

Achieving Sustainable Agricultural Systems

Richard Pywell, Sam Cook & Ben Woodcock 25th Jan 2024

UK Centre for Ecology & Hydrology

Achieving Sustainable Agricultural Systems

- 6 year Government funded research programme
- Uniting expertise in crop and environmental science, with support from the farming industry
- Co-develop ecologically-based sustainable agricultural systems that are efficient & resilient to future shocks
- Provides data, tools & a long-term research infrastructure for the farming industry

UK Centre for Ecology & Hydrology

Biotechnology and Biological Sciences Research Council

Natural Environment Research Council

Improving biological pest control

Diversity is the key to effective IPM

- Meta-analysis concluded natural pest control most effective where:
 - Management enhanced the functional diversity of predator traits / characteristics
 - Hunting strategy, prey preference, size, habitat (ground, foliage) etc

UCCIC.

Snyder Biological Control 2019 Greenop et al. Ecological Applications 2018

Habitat for beneficials

- Study of four commercial farms comparing flower-rich vs. typical grass margins
- Sowing flowers <u>increases</u> abundance & diversity of 'beneficials'

Woodcock et al. Agriculture, Ecosystems, Environment 2016; https://doi.org/10.1016/j.agee.2016.06.023

Flower-rich habitats support increased natural pest control

- Pest control from predators greatest adjacent flower-rich margins
- Spill-over of beneficials declines after 50m from field edge

Woodcock et al. Agriculture, Ecosystems, Environment 2016; https://doi.org/10.1016/j.agee.2016.06.023

Diversity brings resilience in conventional farming systems

- Impact of field-realistic pesticide exposure on predator aphid feeding after 1 and 5 days
- This is a measure of how resilient individual species are to pesticides (toxicodynamics)

Greenop, A., Cook, S.M., Wilby, A., Pywell, R.F. & Woodcock, B.A. (2020). Journal of Applied Ecology, 57, 2441-2453

Diversity brings resilience in conventional farming

- Impact of field-realistic pesticide exposure on predator aphid feeding after 1 and 5 days
- This is a measure of how resilient individual species are to pesticides (toxicodynamics)

Greenop, A., Cook, S.M., Wilby, A., Pywell, R.F. & Woodcock, B.A. (2020). Journal of Applied Ecology, 57, 2441-2453

The Hillesden Experiment

Department for Environment Food & Rural Affairs

The Hillesden farm platform

- 12-year study on a 1,000ha commercial arable farm
- Fifteen 50-60ha 'farmlets' = three treatments replicated FIVE times:
 - Control business as usual 0% land removed from production
 - 3% land removed from arable production and turned to two wildlife habitats
 - 8% land removed for six wildlife habitats
- Precision yield data to target habitat creation in awkward/low yielding areas (margins & corners)

https://agzeroplus.org.uk/hillesden

Using wildlife to support increased yields

(2015) Wildlife-Friendly Farming Increases Crop Yield: Evidence for Ecological Intensification. Proceedings of the Royal Society, Series B, 282, 20151740

Using wildlife to support increased yields

(2015) Wildlife-Friendly Farming Increases Crop Yield: Evidence for Ecological Intensi Proceedings of the Royal Society, Series B, 282, 20151740

Some of the first evidence of sustainable intensification

Wildlife-friendly farming increases crop yield: evidence for ecological intensification

Richard F. Pywell¹, Matthew S. Heard¹, Ben A. Woodcock¹, Shelley Hinsley¹, Lucy Ridding¹, Marek Nowakowski² and James M. Bullock¹

 $^1\rm NERC$ Centre for Ecology and Hydrology, Wallingford 0X10 8BB, UK $^2\rm Wildlife$ Farming Company, Bicester 0X26 1UN, UK

PROCEEDINGS B

rspb.royalsocietypublishing.org

Cite this article: Pywell RF, Heard MS, Woodcock BA, Hinsley S, Ridding L,

Yields increased over time in fields with wildlife habitat creation, despite removal of cropped land from field edges

The ASSIST Experiment

Can promoting natural pest control work in the real world?

Multi-farm Experiment

- Network of 20 commercial arable farms
- Real-world test of eco-agriculture with agri-tech farming
- Opportunity for technology transfer & complementary research
- Similar experiment on grass farms

Solution Constant Constant

assist In-field strips working in with tramlines

- Strips programmed in with tramlines as headlands
- Farm 'around' the ends so no increase in corners

Google Earth

Satist Impacts on yield

- 18 sites for 4 years
- Cereals and oilseed rape crops
- Sustainable management systems treatments 2 & 3 have positive effects on yield
- The more complex system (Treat.3) is on average better
- It takes time for biological systems to respond

Satist Impacts on yield

- 18 sites for 4 years
- Cereals and oilseed rape crops
- Sustainable management systems treatments 2 & 3 have positive effects on yield
- The more complex system (Treat.3) is on average better
- It takes time for biological systems to respond

Preliminary results using Information Theoretic multi-model averaging based on plot level yield measures

Second Structural Equation Modelling

Statistical approach looking at direct and indirect drivers of yield, including combined area of field margins and infield strips (green infrastructure)

Decision Support Tools

Towards sustainable, climate-neutral farming

Natural Environment Research Council

Biotechnology and Biological Sciences Research Council

National Centre for Earth Observation

Plymouth Marine Laboratory

Practitioner biodiversity monitoring

- Mobile App to enable non-specialists to monitor habitats
- Al image recognition for automatic ID of plant species and habitats from photos
- Contextual information to improve
 accuracy
- Survey function and data provided on associated beneficial insects
- In development.....<u>Ground beetles (IPM),</u> Moths, Worms (soil health)

AgZero+ Developing new tools to support IPM

Natural pest control is a 'black box' - Is management working to increase pest control?

<image>

Pitfall trapping

Farmland Carabids

Al image recognition of pitfall trap contents (~90% accurate)

- Abundance of predators
- How effective are they
- Long-term goal is to relate these to thresholds for spraying

https://agzeroplus.org.uk/agzeroplus-tools

Practical guides to sustainable farming

UK Centre for Ecology & Hydrology 7 videos 215 views Updated today

Play all

Ŵ

=+

ン Shuffle

Video series exploring ways that farmers can reduce their carbon footprint, make best use of pesticides and help bring wildlife back to their farms.

Part of the AgZero+ programme: https://agzeroplus.org.uk/

Conclusions

- 1. Mechanistic experiments show it is possible to increase natural pest control
- 2. This is important for increasing resilience of farming systems
- 3. Co-design with farmers resulted in practical approaches to achieving this (strips = SFI)
- 4. Multi-site experiments on commercial farms show yield benefits in the real world
- 5. Al-driven decision support tools (with training & advice) will support future IPM

Sustainable arable systems & practices

Practical and cost effective for farmers

Biodiversity, pollination and natural pest control

Protecting soils and maximising their health

System level solutions

Scales relevant to biological process

Special thanks to all the ASSIST farmers and the UKCEH and RRes field teams

https://www.ceh.ac.uk/e-surveyor

ΥÅ

Natural Environment Research Council

> **Biotechnology and Biological Sciences Research Council**

