

Disease mitigation and GHG emissions

Tamara Fitters

17 October 2023

www.adas.uk

Today's talk

- GHG emissions explained
- How to calculate GHG emissions
- Indirect land use change (ILUC)
- Cost of disease on GHG emissions

Main sources of direct GHG emissions

Segregated the C footprint into 8 categories Emissions originate from three divisions:

- 1. Embedded emissions
 - Seed
 - Ag-chemical manufacture
 - Nitrogen fertiliser manufacture
 - Non-N fertiliser manufacture
- 2. Energy
 - Operations
- 3. Direct and indirect N₂O emissions
 - Nitrogen fertiliser application
 - Manure application
 - Crop residue decay

C footprint of YEN Zero 2021 and 2022 winter wheat (feed and seed) crops n=157

Activity x Emission Factor = Greenhouse gas emissions

Greenhouse gas emissions x Global Warming Potential = kg CO₂eq

- Rate of ag-chemicals based on kg of active substance applied per ha
- Emission factors for ag-chemicals sourced from Green et al. (1987)

YEN Zero Crop C footprints, per hectare

YEN Zero Crop C footprints, per tonne

Lots of variation

THE MORLEY AGRICULTURAL FOUNDATION

ADAS

Analysis of GHG intensities for past Cereal YEN crops N fertiliser and N₂O dominant

Can we better understand what's driving this variation?

Factors associated with low C intensity (Feed wheat)

Higher yield associated with lower C intensity Extra 1 t/ha \approx reducing C intensity by 15 kg CO₂/t

Lower N rate associated with lower C intensity

Reducing by 30 kg N/ha \approx reducing C intensity by 18 kg CO₂/t

Crops with low GHG emissions

- High yields
- Low rate of synthetic N fertiliser, greater use of fertiliser efficiency products
- Wheat more often following non-cereal break crops
- Less intensive cultivations, less grain drying (wheat)
- Less manures and P, K fertiliser
 - but these may be applied elsewhere in rotation

Effect of Land use change (LUC)

Ecosystem type	IPCC (t CO ₂ /ha) (1997)	Searchinger <i>et al.</i> (2008) (t CO ₂ /ha)
Tropical Forest	553-824	604-824
Temperate forest	297-627	688-770
Tropical grassland and savannah	189-214	75-305
Temperate grasslands	139-242	111-200
Wetlands	748	1146

Figures are calculated over a 30 year period

Land Use Change (LUC)

Many scenarios possible Large variation in GHG emissions associated with LUC

LUC scenario

- Calculate yield foregone at crop management intensity below that required for economically optimum yield
- Calculate additional land area required to produce foregone yield
- Extra land is converted from another land use type
 - E.g. temperate grassland or tropical forest
- Grassland conversion emits 6000 kg CO₂ e/ha per year

Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production

P. M. Berry^a*, D. R. Kindred^b and N. D. Paveley^a

^aADAS High Mowthorpe, Duggleby, Malton, North Yorkshire YO 17 8BP; and ^bADAS Boxworth, Battlegate Road, Boxworth, Cambridgeshire CB3 8NN, UK

Land use (UK wheat scenario)

- Fungicides increase UK wheat yield by 21%
- Reduce wheat area to produce 15Mt by 0.5M ha

Disease and its effect on GHG emissions (in 2008)

Reduction in wheat growing area means less GHG emissions to produce 15 Mt grain

Scenario	GHG emissions (Mt CO ₂ eq. per year)
Disease free	4.70
Fungicide treated	4.91
Untreated (2008 cultivars)	5.84
Untreated (2008 cultivars with Septoria leaf blotch resistance increased by one point)	5.59
Controlling wheat disease completely can save up to	1.14

Different yields and GHG emissions

Varietal resistance

- Reduction in fungicide input
- Lower GHG emissions when ILUC taken into account

Each unit increase in resistance rating (1–9 scale) to Septoria leaf blotch reduced disease-induced yield loss by 0.31 t ha⁻¹.

- Approximately 70% of total GHG emissions in wheat production are associated with N fertiliser
- Disease interferes with green area and thus with yield
- Less grain produced means more land is needed for the same amount of grain
- On average disease reduces yield from 10.20 t/ha to 8.42 t/ha
 Increasing the net GHG emissions 59 kg CO₂eq./t
 A need to convert land elsewhere to obtain the same yields would result in an increase in GHG emissions of 277 kg CO₂eq./t

Thank you