Varietal resistance breakdown – drawing parallels with fungicide resistance

Mike Grimmer

BCPC Diseases Review, 19th October 2022

Erosion of varietal resistance in UK wheat

Key wheat varieties see slump in yellow rust rating

Farmers Weekly, 2019

Resistance breakdown: Septoria's resurgence in 2021

① 11th November 2021

Dr Cathy Hooper, RAGT Seeds technical sales manager, reviews the late Septoria tritici epidemic that hit many wheat crops this season.

Farmers Guide, 2021

How to combine:

- Mixtures: Fungicide + Fungicide
- Pyramiding: Host resistance + Host resistance
- Integration: Host resistance + Fungicide

Fungicide mode of action mixtures Multiplicative Survival Model (MSM):

~		 0 1		0 4	0 0 4 (4 0 ()
		90% control		90% control	
		Fungicide A	+	Fungicide B	

Survival fraction = 0.1 X 0.1 = 0.01 (1%)

Assumes independence of action

Bliss, 1939. The toxicity of poisons applied jointly. *Annals of Applied Biology*

Pyramiding partial resistance loci

Grimmer, Boyd, Clarke, Paveley 2014 Plant Pathology

Integration for long effective life

How to combine:

- Mixtures: Fungicide + Fungicide
- Pyramiding: Host resistance + Host resistance
- Integration: Host resistance + Fungicide

Integration for long effective life of fungicides

www.adas.uk Van den Bosch *et al.* 2011 *Plant Pathology* 60, 597-606

Governing principle for pathogen evolution

Milgroom & Fry, 1988 *Phytopathology* van den Bosch et al. 2014 *Annual Review Phytopathology*

Governing principle for pathogen evolution

$$sT = (r_R - r_S) T$$

Selection
Rate of increase of
resistant strain. Rate of increase of
sensitive strain.

Strategy 1: Reduce both r_R and r_S Strategy 2: Reduce r_R relative to r_S Strategy 3: Reduce exposure time

Predictive value of Governing principle

	Increase selection	No effect	Decrease selection
Increase dose	16	1	2
Increase number of sprays	6	0	0
Split the dose	10	0	1
Add a mixture partner	1	6	46

van den Bosch, Oliver, van den Berg, Paveley 2014 Annual Review Phytopathology

Selection for tebuconazole insensitive Z. tritici

rothamsted RESEARCH

Genotyping data courtesy of Bart Fraaije

Governing principles predict:

- Partial (rate-limiting) host resistance reduces selection for fungicide insensitivity by:
 - Strategy 1 (reducing epidemic rates)
 - Strategy 2 (reducing dose)
 - Strategy 3 (reducing number of treatments/exposure)
- Qualitative host resistance reduces selection for insensitivity by:
 - Strategy 3 (reducing number of treatments/exposure)

• Fungicides reduce selection for virulence against partial and qualitative host resistance

The integration challenge:

Integration creates concurrent selection for virulence and insensitivity

How to:

- Use disease resistant varieties to minimise fungicide insensitivity evolution, whilst minimising virulence evolution
- Use fungicides to minimise virulence evolution, whilst minimising insensitivity evolution

PROCEEDINGS B

rspb.royalsocietypublishing.org

Cite this article: Carolan K, Helps J, van den Berg F, Bain R, Paveley N, van den Bosch F. 2017 Extending the durability of cultivar resistance by limiting epidemic growth rates. *Proc. R. Soc. B* **284**: 20170828.

http://dx.doi.org/10.1098/rspb.2017.0828

Received: 18 April 2017 Accepted: 10 August 2017

Research

Subject Category: Evolution

Cubic at Annan

Extending the durability of cultivar resistance by limiting epidemic growth rates

Kevin Carolan¹, Joe Helps¹, Femke van den Berg^{1,2}, Ruairidh Bain³, Neil Paveley⁴ and Frank van den Bosch¹

¹Rothamsted Research, Harpenden AL5 5LS, UK
 ²FERA, York YO41 1LZ, UK
 ³SRUC, Edinburgh EH9 3JG, UK
 ⁴ADAS, High Mowthorpe, Malton, North Yorkshire YO17 8BP, UK

D KC, 0000-0003-0853-8457

Cultivar resistance is an essential part of disease control programmes in many agricultural systems. The use of resistant cultivars applies a selection pressure on pathogen populations for the evolution of virulence, resulting in loss of disease control. Various techniques for the deployment of host resistance genes have been proposed to reduce the selection for virulence, but these are often difficult to apply in practice. We present a general technique to maintain the effectiveness of cultivar resistance. Derived from classical population genetics theory; any factor that reduces the population growth rates of both the virulent and avirulent strains will reduce selection. We model the specific example of fungicide application to reduce the growth rates of virulent and avirulent strains of a pathogen, demonstrating that appropriate use of fungicides reduces selection for virulence, prolonging cultivar resistance. This specific example of chemical control illustrates a general principle for the development

AHDB Wheat and Barley Disease Management Guide

BFOUNDATION	BCONSTRUCTION	B PRODUCTION Two months Post flowering. Grains fill and ripen. Solar radiation is strong but canopy survival and activity depend on successful crop protection and ample uptake of nitrogen and water.			
Six months From sowing to the start of stem extension. Yield-bearing shoots and primary roots form. The canopy is incomplete and light is dull, so growth is slow.	Two months From first node to flowering. Yield-forming leaves, fertile florets, stem reserves and deep roots form. Canopy is complete and light is bright, so growth is fast.				
Oct Nov Dec Jan Feb Mar	Apr May	June July Aug			
GS21 GS30	GS39 GS59	GS87 Grain filling			
	Ear formation Stem storage	Flowering Ripening			
Tillering	Stem elongation				
Leaf emerging on main shoot 1 2 3 4 5 6 7 8 9	10 11 12 13 14				
Root growth					
GS00 GS10	GS31 G	S61 GS92			
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,600 2,700 2,800 2,900 3, Thermal time from sowing (°C days above 0°C)					

AHDB Wheat Growth Guide

Generic:

Any independent disease control method that reduces the epidemic growth rate will reduce selection

Specific:

- Resistant cultivars reduce selection for fungicide insensitive pathogen strains.
- Fungicides reduce selection for virulent pathogen strains.
- More sustainable to integrate and balance chemical and genetic crop protection, than to be heavily dependent on either genetics or chemistry

- Cereal farmers need effective and durable control of multiple diseases
- Effectiveness of integrating control predictable
- But control drives pathogen evolution
- Evolution according to simple governing principle
- Good experimental evidence on insensitivity evolution
- Good tools for virulence evolution experiments

Future perspectives

ADAS

- Experimental evidence needed for virulence evolution with fungicide use
- Evolutionary potential of different types of resistance gene
- Role of sexual / asexual reproduction on pathogen evolution
- Role of fitness penalties in slowing fungicide resistance
- Impact of Integrated Pest Management (IPM) approaches
- Breeding for alternative traits not affected by evolution
 - Disease escape traits that reduce contact between inoculum and susceptible tissues
 - Disease tolerance traits that reduce the impact of disease on yield

Thank you!

Predictive power of LPs / year on sqrt FDR time (n = 59, P = <0.001).

Grimmer *et al.* (2014) Pest Manag Sci

Frequency distribution: First Detection of Resistance time (n = 61)

Pathogen	Fungicide	Agronomic system
Kingdom	FRAC MOA	Crop species
Phylum	FRAC group	Country
Class	Chemical group	Area treated – foliar
Suborder	Fungicide active substance	Area treated – seed
Family	Target protein length	Area treated – total
Genus	Target gene copy number	Use intensity (trt. ha/crop ha)
Species	Molecular weight	Cropped area
Trophic type	Solubility ratio	Country area
Mono/poly cyclic	H-bond donor/acceptor potential	Agronomic intensity
Resting stage	Topological polar surface area	Outdoor/protected
Resting structure	Complexity	Annual/perennial
Asexual/sexual	Action	
Asexual spore type	Systemicity	
Asexual spore volume	Application method	
Sexual spore type	Used in mixtures	
Sexual spore volume	Efficacy at introduction	
Vegetative ploidy level		
No. host species/genera		
Apparent epidemic growth rate		
Basic reproductive number (R0)		
Latent period		
Latent periods per year		

Trait-based risk assessment model

Sqrt (FDR) = Constant +

Latent periods per year (number) Fungicide complexity (PubChem rating) Number of crop host species (1-9 or 10+) Agronomic system (protected or outdoor)

No significant interactions

F probability <0.001

Sqrt (FDR) = Constant – 0.027*LP/year – 0.0024*Fung complexity

Phases of fungicide resistance evolution

