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ABSTRACT

This paper addresses the issue of how to obtain effectively and efficiently the
information needed as the input parameters for pesticide leaching models, in the

context of risk assessmentat the field scale. A key question is the extent to which

low-cost/less-accurate information at a number of locations in the field is more
useful than high-cost/more-accurate information on a few (even single) samples.

An example is presented which considers the balance between quality and quantity

of information for several soil properties, including soil texture, soil organic

matter, adsorption and degradation, based on the spatial variation in the predicted
leaching losses of isoproturon from a sandy loam soil in southern England.

INTRODUCTION

It is not feasible to assess pesticide leaching at the field scale by integrating direct

measurements of leaching from all parts of the field. Instead, conclusions are reached by

studying sub-samples taken from the field, either by direct experiment (e.g. using lysimeters)

or by modelling. Simulation models have becomeindispensable research tools for describing
movement of water and solutes into and through the unsaturated zone (Wosten ef a/., 1990)

and are increasingly usedin pesticide registration procedures.

Geostatistics optimises the interpolation between sampling sites, providing a powerful tool for
predicting values of a soil property at points where no observations have been made, or over

larger areas of land (Oliver ef a/., 1996). As a result, fewer sampling sites are needed to

achieve the samelevelof precision (Di et a/., 1989). An obviousnext step is the application of

geostatistical techniques to field measurements, generating inputs to solute transport models,

and carrying outdistributed modelling to predict spatial patterns of leaching within thefield.

Oliver et al.,(1999) used the LEACHP model, in combination with geostatistics, to predict

leachingofatrazine at the field scale. The simulation results predicted that significant losses of

atrazine below 1 m depth would have occurred from just 10% of the field and that the

contribution from the rest of the field was negligible. They concluded that, when pesticide
leaching is marginal, mostof the pesticide leachedatthe field scale is likely to be contributed

by vulnerable zones that comprise a relatively small proportion of the total land area.

The identification of vulnerable zones within fields requires spatially distributed sampling

involving large numbers of samples, andthis has severe logistical implications. For example,

pesticide transport models require parameterisation of adsorption, degradation and soil

hydrodynamic properties. Since soil hydrodynamic properties are difficult to measure in the
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field, pedotransfer functions (PTFs) have been developed to estimate the properties from
measurements of soil organic matter (SOM), bulk density (BD) and particle size distribution
(PSD) (Brooks & Corey, 1964; Mualem, 1976; Van Genuchten, 1980, Hutson & Cass, 1987;

Tietje & Tapkenhinrichs, 1993).

Such an approachsimplifies the measurements to be made but does not decrease the amount of

data required. For example, prediction of soil hydrodynamicproperties in a single field using
PTFs can require three measurements (PSD, SOM, BD) at three depths at each point.

Geostatistics requires at least 100 data points (Oliver e¢ a/., 1996) giving a total of 900

laboratory determinations.

Therefore the laboratory measurementsneedto be reduced to minimise the total workload, but

not at the expense of predictive accuracy. It can be argued that, where the variability of soil

properties is high or a high level of precision in interpolation is desired, the number of

sampling sites cannot be substantially reduced (Scheinost & Schwertmann, 1995). However,

althoughspatial variation of a given parameter may begreat, solute transport models may not

be sensitive to that variation and it may be possible to reduce the number of measurements or

use a single, average value for the field. When the parameter varies spatially, and the model is

sensitive to that variation, the combined use of surrogate measurements at many locations and

empirical relationships to transform the data may provea better alternative. Therefore design

ofcost-efficient sampling strategies for risk assessmentof pesticide leaching at the field scale

must include consideration of model sensitivity to parameter variation.

Oliver et al.,(1999) concludedthet spatial variation in SOMcontent(associated with pesticide

sorption and degradation) was very much more important in influencing the leaching of

atrazine than was spatial variability in the soil hydrodynamic properties controlling the

downward movementofpesticides via matrix flow. Similar results were reported by Soutter &

Musy (1999). Therefore, it may be feasible to reduce the number of points where soil

hydrodynamicproperties are estimated andstill be able to identify those zones within a field

that are vulnerable to leaching.

Dubuset a/.,(2000) tested four pesticide leaching models for sensitivity to input parameters

and concluded that the most important criteria are: the adsorption parameters (Freundlich

coefficient and exponent); pesticide half-life; SOM content and bulk density. This paper

investigates the effect of spatial variation in these properties on the spatial variation in the

predicted leachinglossesof isoproturon from a sandy loam soil in southern England.

MATERIALS AND METHODS

The study site was a 9 haarable field situated on river terrace adjacent to the River Thames

near Reading. The soil is Sonning Series, a freely-draining light sandy loam overlyingalluvial
gravel. The field was surveyed in 1998 and total of 90 samples were collected from the top

0-15 cm using a 5-stage unbalanced nested sampling scheme as described by Oliver &

Webster (1986). Pesticide leaching losses from the top 30 cm were predicted using the

pesticide leaching model SWAP (version 2.0.7d, January 2000). The input data were either

measured (PSD, DTso, Kd) or calculated using PTFs (SOM,BD). 



Particle size distribution was determined on the 2 mm fraction by laser granulometry.
Pesticide degradation rate (DTso) was estimated by incubation with isoproturon (IPU) for 7
and 28 days. Duplicate samples of fresh soil (equivalent to 30 g oven dry soil) were weighed
into glass jars. A suspension of commercial formulation of IPU (Alpha isoproturon 500,

46.4% a.i.) in water was added to produce a dose concentration of 13.2 mg/kg. The soil was

incubated at 20°C and the moisture content was maintained at 50% maximum water holding

capacity. The samples were extracted with 90 ml acetonitrile:water (70:30 mix), a small

aliquot was passed through a 0.2 um membranefilter and analysed by hple (Zorbex ODS;5

tum column; flowrate 0.8 ml/min; detection by u.v. at 240 nm).

Loss on ignition (LOI) was determined by ignition of oven dried soil at 450°C for 24 h. SOM

was estimated from LOI using a field-specific PTF following the procedure described by

Frogbrook & Oliver (2001). Geostatistical techniques were used to produce a map of LOI.

Nine samples (three each from the high, medium and low LOI areas) were identified for

determination of soil organic carbon (SOC) using the modified Walkley-Black procedure

(MAFF,1986). The nine LOI and SOC determinations were used to produce a PTF for SOM.

Kd was determined for all samples by equilibrium with 0.02M CaClcontaining 5 mg/l IPU (5

g soil:20 mlsolution), assuming linear adsorption. The Freundlich exponent waskept constant
at 1.0 because adsorption experiments on four samples showed that adsorption waslinear in

the range of concentrations modelled. Bulk density was calculated using a PTF for ploughed

topsoils (Chen, 1998):

BD = 1.483 — 0.447C + 0.141S -3.97SOM

where C = massfraction of clay

S = massfraction of sand

SOM = massfraction of soil organic matter

Water release characteristics were calculated using a PTF within the model using the

analytical function option (Mualem-van Genuchten equation) and PSD, SOM and BD.

Weather data (12 months) were selected from long-term measurements at the Reading

University weather station (Sonning, Berkshire, UK). Potential evapotranspiration was

calculated outside the model using the Penman-Monteith formula. The weather data were

repeated to give a simulation run ofthree years, providing 2 years to allow the soil water status

to stabilise. A crop (SWAPstandard maize data) was used (sown | May, harvest 15 October

each year). Pesticide was applied at the rate of 2.5 kg ai/ha on 15 March of the third

simulation year.

RESULTS AND DISCUSSION

The model was run six times for each of the 90 field locations. The first run was the base

scenario where all spatially variable input parameters (Table 1) were as measured or

calculated. For each of the subsequentrunsoneofthe parameters was held constantat the field

average value. 



The model accounted for between 99.92 and 100% ofthe pesticide applied (Table 2). At the
end of the three year simulation all the pesticide had gone from the top 30 cm ofthe profile,
except for three of the 90 locations which had slow degradation rates (DTso more than 30

days).

Table 1. Spatial variability in the input data for the pesticide leaching model, SWAP

 

%Clay %Silt %Sand SOM% Kd DTso BD
ml/g days g/em?

Maximum =_-15.04 30.93 70.91 4.092 2.14 37.37 1.4819
Minimum 6.45 21.05 54.03 1.677 0.48 8.70 1.3828
Mean 8.46 25.74 65.81 2.728 1.25 20.54 1.4297
Median 7.69 25.50 66.78 2.767 1.26 20.75 1.4283
Std Dev 1.92 2.16 3.97 0.492 0.35 4.85 0.0278
Skew 1:22 0.13 -0.76 0.322 0.35 0.65  —-0.1721

 

 

Table2. Spatial variability in leaching of IPU (g/ha) at 30 cm predicted using SWAP for

six scenarios, with all parameters varying (base scenario) or substitution of the
mean value for one parameter

 

Base Mean Mean Mean Mean Mean

Scenario PSD Bulk Organic Kd DTs0

Density Matter

Maximum 318 317 315 317 312 261

Minimum 0 0 0 0) 0 0

Mean 47 46 46 46 43 43

Std Dev 49 48 48 48 52 37

CV% 104.2 103.9 104.2 87.6

Skew 2.46 2.50 2.47 2.47

RMSE 2AT 1.23 46.9
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Figure |. Predicted spatial variation in leaching at 30 cm (base scenario) 



In the base scenario the average amount leached at 30 cm was 47 g/ha, representing 1.9% of
pesticide applied. Analysis of the variation in leaching between the locations shows that 50%
of leaching was accounted for by 72 out of 90 locations and 50% by 18 locations. This

confirmsthe bias in leaching toward a small numberoflocations within thefield (Figure 1).

Substituting the field mean value for PSD, BD or SOM hadlittle effect on the mean or range
of amount leached. All three scenarios accounted for between 98.3% and 99.4% of the
aggregated leaching of the 90 locations. The mean DTso and Kd scenarios accounted for
91.7% and 92.8% of the aggregated leaching respectively. This indicates that the total
predicted leaching from the field could probably be estimated from field average values of
these parameters, on condition that the measured value is a true estimate of the field mean.
The number of samples (n) required to estimate the field mean depends on the within-field

variation (standard deviation, o), the model sensitivity to parameter (tolerance required, L) and

the confidence level required for the result (Student’s-t, Z):

n=(Z*o)/L?

The model is very sensitive to variation in DTso and Kd, and these parameters also had the

greatest within-field variation. Therefore, for accurate estimation of the average field leaching,
it would be moreeffective to take many (23) measurements of DTso and Kd within the field

compared with few (2) measurementsofparticle size distribution.

Prediction of leaching vulnerable zones within the field shows similar sensitivity to DTso.

There was no significant difference (R > 0.98) between the first four scenarios in Table 2 as

indicated by the small differences in range, mean, standard deviation and skew. By using the

mean DTs9 muchofthe variation in predicted leaching was removed, resulting in a narrower

range ofvalues.

The root mean square error (RMSE) wascalculated (Table 2) to compare the accuracy of each
of the predictions compared with the base scenario. Comparison of RMSE showsthat the

accuracy depends on Kd > DTs9 >> BD > PSD > SOMandthat the RMSE for DTso and Kdis

an order of magnitude greater than for the other parameters. These results differ somewhat

from those reported by Dubusef al. (2000), who predicted that the relative importance ofthe

parameters decreasedin the order Kd > DTso > SOM > BD > PSDfor a similar compound and

soil type.

CONCLUSIONS

These results indicate that spatial variation in pesticide half-life and adsorption are the most

important parameters for the estimation of total pesticide leaching and spatial variation in

leaching. But the results should be treated with caution: firstly, they are the results from only

one model that utilises a simplified pesticide fate routine. They refer to results for only one

pesticide and one field. Two parameters have been ignored that were identified as significant

by Dubus ef a/, (2000), namely the Freundlich exponent and preferential flow. Work is

currently in progress to investigate how these vary at thefield scale. 
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ABSTRACT

A simplified meta-model methodology has been applied to assess the spatial

distribution of potential groundwater contamination from pesticides. The approach

is based on a one-dimensional leaching model (LEACHP) linked to a geographic

information system (GIS). A statistical technique to summarise the model input-

output relationships (stepwise regression procedure) in order to upscale the

estimated concentrations. The potential for atrazine leaching was estimated for the

agricultural area of Piacenza province (Northern Italy).

INTRODUCTION

In the last decades an increasing number of mathematical models to predict environmental fate

of pesticides have been developed, with particular attention to pesticides leaching. However,

because of the amount of input data and the large numbers of simulations required to cover

large areas (regional/national), these physically based techniques are generally time-

consuming and economically unfavourable. Thus, it is required a methodology to extrapolate

results from local scale to a nation-wide scale taking into account at the same time the

geographic variability of the model input parameters.

Wedeveloped an approach based ona one-dimensional leaching model (LEACHP)linkedto a

geographic information system (GIS)anda statistical technique to summarise the model input-

output relationships (stepwise regression procedure) in order to upscale the estimated

concentrations. The resulting frequency distributions map of the pesticide leaching

concentrations can be usedin sustainable groundwater managementand decision making.

MATERIALS AND METHODS

Pesticide Leaching Model

The pesticide fate and transport model LEACHP (Wagenet & Hutson, 1995) was usedfor this

study. LEACHP is a one-dimensional finite difference model describing the water and

chemical regime in unsatured or partially saturated soil profiles. All spatially-distributed

parameters required as input by the model(soil type, crop type, climate and hydrology) were

stored in a GIS database. Figure 1 showsthe linkage between the database and the model. In

this loose coupling (Corwin et al., 1997), the GIS (ESRI ArcView, 1996) is used to create 



externaltext files consisting of input data for the model. Afterwards the output files resulting

from simulations are read and processed to create leaching pesticide concentration maps.
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Figure 1. Link of LEACHP model to GIS and metamodel development to create map of

pesticide leaching concentrations.

Study area and scenario of application

The approach developed was applied to the plain area in Piacenza Province (Po Valley,

Northern Italy) covering approximately 1,100 km’. The intensive agriculture in the area,

associated with the peculiar structure of the aquifer creates a situation where the groundwater

risks contamination by pollutants of agricultural origin.

The basic cartography utilised in the study was the soil mapat a scale of 1:50.000 defined by

23 different types of soil units: in 40% ofthe areathe soil texture can beclassified as silty clay

loam, 25.6% is silt loam, 18.5% loam, 6.5% clay and 5.4% silty clay. Soil properties were

defined according to 3316 soil profiles distributed across the area. The spatial pattern of the 



averages of precipitation and temperature (1990-1997) was derived from daily weather data.

Evapotranspiration wasestimated via the Thornthwaite equation.

Atrazine was the herbicide considered in the simulations (DTso = 44 d; Koc = 118.4 L/kg; Ky =

1.38E-06) applied once per year to a maize crop at a standard dose of 1.9 kg/ha every year).

The LEACHP modelwas runfor 306soil sampling points selected within eachcell (2 x 2 km)

of a regular grid (Figure 2). Six years of simulations were performed and as model outputs we

considered, according to the FOCUSprocedure (FOCUS, 2000)the 80" percentiles of annual

average concentration of atrazine leached below | meterdepth.

So

D
Gnd
Soil mapping units

« Soil profiles

Figure 2. Study area location andselected soil profiles used to perform simulations with the

LEACHP model.

Metamodel

Statistical techniques such as stepwise regression procedures are popular methods of searching

for good subset models, particularly when the numberof independent modelsis large. In this

study the software STATISTIX Version 7.0 (Analytical Software, 2000) was used to

summarise the model input-output relationships in order to upscale the concentrations

estimated with LEACHP. 



RESULTS AND DISCUSSION

total of 306 values were determinedrepresenting the 80" percentile of the atrazine leaching

concentration at 1 meter depth in 5 years. The Wilk-Shapiro test for normality suggest a

logarithmic transformation of atrazine concentration (LogATR)as the data were not normally
distributed. Then, independent variables (clay, bulk density, hydraulic conductivity, silt,
organic matter, pH, sand) were analysedstatistically with a stepwise regression (Table 1). Soil

type has a clear effect on the magnitude of the maximum concentration: clay content and

organic matter content are the independent variables with highest correlation with the atrazine

leaching concentration.

Table 1. Stepwise regression analysis applied to the LEACHP model output.

 

STEPWISE REGRESSION OF LogATR

UNFORCED VARIABLES: CLAY BD KS SILT OM PH SAND
VARIABLE(S) DROPPED FROM INITIAL MODEL BECAUSE
OF COLLINEARITY: SAND

S
P

m
i
a

0.08628
0.09169
0.08790
0.09137
0.09813 >

>
>
>
?

 

RESULTING STEPWISE MODEL

VARIABLE COEFFICIENT STDERROR  STUDENT’S T

CONSTANT 2.2895] 0.42835
CLAY -0.08088 0.01525 -5.30
OM -1.21329 0.18444 -6.58

CASES INCLUDED 17 RSQUARED 0.8001 MSE 0.09813
MISSING CASES 74 ADJ RSQ 0.7716 SD 0.31326
 

The resulting regression model (R” = 0.80)is therefore represented by the following equation:

LogATR= 2.28951 — (0.08088*[clay])- (1.21329*[O.M.])

Considering the clay content and the organic matter content of the remaining 3010 soil

sampling points, the LEACHP estimated values were extrapolated to the whole studyarea.

In order to create a raster overlay from the point data, a geostatistical method ofinterpolation

(ordinary kriging) was applied by means of GS" software (Gamma Design Software, 1998).
The results are displayed by the aid of GIS in a thematic map ofthe leaching concentration of

atrazine at 1 meter depth in the Piacenza plain (Figure 3). It is possible to identify areas of

different contamination potentials. Estimated concentrations are less than 0.01 g/l in almost

half of the area whilst in 23% of the area they range between 0.01 and 0.05 pg/l. Largest 



concentration (18% ofthe study area) of pesticide are located mainly in the Nordsector, near

the Po river and in southern areas characterised by low organic matter soil contents (< 1.5%).

 

[__] Soil mapping units
Atrazine leaching concentration (mg/m3)

(]0-0.01
0.01 - 0.05

{] 0.05 - 0.08
fj 0.08 -01

mo    
Figure 3. Atrazine leaching concentrations in the Piacenzaplain estimated with the LEACHP

model.

A validation of the map was carried out with analytical data of pesticide concentrationsin

drinking water wells. The study area includes 35 wells, which form part of a regional

monitoring system. Analytical data for raw water are in good agreement with the map showing

that the four wells with atrazine concentrations (average concentrations of seven years of

monitoring plan) greater than 0.01 yg/l fall within areas with the largest predicted

concentrations.

Results suggest that this approach canbe used successfully for evaluating the contamination

potential of pesticides in large areas.
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ABSTRACT

A GIS decision support system (DSS) is under development for estimating the

magnitude and spatial distribution of pesticide losses from non-point sources

(surface runoff, tile drainage and spray drift) in Germany. The cumulative

annual losses of any active ingredient (a.i.) of known half-life (DTS0),

adsorption coefficient normalized for organic carbon (Koc) and dosage can be

calculated for approximately 400 river basins covering the territory of Germany.

Furthermore, the resulting predicted environmental concentration (PEC,,,) can be

retrieved by relating the daily input of a.i. to the daily discharge ofthe respective

streams. Results are visualized as grid maps with a 1x1 km’resolution. Site-

specific maps of pesticide losses and PEC frequencydistributions provide a basis
for regional risk assessmentofpesticides.

INTRODUCTION
Pesticide use on agricultural land frequently leads to contamination of non-target areas such

as ground wateror surface water bodies. An essential condition for an a.i. to meet registration

requirements is to rule out contamination of these non-target ecosystems. The “realistic

worst-case”is the threshold to determine when a substance can be considered non-toxic for

the surrounding ecosystems. The “realistic worst case” is usually determined by laboratory

experiments and doesnot account for the probability of this threshold value being exceeded in

its regional and temporal context. The DSS DRIPS follows a probability-based modelling
approach on regionalscale by estimating the frequency ofa set limit of contamination ofa

given a.i. and its spatial distribution.

MATERIALS AND METHODS
The modelled non-point sources of pesticide input into surface water bodies are surface

runoff, tile drainage and spray drift. DRIPS follows a modular approach, calculating the load

or PEC of an a.i. separately.

Runoff

The amountofa.i. to be translocated by runoff water essentially depends on the period oftime

elapsed between pesticide application and actual occurrence of a runoff-producing rainfall

event (Mills & Leonard, 1984). It is assumed that rainfall events of 10 mm in 24 orlarger

are sufficient to trigger surface runoff. The ‘mean probability of runoff-producing rainfall

occurrence’ 7;, with a given volume Ayand durationin a certain period is determined by the

Gumbel-Distribution (Gumbel, 1958). 



Tn = exp ((hy - uy) /w) {1]

The Gumbel-parameters u and w are provided by the German Meteorological Service (DWD)

with a resolution of 8.5 x 8.5 km’. Distribution function parameters of 60 min and 24 h
duration are currently implemented in the DSS,the latter with separate datasets for summer

and winter. According to Mills & Leonard (1984), the probability of a runoff-producing

rainfall event 7n can also be expressed as a probability density functionf(t):

fe = aredl”4 t20 [2]

with aT as the reciprocal value of Tn [cf. 1] and ¢ as the time interval between pesticide

application and first runoff-producing rainfall event. A seasonal variation factor Vt; was

added to equation [1] to account for the more variable frequency of rainstorm occurrences in

the summer season (Auerswald, 1996).

The calculation of the ‘runoff vclume’ Qd, caused by a runoff-producing rainfall Pevent is

based on the USSCS’s curve-number-method (SCS, 1990). The curve numbers were

modified according to Lutz (1984)in order to adapt the SCS-CN-method to Central European

conditions.

De (aren ~la) _ 1)
Od: = (Pevent — Ia). De +—

a
(3]

Land use and hydrological soil group of the land parcel in question determine the drainage

coefficient De (Anderl, 1975; Auerswald & Haider, 1996). Land use data are provided by

CORINEland-cover (Statistisches Bundesamt, 1997). The hydrological soil groups were

derived from a soil map (BGR, 1996) by Huber et al., (1998) conforming to the SCS-CN

methodology.

ta=0.76-(+ -10] [4]
De

The initial abstraction Ja comprises the processes of interception, initial infiltration rate and

surface storage for the time interval passing since the beginning of a rainstorm event until

surface runoff starts to occur. Current soil saturation at the time of a rainstorm event is

another important factor to be accounted for to calculate the runoff volume. The

proportionality coefficient a@ of Lutz (1984) relates the current soil saturation to seasonal

variation.

—P7/WZ —P3/

According to Lutz, the base flow Qb of a catchment is the representative factor of its
hydrological condition at the beginning of a runoff event. The seasonal variation of the base

flow is characterized by week numbers WZ. PJ-P3 are calibration factors (Grunwald, 1997).
The mean annual precipitation Pyear is provided nationwide by the DWD.

The ‘pesticide concentration in runoff water’ at the beginning of a rainstorm highly depends

on the substance’s decay as well as the retention capacity of the crop and soil it was applied

on. Degradation can be expressed with a first-order decay function (Mills and Leonard,

1984):

Wi) = Waosage eo"? t>0 [6]
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where W(t) is the fraction of a pesticide’s initial load Waosage left after degrading during the

time-interval ¢ since application. Decay is controlled by the breakdown coefficient B,,
depending onthe a.i.’s half-life D750.

By merging equations [6] and [2], a probability density function can be derived (cf. Mills
and Leonard, 1984) for the fraction of the initial load W(t) available on the soil surface for

translocation by runoff water of a rainstorm occurring ¢ days after substance application

with the probability of f(t) (eq. [2]). Within the DSS DRIPS, mean values (probability =

0.5) of a.i. losses with runoff are assumed (Leonard ef al., 1987)
Bw

Wosoit a 0.5¢ .

W

dosage . (1 = BG;,)
(7

Naturally, the full quantity of Wo is not actually transported by runoff water. A share ofit

is withheld by the current plant cover of the area the pesticide was applied on. Itis

assumed that only the portion reaching the soil is available for translocation by runoff.

BG;,; is an index representing the degree of soil cover of crop(j) in a specific climatic zone

at a certain stage of maturity (i) (Bach etal., 2000). Wosoi: is the runoff-available pesticide
load in the surface soil layer.

Only a portion of the runoff-available pesticide load Ws, is expected to be found in the

runoff-suspension during a rainstorm event. That is the fraction of the a.i. subject to

desorption processes within the first centimeters of the topsoil. Consequently, the model

only calculates pesticide displacement for the liquid phase. Erosion is not taken into

account. A semi-empirical approach was adopted from GLEAMS(Leonard et al., 1987)

where the soluble amount of the runoff-available pesticide load can be derived by

multiplying Wos.i: with a desorption-coefficient D,. An instant balance of an a.i. between

the liquid and solid phase is pre-supposed. D, can be derived empirically from the

distribution coefficient Kd, which in turn can be obtained from the linear organic carbon
partition coefficient and the content of organic carbon Corg (CREAMS/GLEAMS:Leonard
et al., 1987).

Finally, the pesticide concentration of an a.i. in solution Csolv,;can be calculated from the

runoff-available pesticide load Wos,i:, the desportion-coefficient D, and the distribution

coefficient Kd. Csolv,,, being the quantity of the initial dosage of an a.i. which has to be

expected as surface water input as a result of a runoff-producing rainstorm event.

_ Wosou . D,— s 8solvw 14D, Kd [ ]

2.2 Leaching

Germany’s registration authorities make use of the model PELMObyKlein et al. (1997)

for assessing the risk of a.i. displacement via leaching. To conform to registration

standards, PELMO wasadopted in DRIPS as the model of choice to estimate the quantity

of pesticides transported by leaching water. PELMOis used to simulate the displacement

of an ai. to 0.8 m depth. At that depth, the leachate is expected to entera tile drainage

system - if installed on the land — or be subject to further vertical translocation. In the latter

case, the pesticide ultimately reaches the ground water body, if it does not fully degrade

along the way. The input of pesticides into surface waters from the ground water bodyis

considered to be negligible in Germany (Bach ef a/., 2000). Hence, pesticide input via
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leaching is only calculated for drained areas. A grid cell map of Germany’s drainedareasis

provided by Behrendtef al (1999). DRIPS estimatesthe site-specific input L(leach.),,i; of

an a.i. dosage W applied on date (7) and crop(j) via a tile drainage system.

Lleach.) wij = Wij, * (1 - BGiy) * 6 (PELMO)» [9]

In the same mannerasfor the runoff path, it is presupposed that onlythat amountofan a.i.

is transported in the leachate, which is not subject to foliage-interception but reaches the

soil. Since PELMO doesnotconsider interception, BG is introduced as an index of the

degree of soil cover of crop (j) in a specific climatic zone at a certain stage of maturity(i).

6 (PELMO),,is the fraction of the initial dose of an a.i. found in the leachate at 0.8 m depth.

Thesolution is expected to enter a tile drain at that depth leading towards a surface water

body nearby.

2.3 Spray drift

Surface water input of a sprayed a.i. is expected via direct drift, for the fraction of the

substance not reaching the target area but being blown into an adjacent stream. Generally,

a.i. loss by drift is significantly higher for fruit- or grapevine plantations than for field

crops. This is mainly due to different spraying-techniques,like the use of boom sprayers in

field crops and air blast sprayers in grapevine plantations (Ganzelmeier et al., 1995).

DRIPSusesthe drift tables published by Germany’s Federal Biological Research Center for

Agriculture and Forestry (BBA)asa basis for estimating the fraction of an a.i. displaced by

spray drift. The tables are also used by registration authorities to set up spraying-distance

requirements for pesticides. Different tables are available for 95th, 70th and 50th

percentiles providing separate spray drift values BBA-Tab(Dist)y for fruit grapevine and

field crops each for two phenological zones and for specific proximities of surface water

andsite of application.

L(drift) yi, = BBA-Tab(dist),,* Wiy, A\G- Gd, Gor [10]

where L(Drift)y,;, is the site-specific input ofa.i. W via spray drift after application at date(i)

in crop(j). AIG is a correction factor for the cropland/pasture ratio adjacent to rivers. In

DRIPS A\G is set to 0.4 for cropland and 1.0 for fruit- and grapevine plantations (Bachef

al., 2000). The mean drainage density of the river network Gd, was derived from the

Hydrological Atlas of Germany (HAD) by Huberef al. (1998). It is available within

DRIPS as a grid mapto judge the probability of an a.i. reaching a surface water body via

drift. The amount of a.i. input also depends on the width of the river Gb. Larger water

bodies are susceptible to higher amounts of deposition. However, mostlarger streams have

adequate buffer zones shielding a.i. input to some extent. Unshielded small ditches are

frequently found in agriculturally used areas prone to receive frequent deposition. In

DRIPS Gbis set to 0.5 m for 1" order streams(definition of Strahler, 1957) and 3 m for =

order and higher.

2.4 PEC

The model approaches described for runoff, drainage and spraydrift estimate the expected

load of pesticides input into surface water bodies for a specific region and time. DRIPS

will be fitted with a further module to estimate the initial predicted environmental

concentration (PEC,y). The module will link the three pathwayscalculating the a.i.’s load

with hydrological data such as rivermorphologyand flow duration. Thebasic river network
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to be used is provided by Behrendt ef al. (1999). The network will be classified into

approximately six regions (r) of similar drainage density and rivernet-morphology. Also,
all surface water bodies will be classified (g) according to their volume of discharge.
Significant combinations of both classes (r) and (g) such as drainage density of 2"! order

streams in a certain region will be used as model variables. An evaluation of gauging
station data will produce discharge values for every class on a daily basis. Theratio of the
mean daily input (E) of an a.i. via runoff, drainage and spray drift into various types of
surface water bodies characterized by their daily discharge (Q) yields the predicted
environmentalconcentration of the respective surface water body.

PEC.= E/Q [11]

RESULTS AND DISCUSSION

Figure 1. Map ofresults from DRIPS
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