Breeding for IPM in fruit crops

Felicidad Fernandez
Talk overview

• General points about breeding for sustainable production

• NIAB fruit breeding

• Which pests?

• Illustration of pest-resistance breeding in our research

• Final thoughts
Breeding for pest and disease resistance

• IPM as an arms race
 • Pest evolution against plant resistance and pesticides

• Resistance breeding is an additional layer of protection
 • Targeted use of pesticide protects the durability of resistance and use of resistant genotypes protect the effectiveness of the pesticide

• Plant response
 • Susceptible (range of attractiveness and responses to infestation)
 • Tolerance
 • Resistance:
 • Gene-for-gene (large raspberry aphid)
 • Quantitative
 • Pyramiding
• Part of the NIAB group since 2016
• East Malling site focused on fruit research since 1913
• Recent developments on the EM site: upgraded facilities, experimental winery and control environment growth rooms
NIAB Fruit Breeding

Stone Fruit

Pip Fruit

Berries
Which pests?

• Sources of resistance available

• Reliable/reproducible phenotyping

• Inheritable trait

• Importance of the pest (in itself or as a vector)

• Priority within breeding objectives (cost-benefit)

• [Marker-assisted breeding]
Which pests?

Credit: RHS
Spotted Wing Drosophila (Drosophila suzukii)

SWD- Key pest in soft and stone fruit
Mitigation and crop loss due to damage is estimated at £20 - £30 million p.a. in UK

Screening for ‘resistance’ to Spotted Wing Drosophila (Drosophila suzukii) in strawberry and raspberry accessions
Project number 10025468
The Project
Background

• Known variation in ‘resistance’ in some *Fragaria* species

The Project and Team

Aim

To identify UK relevant strawberry and raspberry germplasm with natural resistance to SWD for future variety development.

• Offspring emerging
• Preference between accessions
• Identify any clear fruit characteristics which are associated with ‘resistance’
Focus 2022 - Strawberries

76 accessions

Fragaria X ananassa

Diverse origin

Trait variation

Grown in insect proof tunnel
Fruit assessment, parameters measured:

- Berry size
- Skin colour
- Skin strength
- Flesh firmness
- Brix
Fly assessments

Berry exposed to SWD for egg laying

Number of emerging offspring assessed after two weeks
(Very) preliminary results
Next steps

- Choice tests (strawberry pulp)
- Re-screening selected strawberry genotypes
- Preliminary screen of raspberry accessions
- 55-75 genotypes of raspberry including yellow, purple, black raspberry accessions & some species level material.
Large raspberry aphid: *Amphorophora idaei*

- European large raspberry aphid (*Amphorophora idaei)*

- Vector of the raspberry mosaic disease (RMD) viral complex:
 - raspberry leaf spot virus (RLSV)
 - black raspberry necrosis virus (BRNV)
 - raspberry leaf mottle virus (RLMV)
 - *Rubus* yellow net virus (RYNV)

- Reduced vigour, longevity and yield
- Difficult chemical or biological control as transmission can occur ≤ 2 h
- Vector resistance has been a breeding objective in the UK for >50yrs
Raspberry-aphid interactions

Series of single dominant conferring biotype-dependent resistance

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Biotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. idaei ‘Baumforth A’</td>
<td>A₁</td>
<td>Knight et al 1959</td>
</tr>
<tr>
<td>R. strigosus ‘Chief’</td>
<td>A₂-A₇</td>
<td>Knight et al 1960</td>
</tr>
<tr>
<td>R. strigosus L518</td>
<td>A₈-A₉</td>
<td>Keep & Knight 1965</td>
</tr>
<tr>
<td>R. occidentalis</td>
<td>A₁₀</td>
<td>Keep et al 1967</td>
</tr>
<tr>
<td>R. idaeus Klon4a</td>
<td>Ak₄a</td>
<td>Keep et al 1970</td>
</tr>
<tr>
<td>R. coreanus L646</td>
<td>A₇cor</td>
<td>Keep & Knight 1970</td>
</tr>
</tbody>
</table>
Raspberry-aphid interactions

<table>
<thead>
<tr>
<th>Gene</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>?</td>
</tr>
<tr>
<td>A_2</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>?</td>
</tr>
<tr>
<td>A_1A_3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>?</td>
</tr>
<tr>
<td>A_3A_4</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>?</td>
</tr>
<tr>
<td>A_5</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>?</td>
</tr>
<tr>
<td>A_6</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>?</td>
</tr>
<tr>
<td>A_7</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>A_{L518}</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>?</td>
</tr>
<tr>
<td>A_{10}</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>A_{k4a}</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>A_{cor}</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>?</td>
</tr>
</tbody>
</table>
Classic resistance breeding

- Generate breeding families segregating for one or more of the resistance genes
- Phenotype seedlings
- Limitations:
 - Cost
 - Timeliness
 - Gene pyramiding
- Marker-Assisted Breeding
Mapping resistance genes vs markers for breeding

- More difficult for quantitative traits
- Marker validation across germplasm is essential
- Tracking haplotypes and marker inheritance through multiple generations
- Practical considerations such as marker types and detection modes (SSRs to SNPs), overall cost ...

Sargent et al 2007
Applied Marker-Assisted Breeding

• Still rare in fruit crops for pests but increasing common for disease
 • Apple scab
 • Fire-blight (quantitative trait)

• Marker validation and change in ‘markers of choice’ require ongoing investment

• Cost-benefit analysis needed for each breeding programme
Breeding for IPM in fruit crops

Felicidad Fernandez