Data Decision Trees For BioControl: An Easy-to-Use Tool

Nov 7, 2023
IBMA

Presentation Objective \& Overview

IBMA
Numin
$>$ Presenting the Data DT
> Natural Substances Definition
$>$ The Format of the Data DT
$>$ Key Principles of the Data DT
$>$ Details

- Case-Studies
> Wrap-Up: General Advantages of the Data DT

Presentation Objective \& Overview

$>$ Presenting the Data DT
> Natural Substances Definition
> The Format of the Data DT
$>$ Key Principles of the Data DT
\Rightarrow Details
> Case-Studies
> Wrap-Up: General Advantages of the Data DT

IBMA has developed Three Data Decision Trees

What is the Data DT about?

- It is all about making regulatory easier interpretable
- It contains a tiered approach used to indicate potential risk areas
- Branched Data Decision Tree that addresses:

a.	Identification, characterisation and analyses
(3)	Effects on human health
Residues	
Environmental fate and behaviour	

What is the Data DT NOT about?

- New data requirements
- Detailed risk assessments
- New technologies?
- Exact studies and Guidelines to use
- Low Risk criteria
- Efficacy

Reference for Natural Substances: Citation

- Title: Data Decision tree for identifying potential risks for natural substances when used in plant protection
- Authors: Marloes Busschers, Roma Gwynn, Lara Ramaekers, Jennifer Lewis \& Francesco Greco
- Journal: Biocontrol Science and Technology, 33:7, 597-629, 2023
- Where to find? DOI:10.1080/09583157.2023.2210268

Presentation Objective \& Overview

$>$ Presenting the Data DT
$>$ Natural Substances Definition
> The Format of the Data DT
$>$ Key Principles of the Data DT
$>$ Details
> Case-Studies
> Wrap-Up: General Advantages of the Data DT

Natural Substances: Definition

INTENATIONAL EIOCOMTRON

IBMA Natural Substances Definition:
Natural substances consist of one or more components that originate from nature, including but not limited to: plants, algae/microalgae, animals, minerals, bacteria, fungi, protozoans, viruses, viroids and mycoplasmas. They can either be sourced from nature or are nature identical if synthetized. This definition excludes semiochemicals and microbials.

NATURAL SUBSTANCES CATEGORIES:

SINGLE ENTITIES
Nature-Identical Single Entities
 whether critical components might appear.
*Question 3: The single entities need to be identifiable using analytical methods, to distinguish them from other components that have no impact on the mode of action

Comments/Examples per Category

Inorganic/Mineral Mixtures

Inorganic/Mineral Single entities

Plant Mixtures
Plant Single Entities

Animal Mixtures
Animal Single Entities
Micro-organism Mixtures
Micro-organism Single Entities
Nature-Identical Mixtures
Nature-Identical Single Entities

Milled mineral mixtures obtained from mining or other inorganic source eg paraffinic oil
'Pure' minerals obtained from mining/refineries/other inorganic source eg copper, sulphur, kaoline, ferric phosphate, bicarbonate
Including natural oils from plant origin eg cinnamon oil - use botanical guideline eg garlic extract, pyrethrins
Purified plant extracts Eg cinnamaldehyde, citric acid, abamectin, Dodecan-7-ol
Including natural oils from animal origin - less likely to produce toxic component and less persistence eg Blood meal Purified Animal extracts Eg Pelargonic acid
Extracts of, and metabolites from, micro-organisms - can be covered partly by micro-organism decision tree (dead microbes)? Eg yeast cell walls, ABE-IT 56
Purified extracts of, and metabolites from, micro-organisms eg gibberellins
Including Fermentation based extracts
Purified fermentation based extracts/synthetic chemistry/synthetic biology
Examples:

- purified (poly) peptide/protein, nucleic acids (non-transformation DNA/RNA technologies
including additional molecules linked to it, other single entities
- Microbial sourced Sulphur
- 6-benzyladenine

Presentation Objective \& Overview

$>$ Presenting the Data DT
> Natural Substances Definition
$>$ The Format of the Data DT
> Key Principles of the Data DT
$>$ Details
> Case-Studies
> Wrap-Up: General Advantages of the Data DT

Natural Substances Data Decision Tree

THE FORMAT

- Presentation: Peer-reviewed Publication
- Introduction
- General definitions and recommendations
- Section 1 to 5: Specific data decision tree:
- Section 1 data decision tree addresses the requirements needed for Section 1 and also determines the classification of the NS in group 1, 2 or 3 (adapted from botanical Manual).
- This group classification needs to be used in Section 2 and 3. The groupings are not used in Section 4 and 5.
- Section 6 (Efficacy): No specific data decision tree. Refer to EPPO Manual for efficacy testing of low-risk substances (PP 1/296 (1)).
- An applicant is required to go through each section data decision tree starting by the Section 1 data decision tree.

Natural Substances Data Decision Tree

THE FORMAT

- Presentation:

$>$ Decision trees in table format and summarized in flow charts (flow charts to be done by Nov 15)
EXAMPLE

1.1 Recognized Specification						No Defifation? Spes the NS comply with a recognized specification (see general guidelines above). Proceed to 1.2	Classification in Group 1. Proceed to Section 2 Decision Tree.

1.2 Max concentration for suspected critical components				
1.2	Has a max concentration been established for the suspected critical components?	No Proceed to 1.3	Yes Classification in Group 2. Proceed to Section 2 Decision Tree.	

Presentation Objective \& Overview

$>$ Presenting the Data DT
> Natural Substances Definition
> The Format of the Data DT
$>$ Key Principles of the Data DT
> Details
> Case-Studies
> Wrap-Up: General Advantages of the Data DT

Key Principles of the Data DT: Keep it simple and pragmatic

- If the whole NS (technical grade) shows no unacceptable effects on human health/environment/NTOs, then:
$>$ No additional value to test its components separately.
$>$ Acceptable that a significant portion of components in the NS may remain unknown
- Integrate and re-use botanical guidance where relevant
- If allowed for food and feed and the natural substance is equivalent, no more action needed
- Is exposure below/similar to background level?
- Readily biodegradability of the natural substance
- Before recommending to perform higher tier studies, assess the potential use of:
$>$ Existing literature
$>$ Bridging arguments
$>$ Risk assessment waivers

Presentation Objective \& Overview

$>$ Presenting the Data DT
> Natural Substances Definition
$>$ The Format of the Data DT
> Key Principles of the Data DT
$>$ Details
> Case-Studies
> Wrap-Up: General Advantages of the Data DT

Determining the group is the starting point

The key parameter and starting point: Identity

IBMA
wixexionit

1.1 Recognised Specification				
1.1	Does the NS already have a recognised specification (e.g food/feed use)?	No Classification in Group 3. Define a specification* Proceed to Branch 2 Data Decision	Tree	Yes Proceed to step 1.2
1.2 Suspected critical components				
1.2	Are suspected critical components present in the NS? ${ }^{\text {* }}$	No Classification in Group 1. Proceed to Branch 2 Data Decision		Yes Proceed to step 1.3
1.3 Information about critical components and Natural Substance				
1.3	Collect/research as much information on the NS and/or the critical components as possible (literature). Research/investigate if the components are present in already well known/used products \rightarrow collect all relevant information from that product. Classification in Group 2. Proceed to Branch 2 Data Decision Tree			

Effects on Human Health

NTERNATINAL EIISONTROL

Residues

Environmental fate

- Background level check
- Biodegradation check; e.g. does the natural substance degrade?
- Exposure check: Can exposure be excluded?
- Depending on the group, either studies or QSAR \& calculations

- Literature is the backbone
- For food or feed additives or pharmaceuticals, mammals and bird studies can be waived
- If data on adverse effects of the Natural Substance active substance (other than those listed) are known from public literature, these need to be considered.
- Absence of information is insufficient; robust information or logical thinking needs to be available to conclude on a safe use.

Presentation Objective \& Overview

$>$ Presenting the Data DT
$>$ Natural Substances Definition
$>$ The Format of the Data DT
$>$ Key Principles of the Data DT
$>$ Details
> Case-Studies
> Wrap-Up: General Advantages of the Data DT

Natural Substances Data DT: let's Test the Tree

CASE STUDIES

1. Nature Identical Single Entities: Eva Van Hende (Biotalys NV)
2. Plant mixtures: M, Ina Kleeberg (Trifolio)
3. Micro-organism mixtures: Maggie Rodriguez (Profarm ex: Marrone Bio Inno)
\rightarrow Outputs of 2 days workshop with an expert group of IBMA members

Comparison Data DT - 1107 Regulation:

Nature-Identical Single Entity Case

Evoca/Biotalys - Antibody for use in crop protection

Nature-Identical Single Entity	1107/2009	NS Data DT
Section 1	Characterization needed of the Bioprocess-related nonrelevant components	No characterization needed, testing of the full technical product in later phases (including active ingredient and bioprocess-related non-relevant components) is sufficient to characterize the product as a whole. Identification of the individual molecules is not bringing extra value.
Section 2	After discussion with the authority, we came to the same data requirement as the decision tree.	\rightarrow Run acute tox 6-pack \rightarrow Run Genotox test (TIER 1) (Ames) \rightarrow No need to run carcino \rightarrow Run 28-day study: not a part of acute tox, but needed by default? \rightarrow No need for 90-day oral study, which would be a good element out of this decision tree
Section 3	MRL exemption applied for, after agreement with the authorities in pre-submission meeting	MRL exemption would be a logic outcome because of readily biodegradability. This could be clear if there are small adaptations made to the decision tree.
Section 4	No data needed. Because the regulation is focusing on the active, the bioprocess related non-relevant components are not yet giving rise to	No data needed. Because of readily biodegradability of the protein, no e-fate studies or risk assessments need to be done. Similar conclusion on data generation as 1107.
Section 5	All studies needed.	All studies needed. Similar conclusion on data generation as 1107.

Comparison Data DT - 1107 Regulation:

Plant Mixture Case
 Confidential/Trifolio - Plant extract obtained from kernels with insecticidal efficacy

Plant Mixtures		
Section 1	Need to identify $>80 \%$ and all components above 1\%: irrealistic and not feasible	define raw material, process and quality (fingerprint) + lead component: more fit-for-purpose
Section 2		Similar conclusion on data generation as 1107
Section 3	Establish MRL for 4 components present in the NS: irrealistic and not feasible	Only establish MRL for lead component
Section 4	Full E-fate data package is needed, or else justification/waivers for every point	More weight given to ready biodegradability/primary degradation of the lead component
Section 5	Prone to push for higher tier studies	First questions the relevance of and need for higher tier studies

Comparison Data DT - 1107 Regulation:

IBMA

Microbial Mixture Case
Chromobacterium subtsugae strain PRAA4-1T + Fermentation media (inactive microbe in final formulation)/Profarm

Microbial Mixtures	1107/2009	NS Data DT
Section 1	Unclear guidance/position around proper product characterization of NS and pushing registrants to address full product composition as an agrochemical	Allows to use biological properties as criteria for characterization of NS For example: WGS, proxy marker secondary metabolites, CFU's, biological properties Omics tools to screen for compounds of toxicological concern
Section 2		Similar conclusion on data generation as 1107
Section 3	Currently designed to assess discrete chemical compounds that is not technically feasible for natural substances that can be complex mixture of compounds	Biological property approach, e-fate data, and acute tox data allow a WoE approach to MRL exemption
Section 4	Currently designed to assess discrete chemical compounds that is not technically feasible for natural substances that can be complex mixture of compounds	Uses the biodegradability of NS to determine data requirements
Section 5		Similar conclusion on data generation as 1107 Specifically mentions the potential use of: - Existing literature - Bridging arguments - Risk assessment waivers

Presentation Objective \& Overview

$>$ Presenting the Data DT
> Natural Substances Definition
> The Format of the Data DT
$>$ Key Principles of the Data DT
$>$ Details
> Case-Studies
> Wrap-Up: General Advantages of the Data DT

General Advantages of Data DT

- Easy-to-Use Tool
- Fit for purpose for BioControl
- Provide focus for Pre-submission meetings: identify the right points for discussion
- Provide structure and clarity on what is needed
- The Data DT provides the possibility to develop tailored solutions which gives flexibility for registration and helps to avoid gaps in the EFSA conclusion

HELPS TO:

- Improve the time to registration by decreasing the level of uncertainty
- Helps to achieve the Green Deal ambitions of EU and to provide new BioControl solutions to help solve farmer pain points

Contact me:
Lara Ramaekers
Lara.Ramaekers@biobestgroup.com +32476865659

Back-Up Slides

THE JOURNEY

- IBMA has formed working groups within each professional group (microbials, natural substances and semiochemicals) to develop the decision trees
- All IBMA members were asked to participate in this decision tree development

	Section 1: Analytics and Identification	Section 2: Toxicity	Section 3: Residues	Section 4: E-fate	Section 5: Ecotox and nontarget testing
Moderator	David Cary	Lara Ramaekers	Dawn Williams	Francesco Greco	Ulf Heilig
Members	Ina Kleeberg	Anne Alix	Jennifer Lewis	Annabel Levert/Cédric Bertrand	Patrick Kabouw
	José Carvalho	An Vanden Bosch	Beate Ruch	Adi Cornelese	Ruediger Hauschild
	Khalid Akdi/Loli Gomes	Karin Lauber	Sue Young (Certis)	Eva Mandrisch	Sian Ellis
	Keith Pitts		Severine PELTE severine.pelte@sbmcompany.com		Fabien Schroeder (Certis)

Natural Substances Data Decision Tree

IBMA

THE JOURNEY

Natural Substances Data Decision Tree

THE JOURNEY

The approach is in line with 1107 (283 \& 284)

IBMA
NTERNATINAL EIocontrol
(1) 2
1.1. The information shall be sufficient to evaluate the foresecable risks, whether immediate or delayed, which the active substance may entail for humans, including vulnerable groups, animals and the environment and contain at least the information and results of the studies referred to in this Annex.
1.2. Any information on potentially harmful effects of the active substance, its metabolites and impurities on human and animal health or on groundwater shall be included.
1.3. Any information on potentially unacceptable effects of the active substance, its metabolites and impurities on the environment, on plants and plant products shall be included.
(1) 2
1.4. The information shall include all relevant data from the scientific peer reviewed open literature on the active substance, metabolites and breakdown or reaction products and plant protection products containing the active substance and dealing with side-cffects on health, the environment and non-target species. A summary of this data shall be provided.
Group
1.5. The information shall include a full and unbiased report of the studies conducted as well as a full description of them. Such information shall not be required, where one of the following conditions is fulfilled:
(a) it is not necessary owing to the nature of the product or its proposed uses, or it is not scientifically necessary;
(b) it is technically not possible to supply.

In such a case a justification shall be provided.

Contributing to New Data Requirements for Natural Substances
 SECTION 1: ANALYTICS AND IDENTIFICATION

- Section 1 data decision tree addresses the requirements needed for Section 1 and also determines the classification of the NS in group 1, 2 or 3 (adapted from botanical guidance).
- Guidelines:
$>$ The fingerprint approach is good but should also incorporate a leading compound approach.
$>$ There should be flexibility in the fingerprint with the level of identification say 90% of peaks being identified.
$>$ The fingerprint should be justified and covers quantification of lead compounds in critical functions and activity functions.
$>$ Leading compounds may be different for different risk areas.
$>$ For the fingerprint no marker compounds need to be identified for each study / dilution. These can be identified at the start of the study not each time a new diluted test sample is prepared as this should not be scientifically needed or possible.

Contributing to New Data Requirements for Natural Substances SECTION 2: HUMAN TOXICITY

- One data decision tree per group (group 2 decision tree can be requested to also go through group 3 decision trees in case of concerns for acute tox evaluation).
- All studies preferably with the formulated product or on the NS (technical grade) in case of several similar formulations. In all cases, avoid to do studies on isolated components that are part of the NS (technical grade).
- Group 1 Decision tree:
$>$ Partial or full acute tox information
$>$ Published literature and food/feed use + compare exposure to food consumption
- Group 2 Decision tree:
$>$ Use Group 1 Decision tree to asses need for partial or full acute tox information
$>$ Focus on suspected critical components: exposure level - use of published information - modelling (eg QSARs) studies
- Group 3 Decision tree:
$>$ By default, information needed on acute tox, genotox, 28 days short term tox
$>$ Exposure level - concerns in default testing? If yes, additional information needed (e.g. carcinogenicity - 90 days tox)

Contributing to New Data Requirements for Natural Substances SECTION 3: RESIDUES AND CROP METABOLISM

- Guidelines:
> Objective: Assess NS exposure by identifying residues of the NS in food or animal feedstuffs for purposes of dietary risk assessment and setting Maximum Residue Levels (MRLs).
$>$ Information has been collected regarding the presence of suspected critical components in the NS (technical grade).
$>$ Studies with the NS (technical) or formulated product. Formulation changes or application on (some) differing crops may be addressed by bridging studies.
- One decision tree for Group 1 and one decision tree for Group 2 and 3 together
- Further improvements needed for this section
- Looking for additional expertise with residue chemistry background

Contributing to New Data Requirements for Natural Substances SECTION 4: E-fate and behaviour

- No use of group 1-2-3
- Structure:
$>$ Step 1: Data collection/information \rightarrow background levels, published information, studies
$>$ Step 2: Soil AND water/sediment (cover e.g. overspray) exposure.
> Step 3: Surface water exposure.
$>$ Step 4: Groundwater exposure.
$>$ Step 5: Air exposure.
- NTO-tree needs to be harmonized with e-fate approach.

Contributing to New Data Requirements for Natural Substances SECTION 5: Non-target organisms

- Guidelines:

$>$ Groups 1, 2, 3 (according to EU Botanicals Guidance Doc.) are not to be distinguished! NTO effects cannot be generalised for any of these groups.
> Starting point for all NTO groups is possible exposure
$>$ All NTO groupings need to be addressed but specifications could provide good information.
$>$ NTOs are in groupings according to exposure of their habitat. Consider GAP! Non-exposure and/or the specificity of effect can exclude the need for information.
$>$ If substance rapidly degraded: no chronic studies required, unless repeated application.
$>$ Some natural substances also used as food, feed, food or feed additives and pharmaceuticals can be excluded for certain tests if the exposure through the PPP use is \leq food/feed/pharma exposure. This is addressed at organism group level and only valid for mammals (food, food add. use) and for the animals that are targets for the feed (including feed add.) and pharma uses.
$>$ Estimated environmental concentrations (applied dose according to worst-case GAP) shall be considered. Those for food additives used as PPPs are expected to generally exceed those for food uses.

Contributing to New Data Requirements for Natural Substances SECTION 5: Non-target organisms

Which organism groups (habitats) are expected to be exposed?

Mammals
Birds
Pollinators
Terrestrial arthropods including soil-dwelling arthropods
Soil invertebrates (e.g. worms, nematodes)
Non-target terrestrial plants
Microorganisms
Aquatic organisms

For each group:

$>$ Published information available?
$>$ Identify need for risk assessment
$>$ Identify need for data requirements

