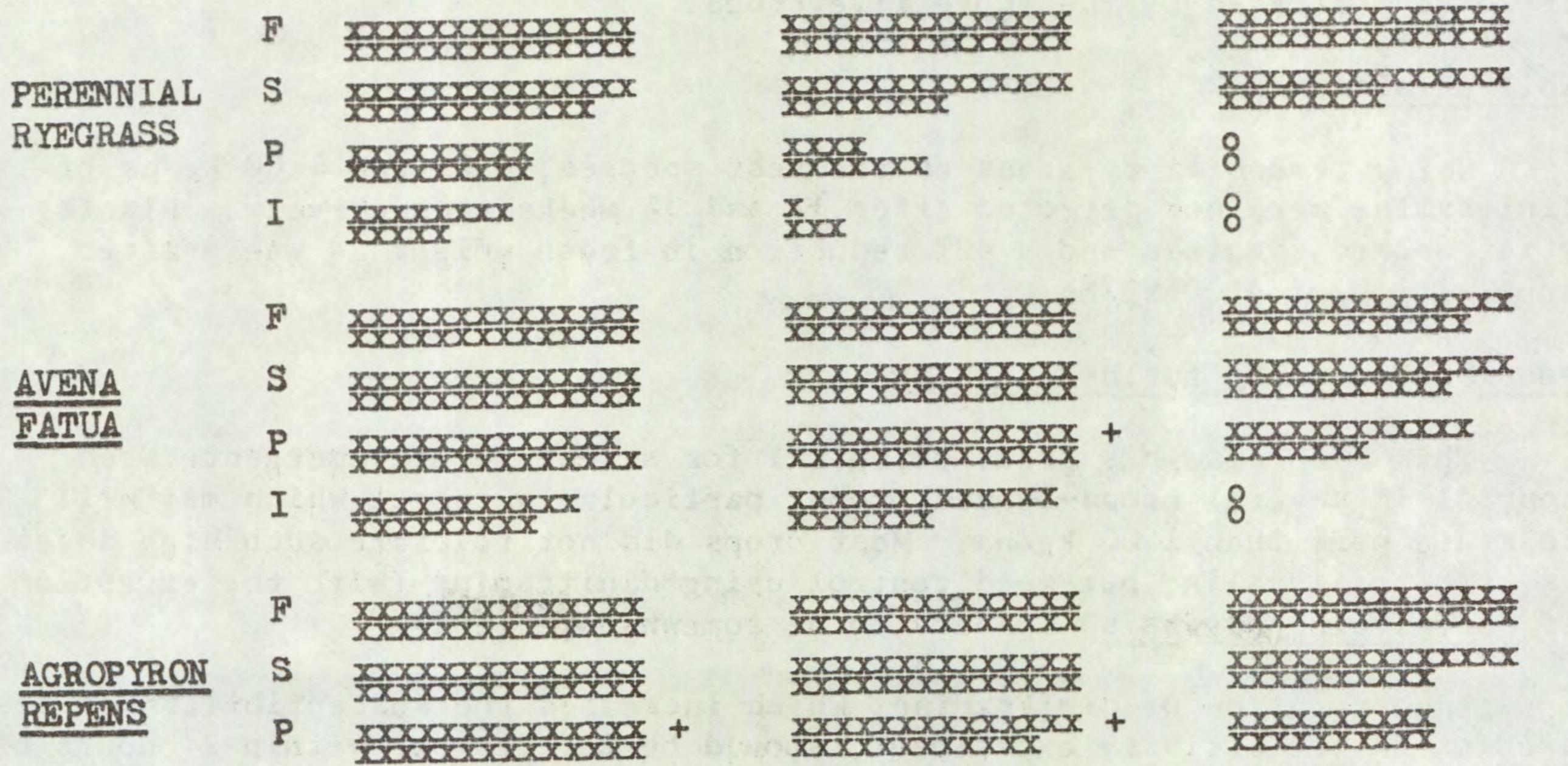
XXXXXXXXXXXXX XXXXXXXXXX

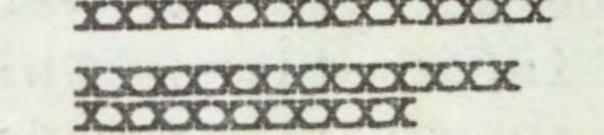
XXXXXXXXX XXXXX

XXXXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXX

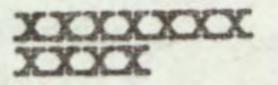

XXXXXXXXXXXX XXXX


XXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXX XXXXXX

XXXXXXXXX XXXXX



XXXXXXX

XXXXXX

F = post-emergence, foliar application Key: S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

	and the second
WHEAT	85
(1)	79
BARLEY	96
(2)	71
OAT	95
(3)	71
PER RYGR	7
(4)	29
ONION	60
(8)	64
DWF BEAN	100
(9)	86
FLD BEAN	75
(10)	93
PEA	120
(11)	100
W CLOVER	95
(12)	71
томато	92
(14)	64
KALE	100
(15)	93
SWEDE	122
(17)	93

.

.

DINITRAMINE		DINITRAMINE		DINITRAMINE
0.25 KG/HA		1.00 KG/HA		4.00 KG/H
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13 36	XXX XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	15 14	XXX XXX
XXXXXX	00		00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17 14	XXX XXX	00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33 14	XXXXXXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120 79	**************************************	75 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12 29	XX XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	52 29	XXXXXXXXXXX XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36 29	XXXXXXXX XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	66 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

ITRAMINE 00 KG/HA

.

XXXXXXXXX

XXXXXXXX XXX

PRE-EMERGENCE SELECTI 100 (pro) TY EXPERIMENT

SPECIES	
CARROT	100
(18)	100
LETTUCE	82
(20)	100
SUG BEET	52
(21)	29
AVE FATU	89
(26)	57
ALO MYOS	72
(27)	29
POA ANN (28)	0
SIN ARV	60
(30)	100
RAPH RAP	91
(31)	100
CHRY SEG	73
(32)	79
TRIP MAR (33)	101
POL LAPA	76
(35)	71
GAL APAR (38)	136

DINITRAMINE

0.25 KG/HA

	XXXXXXXXXXXXXXXXXXXXX		87	
	XXXXXXXXXXXXXXXXXXXX		100	
	XXXXXXXXXXXXXXXX		67	
	XXXXXXXXXXXXXXXXXXXXXX		50	
	XXXXXXXXXX		40 29	
	XXXXXX		29	
1	XXXXXXXXXXXXXXXXX		27	
	XXXXXXXXXXXX		29	
	XXXXXXXXXXXXX		0	
)	XXXXXX		0	
)			0	
)			0	
)	XXXXXXXXXXXX		66	
)	XXXXXXXXXXXXXXXXXXXXX		43	
	XXXXXXXXXXXXXXXXX		96	
)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		79	
3	XXXXXXXXXXXXXXXXX		68	
)	XXXXXXXXXXXXXXXXX		57	
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	78	
)	XXXXXXXXXXXXXXXXXXXX		71	
5	XXXXXXXXXXXXXXXXXX		82	
1	XXXXXXXXXXXXX		36	
5	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	129	
3	XXXXXXXXXXXXXXXX		50	

DINITRAMINE 1.00 KG/HA

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXX
XXXXXXXXXXXXXXXXXX	71	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	22	XXXX
XXXXXXXXX	29	XXXXX
XXXXXXX	8	XX
XXXXXX	14	XXX
XXXXX	0	
XXXXXX	0	
	0	
	0	
	0	
	0	
XXXXXXXXXXXXX	24	XXXXX
XXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXX
XXXXXXXXXXXXXXXXXX	36	XXXXX
XXXXXXXXXXXXXXX		XXXXX
XXXXXXXXXXXX	29	XXXX
XXXXXXXXXXXXXXXXX	81	XXXXX
XXXXXXXXXXXXXX	36	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	35	XXXXX
XXXXXXX	29	XXXX
XXXXXXXXXXXXXXXXXXXX +	14	XXX
XXXXXXXXXX	29	XXXX

DINITRAMINE

4.00 KG/HA

************************ XXXXXXXXXX

XX

PRE-EMER GENC T SE pond E 34 PER N ENT

30

XXXXXXXXXXXXX XXX

XXX XX

XXXXXXXXXXXXX XXX

XXX XX

XX

CHEN ALB	28
(39)	29
STEL MED	34
(40)	21
AG REPEN	103
(47)	71
ALL VIN	100
(49)	86
CIRS ARV	55
(50)	93
TUS FARF (51)	100 100
CONV ARV	39
(52)	100
MAIZE	94
(58)	79
SORGHUM	56
(59)	50
RICE	82
(60)	43
GRNDNUT	112
(64)	93
SOYABEAN	97
(65)	86

.

.

DINITRAMINE		DINITRAMINE		DINIT
0.25 KG/HA		1.00 KG/HA		4.00
XXXXXXX XXXXXX	00		000000000000000000000000000000000000000	
XXXXXXX XXXX	00		00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	34 29	XXXXXXXX XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 100 71	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	28 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12 14	XX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

ITRAMINE OO KG/HA

.

.

XXXXXXXXXXXXXX XXXX

XXXXXXXXXXXXXX XXXXXXX

PRI EN GEN T SELE V IH EXPERIMENT

39

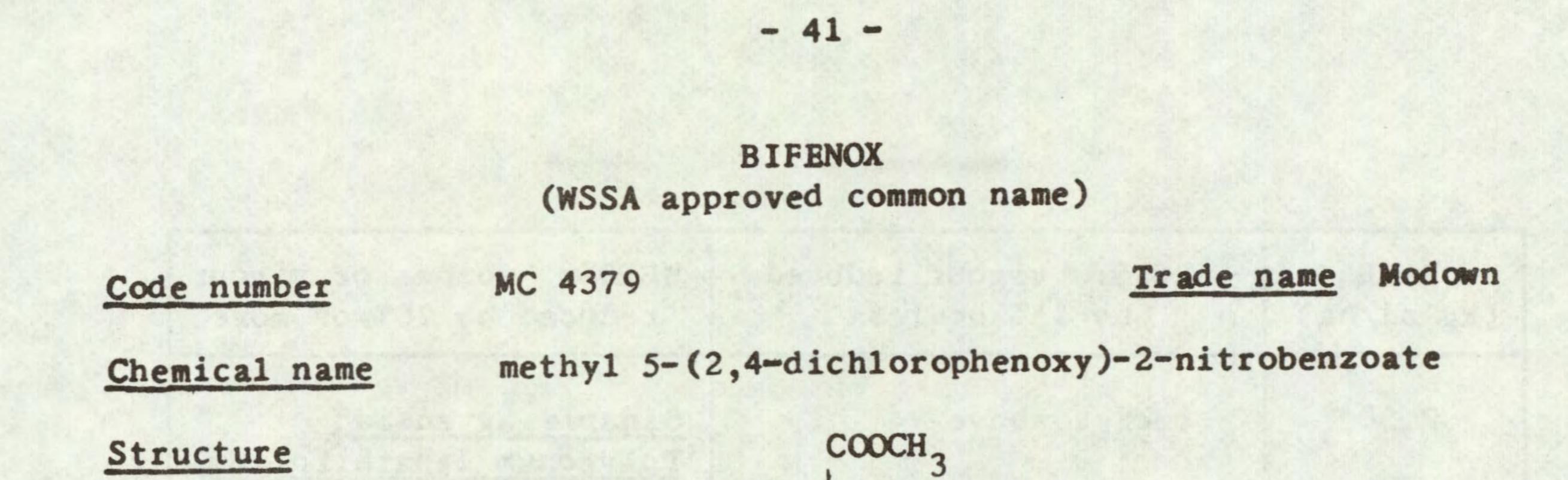
XXXXXXXXXXXX XXXX

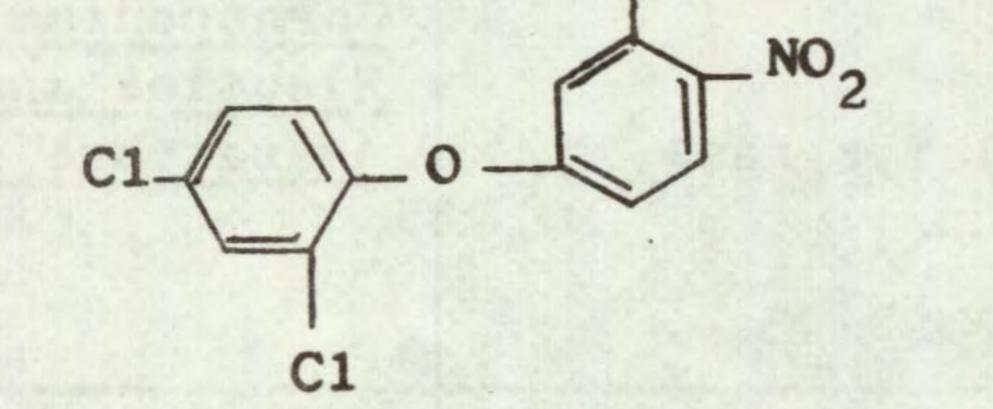
XXXXXXXXXX XX

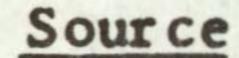
COTTON	90
(66)	86
JUTE	89
(67)	50
KENAF	87
(68)	100
SESAMUM	112
(70)	43
ELEU IND (74)	000
ECH CRUS	56
(75)	36
ROT EXAL	97
(76)	71
DIG SANG	4
(77)	21
AMAR RET	104
(78)	36
CYP ESCU	90
(85)	100
CYP ROTU	114
(86)	93
OXAL LAT	40
(87)	57

4

.


DINITRAMINE		DINITRAMINE		DINITRAMINE
0.25 KG/HA		1.00 KG/HA		4.00 KG/H
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	47	X X	00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 79		87 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		00	
	0 0		000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		000000000000000000000000000000000000000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 43		62 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X XXXX	000		00	
	000		000	
	80 86		000	
	122 100		49 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	000		000	


ITRAMINE DO KG/HA


XXXXXXXXXXXXX XXXXXX

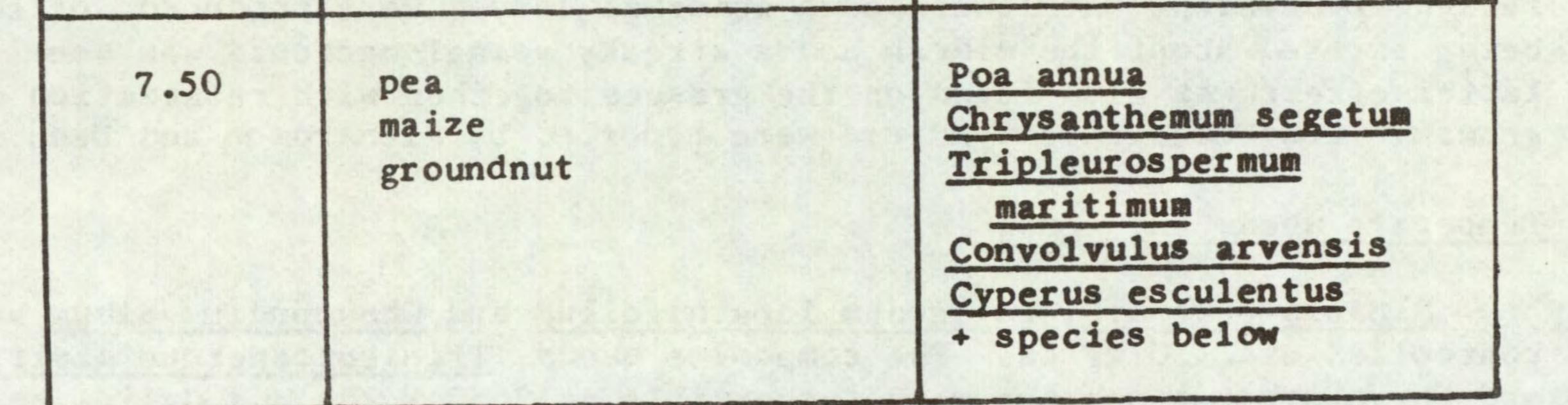
XXXXXXXXXX X

PRE-EMERGENCE SELECTIVITY EXPERIMENT

Mobil Chemical Company Research and Development Laboratories P O Box 240 Edison New Jersey 08817 USA

Information available and suggested uses

Manufacturer's information from 1973 reports control of certain broadleaved weeds and some grasses in soyabeans, maize, rice, sorghum, other small grains, safflower and sunflower. Suggested pre-emergence rates of application range from 1.12-2.24 kg ai/ha and 0.28-2.24 kg ai/ha postemergence. Directed spraying is necessary in certain crops but applications to rice and small grain crops can be overall. Combination with herbicides which are predominantly grass weed killers has improved the weed control spectrum.


Formulation used 24% w/v a.i. emulsifiable concentrate

Spray volume for selectivity experiment 352 1/ha (31.3 gal/ac)

RESULTS

Full histogram results are given on pages 44-47 and potential selectivities are summarised in the following Table.

 RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha	by 15% or less	reduced by 70% or more
(kg ai/ha	Uy 10/0 01 1000	

(Table continued overleaf)

RATE (kg ai/ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
2.50	species above + wheat barley oat perennial ryegrass field bean kenaf	<u>Sinapis arvensis</u> <u>Polygonum lapathifolium</u> <u>Chenopodium album</u> <u>Eleusine indica</u> <u>Amaranthus retroflexus</u>
0.83	None listed as no weeds controlled	None

- 42 -

Comments on results

General

The activity and post-emergence selectivity data on this herbicide were included in a previous report (Richardson and Dean, 1973b). In the former there was a high level of foliar activity on all broad-leaved species while pre-emergence applications were very active on small seeded species, especially kale. Herbicide incorporation tended to reduce phytotoxicity, compared with surface pre-emergence treatments, particularly on the small seeded species. This should be borne in mind when considering the results of the pre-emergence selectivity experiment where the herbicide was incorporated. The pattern and type of activity found was similar to that of the dinitro-phenyl ether herbicides.

Pre-emergence selective control of certain broad-leaved weeds, two annual grasses and <u>Cyperus esculentus</u> was obtained. Certain temperate and tropical legume and cereal crops were tolerant in addition to perennial ryegrass and kenaf.

Symptoms

Germination and emergence were unaffected except for <u>Convolvulus</u> <u>arvensis</u>, which failed to emerge at the highest dose. High rates inhibited susceptible broad-leaved species at the cotyledon stage and the main bud failed to develop. At lower doses abnormal leaves were produced, often being twisted about the midrib and a streaky veinal necrosis was seen. This latter effect was also found on the grasses together with retardation of growth. Post-emergence symptoms were reported by Richardson and Dean (1973b).

Temperate weeds and crops

<u>Sinapis arvensis</u>, <u>Polygonum lapathifolium</u> and <u>Chenopodium album were</u> controlled at 2.50 kg/ha. The composite weeds, <u>Tripleurospermum maritimum</u> and <u>Chrysanthemum segetum</u> were susceptible at 7.50 kg/ha and <u>Galium aparine</u> was reduced by 64%. <u>Convolvulus arvensis</u> failed to emerge at this rate and all root fragments subsequently rotted, while treatment at 2.50 kg/ha eventually killed 80% of the plants. [In a separate experiment, well established plants recovered from severe initial symptoms due to lack of effect on the root system]. All other perennial weeds were relatively resistant. The high resistance of Stellaria media was a serious disadvantage while Poa annua was the only grass weed to be controlled.

- 43 -

Pea showed outstanding tolerance at 7.50 kg/ha, and field bean was reduced by only 21% at this dose. Perennial ryegrass and the cereals, were tolerant at 2.50 kg/ha and were reduced in vigour by only 29 to 36% at 7.50 kg/ha.

Several weeds were controlled at doses where pea was resistant, most notably the composites and C. arvensis. The cereals, perennial ryegrass and field bean were all tolerant at 2.50 kg/ha, where S. arvensis, P. lapathifolium and C. album were susceptible.

Tropical weeds and crops

Amaranthus retroflexus was the most susceptible tropical weed although at lower doses plant number was affected more than vigour. Annual grass weeds were resistant, except for Eleusine indica which was controlled at 2.50 kg/ha. The perennials Cyperus rotundus and Oxalis latifolia both recovered from 7.50 kg/ha. Cyperus esculentus was susceptible at this dose and eventually at 2.50 kg/ha, although a certain degree of recovery was apparent at this lower dose.

Larger seeded crops tended to be more tolerant, with maize and groundnut being particularly resistant at 7.50 kg/ha. Soyabean and cotton were reduced by only 21-29% at both 7.50 and 2.50 kg/ha. At the latter rate rice, sorghum and sesamum showed marginal resistance and kenaf was tolerant.

E. indica, A. retroflexus and C. esculentus were controlled at rates where kenaf, maize and groundnut were tolerant.

Soil persistence

Bifenox showed a moderate period of soil persistence in bioassays using turnip. Applications of 2.50 and 7.50 kg/ha were barely detectable 21 and 36 weeks after treatment. Turnip showed little or no response to 0.83 kg/ha in the initial assay set up at spraying.

Possible uses and further testing

Bifenox has an interesting broad-leaved weed control spectrum, including certain problem weeds of peas and field beans. It is possible that the crops listed as tolerant at 2.50 kg/ha could withstand higher doses, and control of more broad-leaved weeds may then be expected. Furthermore the margin of selectivity in larger seeded crops could possibly be increased by surface pre-emergence application. The resistance of Stellaria media could be a serious disadvantage but this problem may be overcome if, as the manufacturer suggests, the herbicide is compatible with other broadleaved weed killers. The use of bifenox as a contact pre-emergence spray would seem worth further investigation. An earlier post-emergence selectivity test showed that other weeds, including S. media, can then be controlled. The possible susceptibility of immature C. arvensis and control of composite weeds in pea and field bean crops may be worth some further testing.

Apart from the selective control of C. esculentus in certain crops, little of interest was found for the tropical situation but further testing is required as a surface pre-emergence treatment.

WHEAT (1)	98 100
BARLE (2	Y)	83 100
OAT (3)	110 100
PER R (4		114 100
ONION (8		129 93
DWF E	EAN)	100
FLD B (10		100 100
PEA (11)	105
W CLC (12		111 100
TOMAT (14		98 100
KALE (15)	109
SWEDE (17		131 93

BIFENOX 0.83 KG/HA

-

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		98 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 79	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		89 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77 64	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	95 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 71	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		93 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	26 21	XXXXX XXXX	00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 57	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		90 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105 86	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		37 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4 21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		46 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12 14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		73 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64 36	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	47	XXXXXXXXXX XXXX	000000000000000000000000000000000000000	

BIFENOX

2.50 KG/HA

	_
٦	
1	
-	-

-	7
. (

BIFENOX

.50 KG/HA

XXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXX XXXXXXX

* XXXXXXXXXXXXXXX + XXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXX

XXXX XXXXX

XXXXXXXXXXXXXXX XXXXXXXXXX

+ XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX

PRE-EMERGENCE SEL E --EXPERIMENT

44

XXXXXXX

CARROT	94
(18)	93
LETTUCE (20)	97
SUG BEET	64
(21)	71
AVE FATU	95
(26)	100
ALO MYOS	126
(27)	100
POA ANN	86
(28)	93
SIN ARV	
(30)	108 79
(30)	79
RAPH RAP	91
(30)	79
RAPH RAP	91
(31)	100
CHRY SEG	63
(30)	79
RAPH RAP	91
(31)	100
CHRY SEG	63
(32)	79
TRIP MAR	98

.

.

TO ME STE

.

.

BIFENOX		BIFENOX		BIFENOX
0.83 KG/HA		2.50 KG/HA		7.50 KG/HA
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56	XXXXXXXXXXXX	12	XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	56	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4	x	0	
XXXXXXXXXXXXXX	14	XXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	132	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	108	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30	XXXXXX
XXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	50	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
XXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXX	68	XXXXXXXXXXXXXXX	24	XXXXX
XXXXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	0	
XXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX

.

.

IFENOX 50 KG/HA

.

.

XXXXXXXXXXXX + XXXXXXX

XXXXXXXXXXXXX + XXXXXXXXX

PRE EMI ER 2 ENC (1) SEL ECTIVIT EXPERIMENT

45

CHEN ALB	67
(39)	93
STEL MED	110
(40)	100
AG REPEN	86
(47)	100
ALL VIN	100
(49)	100
CIRS ARV	109
(50)	100
TUS FARF	100
(51)	100
CONV ARV	91
(52)	100
MAIZE	94
(58)	100
SORGHUM	112
(59)	100
RICE	106
(60)	100
GRNDNUT	75
(64)	100
SOYABEAN	97
(65)	93

.

.

0.00				
XXXXXXXXXXXXXXX	28	XXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 82	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX	50	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	52	XXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- 112	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXX	93	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- 105	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	64	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	76	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	50	XXXXXXXX
XXXXXXXXXXXXXXXXX	131	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 131	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXX	97	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	71	XXXXXXX

AND DESCRIPTION AND

.

BIFENOX 0.83 KG/HA

BIFENOX

2.50 KG/HA

BIFENOX

7.50 KG/HA

XXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXX XX

XXXXXXXXX XXXX

XXXXXXXXXXXXXXXX XXXX

XXXXXXXXXXXXX

XXXXXXX

XXXXXXXXXX XXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXX

.

PRI (m EMERGENCE SELECTIV EXPERI MENT

		BIFENOX		BIFENOX		BIFENC
SPECIES		0.83 KG/HA		2.50 KG/HA		7.50 KC
COTTON (66)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUTE (67)	26 64	XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		000	
KENAF (68)	87 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	27 64	XXXXXX XXXXXXXXXXX
SESAMUM (70)	75 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	150 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
ELEU IND (74)	81 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	26 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7 29	XXXXXXX
ECH CRUS (75)	103 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ROT EXAL (76)	92 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	99 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DIG SANG (77)	120 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMAR RET (78)	46 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13 86	XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
CYP ESCU (85)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU (86)	130 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	114 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OXAL LAT (87)	87 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

. . .

.

.

XOI

KG/HA

.

.

XXXXXX XXXX

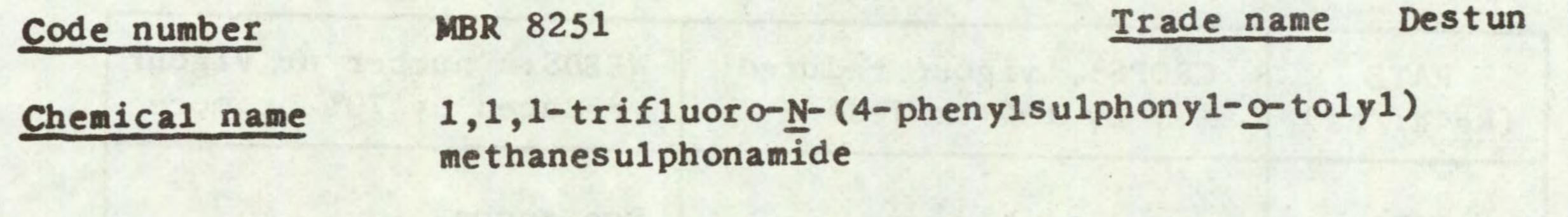
XX

XXXXX XXX

XXXXXXXXXX XXXXXXX

XXXX XXXX

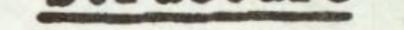
XXXXXXXXXX

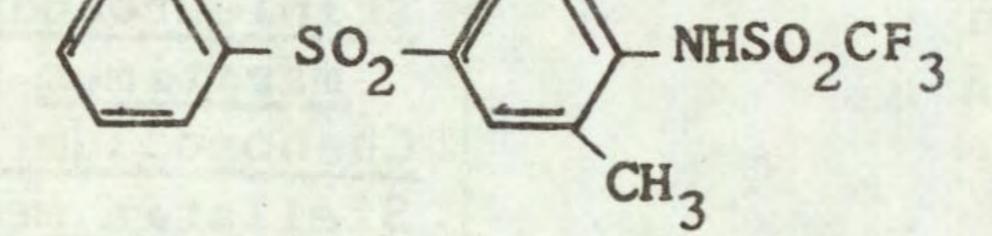

XXXXXXXXX

XXX XXXXXX

PR 1 T EMERGENCE SELECTIVITY EXPER IMENT

- 48 -


MBR 8251



Structure

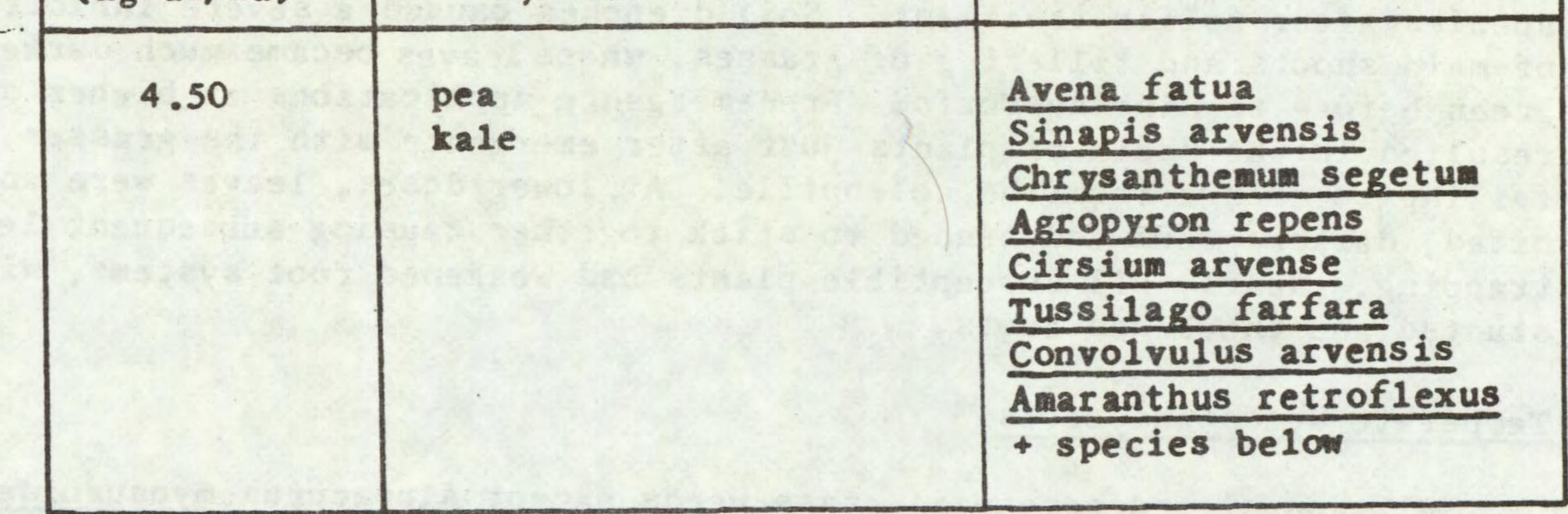
.

Source

3M Company 3M House Wigmore Street London W1A 1ET

Information available and suggested uses

Manufacturer's information received between 1971 and 1974 reports promising selective pre-emergence control of <u>Cyperus rotundus</u>, <u>Cyperus</u> <u>esculentus</u> and many grass and broad-leaved weeds at rates of 1.58 to 4.48 kg/ha, depending on soil type. The range of tolerant crops include alfalfa, cabbage, cotton, cucurbits, flax, peanuts, rape, rice, soyabeans, strawberries, sunflowers and tobacco. Application may be made post-planting, post-transplanting or to established plants. Soil surface applications are reported to produce the best results, but rainfall or irrigation within 7 days is necessary for optimum performance. Mixtures with other herbicides have been tested to improve broad-leaved weed control.

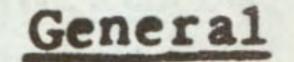

Formulation used 50% w/w a.i. wettable powder

Spray volumefor activity experiment 352 1/ha (31.3 gal/ac)for selectivity experiment 352 1/ha (31.3 gal/ac)

RESULTS

Full histogram results are given on pages 52-56 and potential selectivities are summarised in the following Table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more



(Table continued overleaf)

RATE (kg ai/ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
1.50	species above + dwarf bean field bean radish maize groundnut soyabean	Poa annua Tripleurospermum maritimum Chenopodium album Stellaria media Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Cyperus esculentus Cyperus rotundus
0.50	No crops listed as no weeds controlled	None

- 49 -

Comments on results

In the activity experiment there was a high degree of soil activity but little effect due to the foliar spray. Pre-emergence applications were more active than post-emergence soil drenches. With the exception of <u>Agropyron repens</u> and dwarf bean, pre-emergence surface treatments were more phytotoxic than those incorporated. This fact should be borne in mind when considering the results of the pre-emergence selectivity experiment, where the herbicide was fully incorporated.

The high level of activity of MBR 8251 was confirmed in the preemergence selectivity experiment where there was good control of a wide range of temperate and tropical weeds including several perennials. The tolerance of legume crops was good and potential selectivities were also found in maize, kale and radish.

Symptoms

Mild necrosis and shiny leaf surfaces were observed on broad-leaved

species after foliar treatment. Soil drenches caused a severe inhibition of main shoots and tillering of grasses, where leaves became much darker green before turning necrotic. Pre-emergence applications at higher doses resulted in the death of plants just after emergence with the grasses often failing to emerge from the coleoptile. At lower doses, leaves were inhibited, darker green and tended to stick together causing subsequent leaf trapping. Nearly all susceptible plants had weakened root systems, with stunted and thickened roots.

Temperate weeds and crops

All annual and perennial grass weeds, except <u>Alopecurus myosuroides</u>, were controlled by 4.50 kg/ha. Only 1.50 kg/ha was required to control Poa annua. With the exception of <u>Galium aparine</u>, <u>Raphanus raphanistrum</u> and <u>Polygonum lapathifolium</u>, all annual and perennial broad-leaved weeds were controlled at 4.50 kg/ha or lower. The susceptibility of the perennial species, particularly <u>Allium vineale</u>, was most impressive. This species was not controlled 5 weeks after treatment but plants gradually became weaker and eventually there was complete kill of shoots and underground bulbils even at 1.50 kg/ha. All perennials were eventually killed at 4.50 kg/ha and some mortality was observed at 1.50 kg/ha. (NB. <u>Oxalis</u> <u>latifolia</u>, which was included in this experiment as a tropical weed but does also occur in temperate regions, was particularly tolerant of MBR

- 50 -

8251).

A high degree of tolerance was shown by the large seeded legumes. Pea was tolerant at 4.50 kg/ha while field bean and dwarf bean were only slightly reduced in vigour. Dwarf bean was completely tolerant to the activity experiment pre-emergence surface spray of 4.50 kg/ha while the same dose incorporated reduced vigour by only 15%. Crop tolerance was also found with radish and kale at 1.50 and 4.50 kg/ha respectively but swede proved very sensitive. It should be emphasised that kale tolerance was only found when the herbicide was incorporated; surface pre-emergence sprays of 4.50 kg/ha in the activity experiment were highly toxic. Onion was particularly sensitive.

Most annual and all perennial broad-leaved and grass weeds were selectively controlled at doses where pea and kale were tolerant. Certain potential selectivities were also found in dwarf bean, field bean and radish. It should be noted that at later assessments a number of perennial weeds were controlled, or severely reduced, at doses where these crops were

tolerant.

Tropical weeds and crops

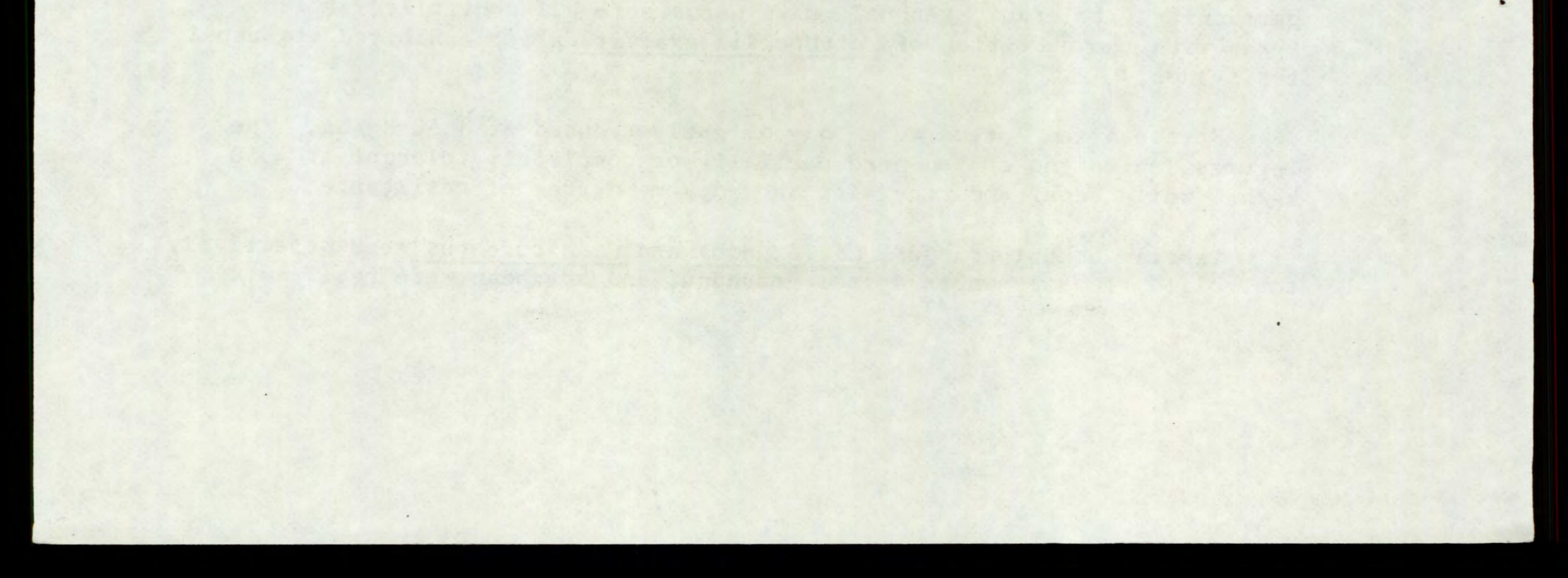
MBR 8251 was outstandingly active on both <u>Cyperus spp. Cyperus</u> <u>esculentus</u> was somewhat more sensitive and no shoots had emerged at 1.50 kg/ha nine weeks after treatment. [This agrees with the results of Gentner (1973) who reported control of <u>C. esculentus</u> for 10 weeks following surface application.] Some eventual recovery was apparent at 0.50 kg/ha. Similar results were found with <u>C. rotundus</u> i.e. no shoot emergence at 4.50 kg/ha, slight emergence but eventual kill at 1.50 kg/ha and recovery at 0.50 kg/ha. Tubers examined from the higher doses were discoloured and presumably not viable. [In a recent report Dean and Parker (1974) found that tubers of <u>C. rotundus</u> planted at 2 or 8 cm were adequately controlled by 2.0 kg/ha following surface application or incorporation to 2 or 8 cm. At 1.0 kg/ha control was more affected by the method of application.] Broad-leaved weeds tended to be more resistant and <u>Oxalis latifolia</u> was particularly tolerant. Annual grass weeds were all controlled at 1.50

kg/ha with the exception of <u>Rottboellia exaltata</u> which exhibited its usual resistance.

Soyabean and cotton were only slightly reduced at 4.50 kg/ha. The legumes, maize and cotton were partially or completely tolerant at 1.50 kg/ha, while kenaf and rice also showed some degree of resistance.

Certain annual grasses, <u>C. rotundus</u> and <u>C. esculentus</u> were selectively controlled at rates where maize, groundnut and soyabean were resistant.

Soil persistence


Using perennial ryegrass as the test species, 0.50 kg/ha could not be detected ten weeks after application. Herbicide loss at 1.50 kg/ha was rapid initially but from 14-54 weeks after treatment the level remained relatively constant causing a 28-48% reduction in shoot fresh weights. At 4.50 kg/ha all plants were killed up to 14 weeks after treatment but subsequent fresh weights were reduced by only 60-70% from 30-54 weeks.

- 51 -

Possible uses and further testing

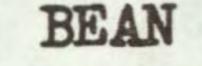
MBR 8251 is of considerable interest as a pre-emergence herbicide, giving good control of grass and several broad-leaved weeds. Of even greater interest however is the susceptibility of perennial weeds, particularly <u>Allium vineale</u>. Although this weed is more of a local rather than a general problem, it has proved consistently resistant to nearly all selective herbicides. The selectivity between kale and <u>S. arvensis</u> is of interest and deserves further investigation.

The potential selective control of <u>C. rotundus</u> and <u>C. esculentus</u> in maize, groundnut and soyabean was most encouraging and the degree of selectivity was good. Some other crops such as kenaf, rice, cotton and even sorghum may be able to withstand doses of MBR 8251 at which significant reduction of these and certain annual grass weeds may be achieved. It is evident, however, from other results that the actual method of application and depth of crop planting may be altered to increase levels of selectivity (Dean and Parker, 1974). Results have recently been obtained to suggest that the use of an antidote seed dressing may also assist with increasing levels of selectivity. Conditions at, and following application, may be critical and this gould well explain the disappointing results obtained by Terry (personal communication) in the field.

ACTIVITY EXPERIMENT

- 52 -

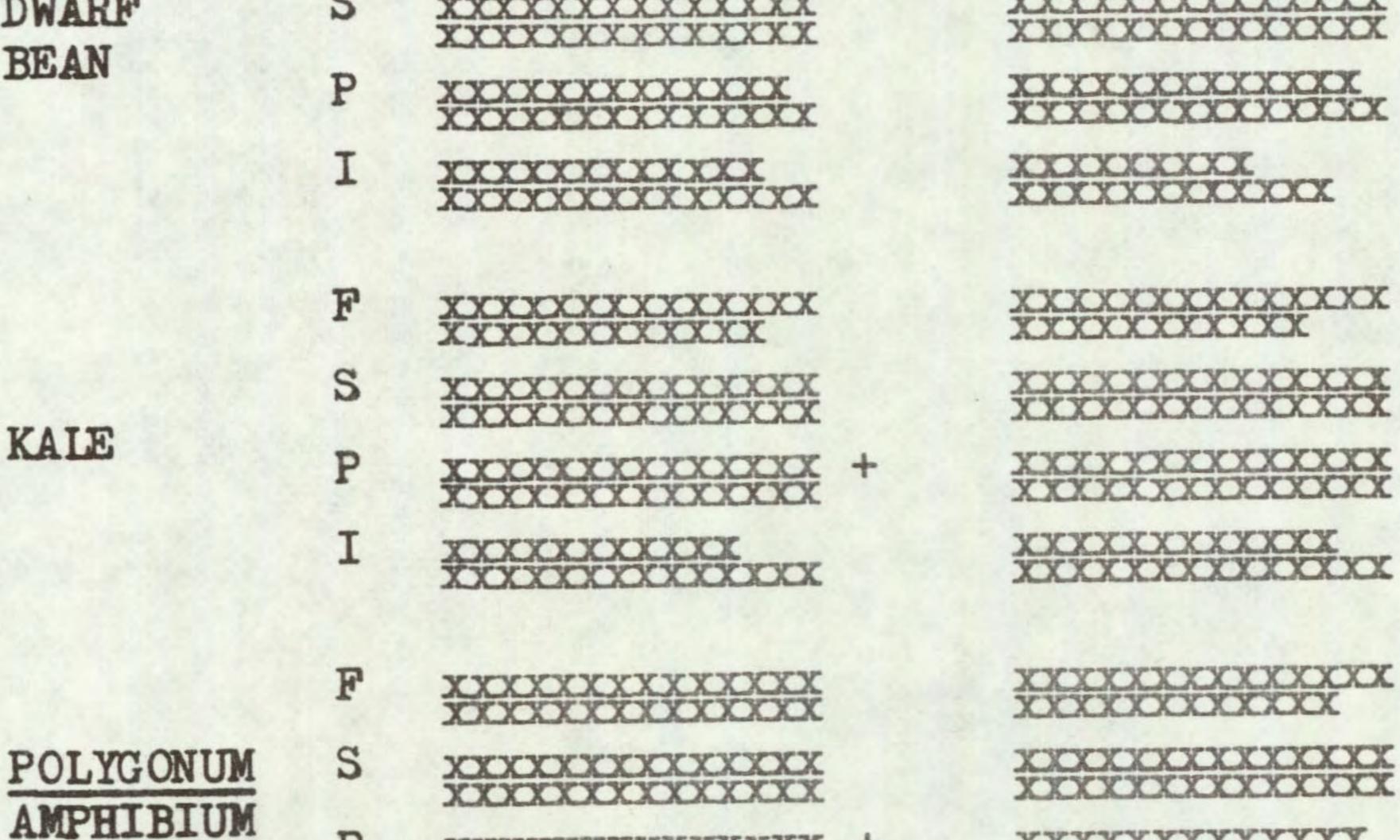
MBR 8251


0.125 kg/ha

0.75 kg/ha

4.50 kg/ha

F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX


XXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX

DWARF

.

5

P

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+

XXXXXXXXXXXXXXXX

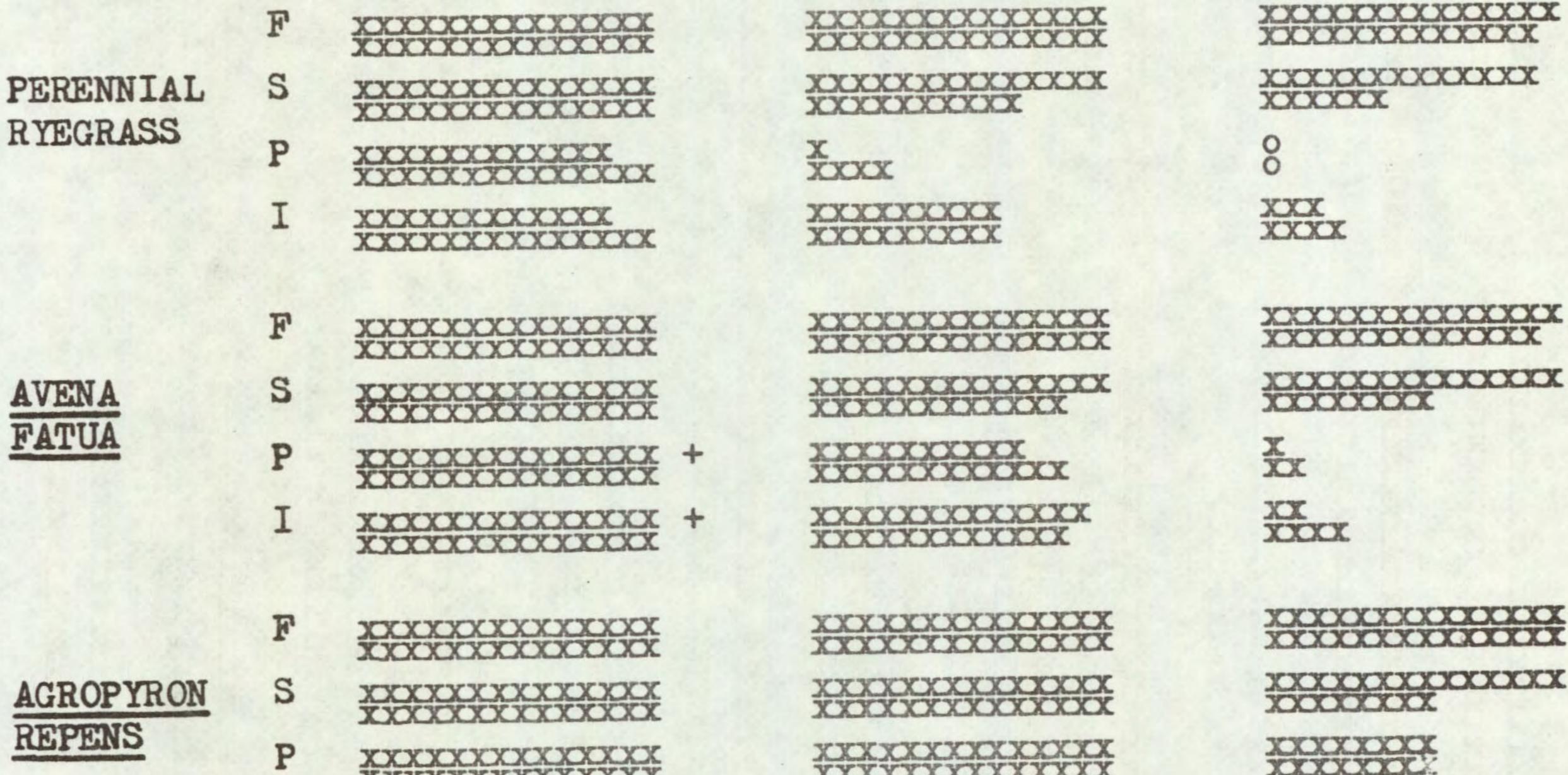
XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXX


XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

O 0

00

XXXXXXX XXXXXXX

KALE

	XXXXXXXXXXXXXX	XXXXXXXXXXXX	
I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

		MBR 8251		MBR 8251		MBR
SPECIES		0.50 KG/HA		1.50 KG/HA		4.50
WHEAT (1)	98 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 79		91 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY (2)	89 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT (3)	110 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PER RYGR (4)	93 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21 36	XXXX XXXXXXXX	00	
ONION (8)	69 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		00	
DWF BEAN (9)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN (10)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)	120 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER (12)	107 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 43	XXXXXXXXXXX
томато (14)	98 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
KALE (15)	64 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	118 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 86	XXXXXXXXXXX
SWEDE (17)	84 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

e d •

¥ d.

.

8251

KG/HA

XXXXXXXXXX XX

+ XXXXXXXXXXXX + XXX

XXXXXXXXXX

XXXXXXXXX XXXXXX

XXXXXXXXXXXX XXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

+ XXXXXXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXX

. . .

53

PRI

00

ER

GENCE

SELEC

1-1

~

perel.

(perror)

EX

PER

IMENT

-

CARROT	81
(18)	79
LETTUCE	112
(20)	86
SUG BEET	84
(21)	71
AVE FATU	95
(26)	86
ALO MYOS	138
(27)	86
POA ANN	82
(28)	57
SIN ARV	60
(30)	100
RAPH RAP	91
(31)	100
CHRY SEG	92
(32)	100
TRIP MAR	110
(33)	93
POL LAPA	88
(35)	100
GAL APAR	93
(38)	100

. , .

MBR 8251		MBR 8251		MBR 8
0.50 KG/HA		1.50 KG/HA		4.50 K
XXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6	x
XXXXXXXXXXXXXXXXX	43	XXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	52	XXXXXXXXXX
XXXXXXXXXXXXXXXXX	43	XXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXX	68	XXXXXXXXXXXXXX	52	XXXXXXXXXX
XXXXXXXXXXXXXXX	57	XXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXX	68	XXXXXXXXXXX
XXXXXXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	180	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXXX
XXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXX	13	XXX	0	
XXXXXXXXXXX	14	XXX	0	
XXXXXXXXXXXXX	78	XXXXXXXXXXXXXXXXX	30	XXXXXX
XXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	43	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXX	59	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44	XXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	26	XXXXX	0	
XXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	118	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXX	57	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX

. . .

BR 8251 50 KG/HA

. . .

XXXXXXX

XXXXX XXX

XXXXX XXXXXX PR in EMERGENCE SEL. EC < IT EXPERIMENT

54

XXXXX

XXXXXXXXX

CHEN ALB	44
(39)	86
STEL MED	46
(40)	64
AG REPEN (47)	94 79
ALL VIN	92
(49)	93
CIRS ARV	136
(50)	100
TUS FARF (51)	100 93
CONV ARV	91
(52)	100
MAIZE	103
(58)	100
SORGHUM	91
(59)	86
RICE	94
(60)	79
GRNDNUT	131
(64)	93
SOYABEAN	106
(65)	100

e 4 4

MBR 8251 MBR 8251 0.50 KG/HA 1.50 KG/HA XXXXXXXXXX 29 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	MB
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	4.5
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\$	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \times \times$	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $	
$\frac{1}{43} \times \times$	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	CXXXXX
	CXXXX
XXXXXXXXXXXXXXXX + 55 XXXXXXXXXXXXXXXXX	CX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	CXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	xxxx
xxxxxxxxxxxx 64 xxxxxxxxxxxxxxxxx 43 xxx	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
xxxxxxxxxxxx 71 xxxxxxxxxxx 43 xxx	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	xxxx
	XXXX

e . . .

BR 8251

XXXXXXXXXXX

XXXXX

COX

XXXXXXXXXXXX +

XXXXXXXX

× 4 •

PRE-EMERGENCE SELECTIVITY EXPERIMENT

COTTON	100
(66)	86
JUTE	63
(67)	79
KENAF	98
(68)	93
SESAMUM	137
(70)	57
ELEU IND	74
(74)	86
ECH CRUS	94
(75)	93
ROT EXAL	94
(76)	93
DIG SANG	79
(77)	86
AMAR RET	111
(78)	100
CYP ESCU	130
(85)	57
CYP ROTU	138
(86)	93
OXAL LAT	120
(87)	93

• • •

MBR 8251		MBR 8251		MBF
0.50 KG/HA		1.50: IG/HA		4.50
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4 14	XXXX	000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 21	XXXXX XXXXX	000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30 21	XXXXXXX XXXXX	000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13 7	XXX
	114 79		102 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	11 36	XX XXXXXXXXX	15 7	XXX
	59 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 29	XXXXXX
	000		000	
	41 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
	47 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 79	

. . .

BR 8251

. . .

50 KG/HA

XXXXXXXXXXXXXX XXXXXXXXXX

and the second second

XXXXXXXXXXXX X

PRE-

EMERGENCE

SELECTI

VIT

K

EXPERIMENT

56

XXX

XXXXXXXXXXXXXX

ACKNOWLEDGEMENTS

We are most grateful to the Statistics Department, ARC Letcombe Laboratory for processing the experimental data; to Mrs. S. O'Keeffe, Miss A.M. Hitchcock and Messrs R.H. Webster, R. Porteous, D.J. Cambray and E.S. Peck for technical and practical assistance; to Miss P.J. Kitching for the preparation and typing of this report and to the various commercial firms for providing the chemicals and relevant technical data.

- 57 -

The work of the ODM Tropical Weeds Group was carried out under Research Scheme R 2119 financed by H.M. Ministry of Overseas Development.

REFERENCES

AGAMALIAN, H. and KEMPEN, H. (1971) Layering trifluralin to control field bindweed. Res. Progress Rep., Western Soc. of Weed Science, 7.

AGAMALIAN, H., LANGE, A.H., ELMORE, C.L., KEMPEN, H. and MASSEY, G. (1972) Sub-surface layering of herbicides in fruit, nut, and vine crops for control of bindweed (<u>Convolvulus arvensis</u>). <u>Proc. 24th Annual</u> <u>California Weed Conf.</u>, 47-48.

BARDSLEY, C.E., SAVAGE, K.E. and WALKER, J.C. (1968) Trifluralin behaviour in soil. 2. Volatilisation as influenced by concentration, time, soil moisture content and placement. J. Agron., 60 (1), 89-92.

DEAN, M.L. and PARKER, C. (1971) The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum; and their activity against Oxalis latifolia. <u>Tech. Rep. agric. Res. Coun. Weed</u> <u>Res. Orgn., 19</u>, pp 24.

DEAN, M.L. and PARKER, C. (1974) Factors affecting the selectivity of six soil acting herbicides against <u>Cyperus rotundus</u>. <u>Tech. Rep. agric</u>. <u>Res. Coun. Weed Res. Orgn.</u>, <u>31</u>, pp 22.

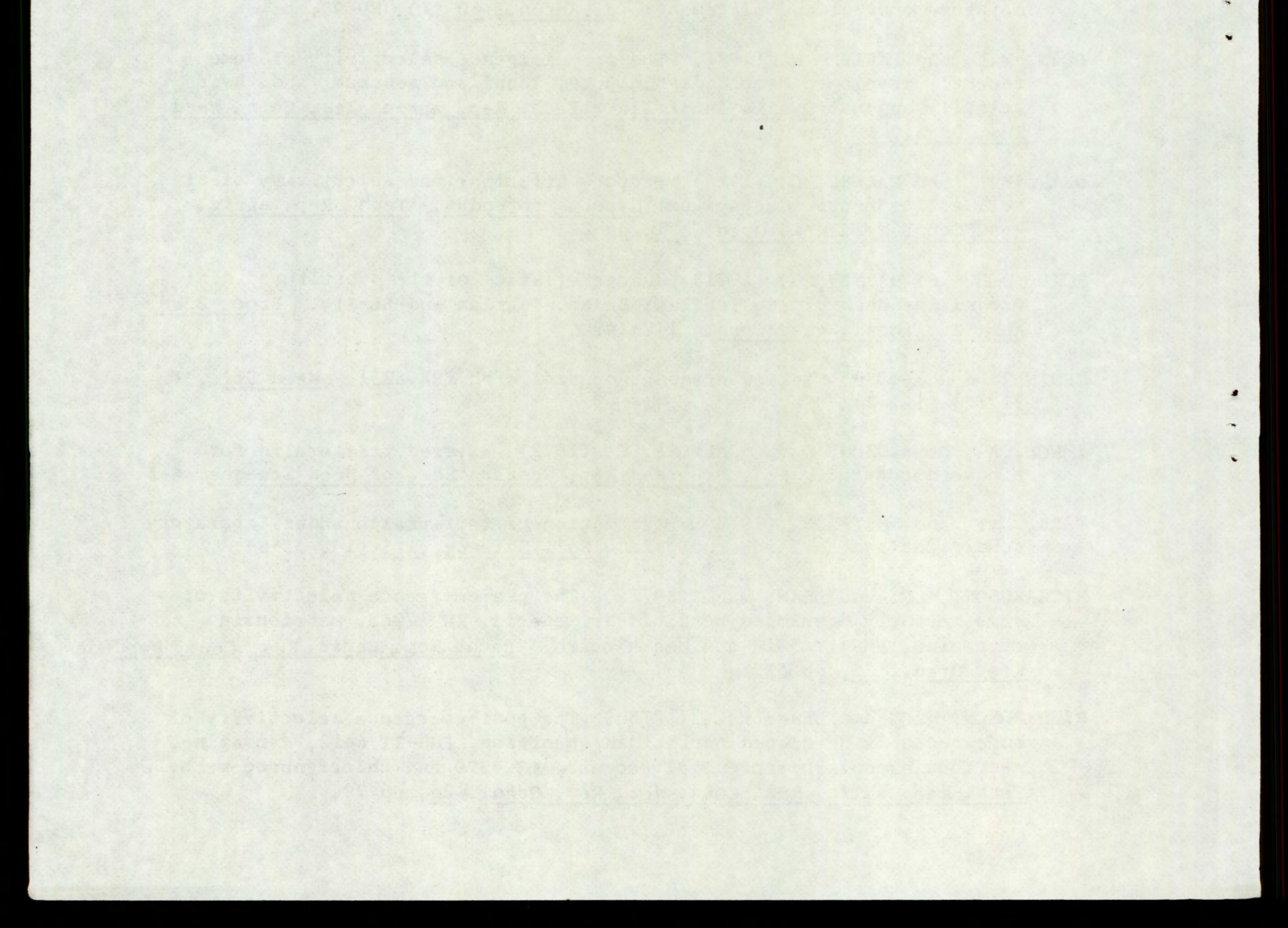
FORD, D.H. and MASSEY, G. (1971) Characteristics of the substituted dinitroaniline herbicides, Treflan, Balan, Paarlan and EL-119. Proc. 23rd Ann. California Weed Conf., 142-147.

GENTNER, W.A. (1973) Yellow nutsedge control with MBR 8251. Weed Sci., 21 (2), 122-24.

LANGE, A., DONALDSON, D. and ALMORE, C. (1972) Layered trifluralin for bindweed control. Res. Progress Rep. Western Soc. of Weed Science, 4-5.

PARR, J.F. and SMITH, S. (1973) Degradation of trifluralin under laboratory conditions and soil anaerobiosis. Soil Science, 115 (1), 55-63.

RICHARDSON, W.G. and DEAN, M.L. (1973a) The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. <u>Tech. Rep. agric. Res. Coun. Weed</u> <u>Res. Orgn., 25</u>, pp 57.


RICHARDSON, W.G. and DEAN, M.L. (1973b) The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, dyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379 and chlorfenprop-methyl. Tech. Rep. agric. Res. Coun. Weed Res. Orgn., 26, pp 79.

```
- 58 -
```

```
SMITH, C.B.S. and DAY, D.F. (1967) Treflan in the U.K. Part I: Notes on
     some further trials. Elanco International Agricultural Chemicals
    Conf., Rome, 1967.
```

WARNER, L.C. (1973) Sub-surface layering of trifluralin with a moldboard plough for field bindweed control. Proc. Western Weed Science Soc., 26, 27-29.

WRIGHT, W.L. and WARREN, G.F. (1965) Photochemical decomposition of trifluralin. Weeds, 13 (4), 329-331.

Technical reports available

٠

*

.

- 5. A survey of the problem of aquatic weed control in England and Wales. October, 1967. T.O. Robson. Price - £0.25.
- 6. The botany, ecology, agronomy and control of <u>Poa trivialis</u> L. roughstalked meadow-grass. November 1966. G.P. Allen. Price - £0.25.
- Flame cultivation experiments 1965. October, 1966. G.W. Ivens.
 Price £0.25.
- 8. The development of selective herbicides for kale in the United Kingdom. 2. The methylthiotriazines. Price £0.25.
- 9. The post-emergence selectivity of some newly developed herbicides (NC 6627, NC 4780, NC 4762, BH 584, BH 1455). December, 1967. K. Holly and Mrs. A.K. Wilson. Price - U.K. and overseas surface mail - £0.25; overseas airmail - £0.50.
- The liverwort, <u>Marchantia polymorpha</u> L. as a weed problem in horticulture; its extent and control. July, 1968. I.E. Henson. Price - £0.25.
- 11. Raising plants for herbicide evaluation; a comparison of compost types. July, 1968. I.E. Henson. Price £0.25.
- Studies on the regeneration of perennial weeds in the glasshouse;
 I. Temperate species. May, 1969. I.E. Henson. Price £0.25.
- Changes in the germination capacity of three <u>Polygonum</u> species following low temperature moist storage. June, 1969. I.E. Henson. Price - £0.25.
- Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May, 1970. I.E. Henson. Price - U.K. and overseas surface mail - £0.25; overseas airmail - £0.50.
- 15. Methods of analysis for herbicide residues in use at the Weed Research Organization. December, 1970. R.J. Hance and C.E. McKone. Price -U.K. and overseas surface mail - £0.25; overseas airmail - £0.50.
- 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during Spring 1970. November, 1970.

J.G. Elliott and P.J. Attwood. Price - £0.25.

- 17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January, 1971. W.G. Richardson, C. Parker and K. Holly. Price - U.K. and overseas surface mail -£0.25; overseas airmail - £0.50.
- 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November, 1971. A. Phillipson. Price - U.K. and overseas surface mail - £0.12; overseas airmail - £0.34.

- The pre-emergence selectivity of some recently developed herbicides 19. in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M.L. Dean and C. Parker. Price - U.K. and overseas surface mail - £0.25; overseas airmail - £0.45.
- A survey of cereal husbandry and weed control in three regions of 20. England. July 1972. A. Phillipson, T.W. Cox and J.G. Elliott. Price - U.K. and overseas surface mail - 20.35; overseas airmail -20.75.

.

*

*

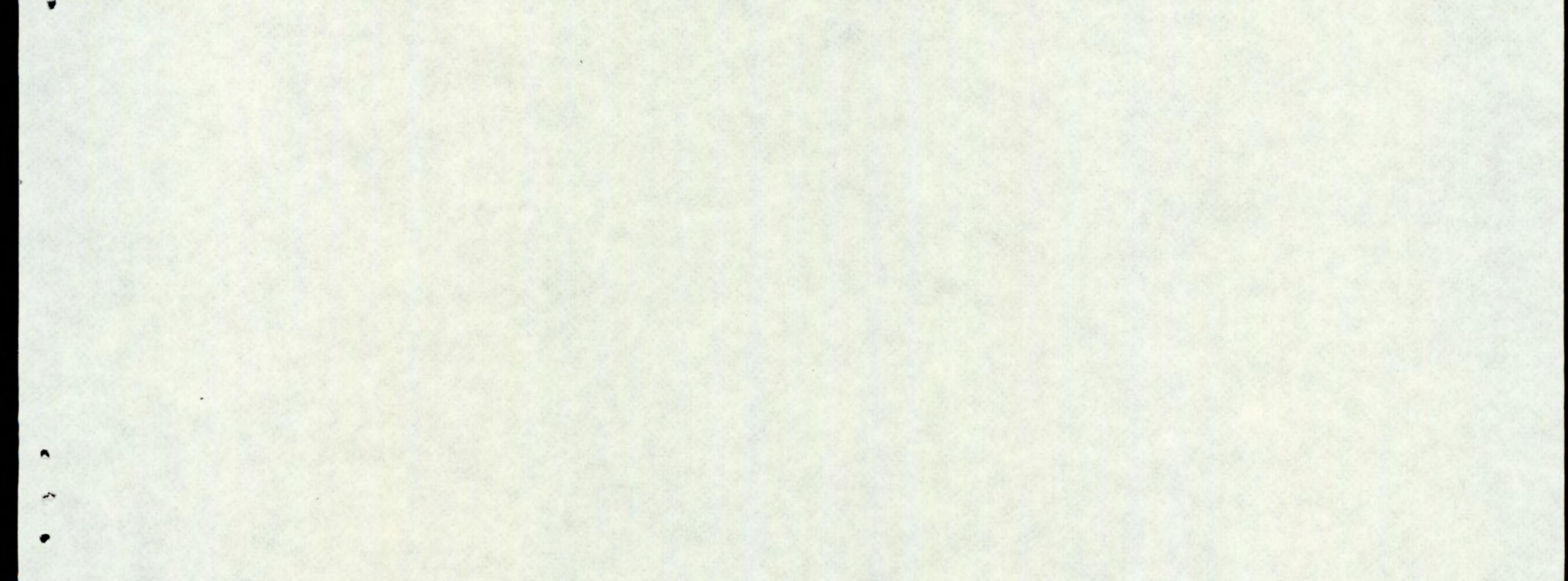
- An automatic punching counter. November 1972. R.C. Simmons. 21. Price - U.K. and overseas surface mail - £0.30; overseas airmail -£0.50.
- The pre-emergence selectivity of some newly developed herbicides: 22. bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W.G. Richardson and M.L. Dean. Price - U.K. and overseas surface mail - £0.25; overseas airmail - £0.45.
- A survey of the presence of wild oats and blackgrass in parts of the 23. United Kingdom during summer 1972. A. Phillipson. Price - U.K. and overseas surface mail - £0.25; overseas airmail - £0.45.
- The conduct of field experiments at the Weed Research Organization. 24. February 1973. J.G. Elliott, J. Holroyd and T.O. Robson. Price -U.K. and overseas surface mail - £1.25; overseas airmail - £1.47.

The pre-emergence selectivity of some recently developed herbicides: 25. lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W.G. Richardson and M.L. Dean. Price - U.K. and overseas surface mail - £1.75; overseas airmail - £2.20.

- The post-emergence selectivity of some recently developed herbicides: 26. bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W.G. Richardson and M.L. Dean. Price - U.K. and overseas surface mail - £3.31; overseas airmail - £3.56.
- Selectivity of benzene sulphonyl carbamate herbicides between various 27. pasture grasses and clover. October 1973. A.M. Blair. Price - U.K. and overseas surface mail - £1.05; overseas airmail - £1.30.
- The post-emergence selectivity of eight herbicides between pasture 28. grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A.M. Blair. Price - U.K. and overseas surface mail - £1.00; overseas airmail - £1.25.
- The pre-emergence selectivity between pasture grasses of twelve 29. herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A.M. Blair. Price - U.K. and overseas surface mail - £1.30; overseas airmail - £1.50.
- Herbicides for the control of the broad-leaved dock (Rumer obtusifolius 30. L.). November 1973. A.M. Blair and J. Holroyd. Price - U.K. and overseas surface mail - £1.06; overseas airmail - £1.30.

- 31. Factors affecting the selectivity of six soil acting herbicides against <u>Cyperus rotundus</u>. February 1974. M.L. Dean and C. Parker. Price - U.K. and overseas surface mail - £1.10; overseas airmail -£1.35.
- 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazone, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidan. June 1974.
 W.G. Richardson and M.L. Dean. Price U.K. and overseas surface

mail £3.62; overseas airmail - £3.88.


-

.

...

33. A permanent automatic weather station using digital integrators. September 1974. R.C. Simmons. Price - U.K. and overseas surface mail - £0.63; overseas airmail - £0.88.

34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W.G. Richardson and M.L. Dean. Price U.K. and overseas surface mail - £2.50; overseas airmail - £2.76.

