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,2/  Assessing The Risk Of Viruses From Niche Tuber Crops Of Andean Origin

Morgan Wodring (1), Kirsty Mclnnes (2), Neil Boonham (2), Fryni Drizou (3), lan Adams (1), Sam McGreig (1), Inés Vazquez-Iglesias (1), Adrian Fox (1)
1: Fera Science Ltd UK, 2: Newcastle University, UK, 3: The Royal Horticultural Society, UK

Introduction and methods

* Background: Increased trade volumes have led to an increase of biological
invasions®. In 2021, 73% of consumers on the European continent shopped
online, including 91% of people from the United Kingdom, 36% of which was
cross-border? °
Aim: To use niche tuber crops from the internet as a case study for the risk of
unregulated trade in crops via e-Commerce websites.

Methods: French (9) and Polish (27) Oxalis tuberosa (oca, shown right) tubers
bought on eBay were sequenced with HTS and found to contain six putative
novel viruses; two possible Caulimoviruses and likely six viruses belonging to the
genera: Nepovirus, Potexvirus, Allexivirus, Capulavirus and Ophiovirus.

Non-native tubers purchased from the internet contained 6 novel virus
candidates.

Results Next steps
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MUSH-ROOM FOR IMPROVEMENT: STUDYING PYRENOPEZIZA
BRASSICAE RACES TO MANAGE LIGHT LEAF SPOT IN OILSEED RAPE
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Mathematical modelling of non-persistently
transmitted plant viruses: the importance of
including aphid vector feeding behaviours

@ElinFalla
) github.com/elinfalla
B4 ekf32@cam.ac.uk

Elin Falla, Nik J. Cunniffe, Department of Plant Sciences, University of Cambridge, UK. Funded by University of Cambridge Department of Plant Sciences and Gonville & Caius College.

Background: aphid feeding and NPT viruses

* Non-persistently transmitted (NPT) plant viruses are characterised by
their short retention time (minutes to hours} in the vector

< NPT viruses are horizontally (plant-to-plant) transmitted exclusively by
aphid vectors

« Aphids have distinct feeding behaviours that determine virus
transmission between plants (see diagram below)

Key features of aphid NPT virus retention:
+ Aphids can remain infective for probing 1 to ~3 different healthy plants
+ Feeding on a plant guarantees the aphid loses the virus

Multiple Infective Probes {MIP)

* No VRAIL

g

Previous mathematical models

Variable Rate of Aphid
Infectivity Loss (VRAIL) model
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Methods
3 — Aphid feeds on/rejects plant

= prabahility aphic feeds on plant

1 - Infective aphid lands onplant 2 - Aphid probes plant
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VRAIL-MIP model also has larger epidemic Proportion of infocted plants, |/ (1+5)
size than MIP model for @ < 0.25. This is
likely as NPT viruses are usually

transmitted by non-colonizing aphids that

are likely to reject plants (Figure 2)

Probabiiity aphid lnses virus from proking (p) — 01 05 — 1
Figure 1: The rate of aphid infectivity loss decreases with
(1) increasing 1/(S+l) and (2) decreasing probability of
infectivity loss from probing (p), in VRAIL-MIP model.
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Probability of aphid feeding {w)
— VRAIL madel / VRAIL-MIP model (p=1) — MIP model
Figure 2: The increase in final epidemic size with
decreasing probability of an aphid feeding (after
probing) is larger in the models with VRAIL.

Model parameters were matched to 0.5 equilibriumI/H. p =
1in VRAIL-MIP model.
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Figure 3: Decreasing p (probability of
infectivity loss from probing) in VRAIL-MIP
model increases final epidemic size. Larger
epidemics than VRAIL model with same
parameterization.

References: L. V. Madden, M. J. Jeger, and F. van
den Bosch. A theoretical assessment of the effects

* Our VRAIL-MIP model is more realistic to aphid behaviour
than previous models of NPT virus transmission, with an
easily extensible structure

* The VRAIL-MIP model structure often results in larger
predictions of epidemic size than previous models
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of vector-virus transmission mechanism on plant
virus disease epidemics. Phytopathology,
90(6):576{594, 2000.

R. Donnelly, N. J. Cunniffe, J. P. Carr, and C. A.
Gilligan. Pathogenic modification of plants
enhances long-distance dispersal of
nonpersistently transmitted viruses to new hosts.

Ecology, 100(7):e02725, 2019.
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3. MICROSCOPY OBSERVATION OF SF EFFECTS‘

1. INTRODUCTION ON P. BRASSICAE DEVELOPMENT  MONITORING OF SPORE
s s . ) . . . 1. Treatment } 2.0 day post- #  3.ScanningElectron & [PRODUCTION
A§ the third most |mportant_ aral?le crop in the UK, oilseed rape is subje(_:t to numerous devastating with crude 2 inoculation /" Microscopyand spores N E
diseases and pests (Fig. 1). It is estimated that fungal pathogens are responsible for more than £100M of SF extract - (dpi) g counting ... § [
oilseed rape crop yield losses annually.® Light leaf spot, caused by the phytopathogen Pyrenopeziza m= - & I HIE
brassicae (Fig. 2), is a polycyclic disease presenting several infection cycles through both asexual and - E ||
(Fig : ) p y» V! o P 5 8 v g CONTROL TREATMENT ®  standard £
sexual sporulation, making it difficult to control. hyphal &
. . . . B
Hormone(s), named Sex Factors (SF), produced during Pyrenopeziza brassicae sexual reproduction, fgrowlt: Tina {deys post ecuaton)
; . K . Rk ) rom 1to
have been identified to contribute to the switch from asexual to sexual sporulation. Applied to.the 5 dpi
cultures, in the absence of a compatible mating partner, Sex Factors . ’ -
ind N ; | lation and production of sterile 7 6 dpi: early formation of conidiophore,
EIUEE @ okl @ EEE) lsporu & P dpi specialized hyphal branch producing conidia
sexual structures.? Used as a disease control agent, (asexual spores)
SF has exciting potential to contribute to prevent
the spread of this epidemics across the crops. . . :
7 dpi: from conidiophores to acervuli, asexual
fruiting body bearing conidiophores
9
dpi 11 dpi: visual darkening of the cultures (Fig. 5)
Secondary Sexual resulting from the formation of a film, covering
wi infection sporul SUM the previously produced conidia
NT rain-dispersed ation MER
ER asexual e S 8
spores N
Primary
Sexual spores infection
germinate and wind-borne 11
lead to asexual sexual dpi
sporulation spores P! & 2
Figure 5: Stereomicroscopy 11 dpi of A. control
cultures B. treated cultures
12 dpi: decrease of the concentration of
conidia as the film spreads over the
13 rultiirec
dpi 13 dpi: a dense mycelium grows over the
Figure 1: Distribution of Light Leaf Spot (LLS) across the world.* film
15 dpi: cultures have turned black (Fig.6). 90%
inhibition of asexual sporulation observed
compared to controls
2. SEX FACTORS INHIBIT ) i@
o i
Figure 2: Symptoms of Light leaf spot on leaves and stems of 15
ASEXUAL SPORULATION OF P. Brassica napus. Images ® dpi
Prooﬁ%ﬂs&cﬁﬁrom P. brassicae sexual crossing Activity of SF on P
e rr X
MAT1-1 MAT @ brassicae s %13 Figure 6: Stereomicroscopy 15 dpi of A. control
et A . = i i « Itures B. treated cult
“o SEX s H = 4. DISCUSSION & CONCLUSION cultures 5. treated cutures
. 151 50 g T ———————
1 +® MAT1-1or ¥ i Current work on the identification of Sex Factor(s) using HPLC has narrowed down to a few putative compounds that could
£
‘W‘Tl.j_z 2 sz B 25 pgmLt be responsible for the repression of asexual sporulation. Full characterisation will be achieved using Nuclear Magnetic
' 2 Resonance (NMR) coupled with Liquid Chromatography — Mass Spectrometry (LCMS) techniques.
8 398 Further work is investigating potential genes involved in the biosynthesis of the Sex Factors, while their activity is being
— 3‘;:‘%' £ 257 268 assessed on larger scale experiment (i.e plant organs and whole plants).
™ 7 ; 5
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FACTORS . . ) Figure 4: Asexual spores production of P. rape. ®Images from Bayer and ADAS
Figure 3: Darkening of P. brassicae brassicae when treated with different 2Gilles, T., Fitt, B., McCartney, H., Papastamati, K., Steed, J., 2001c. Thomas Pearson, PhD thesis, 2021. Fungal sex for disease control and strain
cultures {ndlcutesa repression of asexual concentrations of SF. Error bars represent SEM An_n. /_Appl. Biol. 138, 141-152. improvement.
sporulation 35iddig, A., Johnstone, K., Ingram, D., 1990. Mycol. Res. 96, 757-765. Allillustrations have been created on Biorender.
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