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ABSTRACT

The potential leaching ofatrazine in the area around Trasimeno Lakeis evaluated
using the PELMO model and the uncertainty associated with the simulation

process is assessed. Simulation has been performedfor all combinations obtained

from weather (15 years), soil profile (115 different soil profiles), and pesticide

properties. The amount of atrazine leached below 1 m depth is used as an

indicator of the potential leaching. Two approaches are compared: stochastic and

"megaplot". The stochastic approach is based on 400 simulations performed

through a Monte Carlo generator simultaneously modifying key input data such
as soil texture, organic carbon and pesticide properties. Megaplot is based on

simulation of the 44 unique combinations of weather, soil and crop characteristics

identified in the area. The uncertainty ofthe stochastic approach is about 62% but
it is difficult to upscale to a large scale. The uncertainty of the megaplot approach

ranges between 55 and 88% and upscaling to large scale is easier.

INTRODUCTION

Potential groundwater contamination may be defined as the possibility that a given fraction of

applied pesticide reaches the water table and the actual contamination depends on the

meteorological conditions following application. As the measurement of pesticide

concentrations in groundwater is laborious and costly, in recent years a numberofpesticide

leaching models, at the field scale, have been developedto predict the fate of pesticides in soil

and water (FOCUS, 2000). Groundwater vulnerability to contamination depends on the
various physical, chemical, and biological processes that determine the environmental fate of

pesticides. The rate and importance of each process is strongly affected by various space and

time dependent environmental factors (soil, weather and crop) and the properties of the

pesticide itself. Then, upscaling procedures to transfer data from edge-of-field to larger scales

are affected by uncertainties. Accounting for uncertainties is therefore the only way to get

some insight regarding the overall reliability of a regional assessment (Soutter & Pannatier,

1996). Several procedures are proposed (Bouma etal., 1998) such as metamodels, megaplots,

stochastic and analytical model methods. In this paper, the potential leaching of atrazine in the

area around Trasimeno Lake is evaluated using the PELMO model, a FOCUS groundwater 



model (FOCUS, 2000). The uncertainty of the simulation process is evaluated for stochastic

and megaplot approaches.

MATERIALS AND METHODS

Field study

The studyareais located around Lake TrasimenonearPerugia(Italy). The area is of about 280

km’. 115 soil profiles were taken across the whole area as representative of the landscape.

Texture, hydrologic properties, organic carbon content (OC) and pH have beendetermined for

each soil horizon (Giovagnotti et al., 1999). An analysis of correlation of soil properties has

beencarried out as shown in Table 1. In Table 2 are reportedthe descriptive statistics of those

parameter values not correlated with each other and obtained bydividing the soilprofiles into

three depths (0-35, 35-70, 70-100 cm). The distribution of texture, OC, pH, and depth have

been characterised for each depthinterval.

Table 1. Correlation matrix of soil properties

 

sand silt clay bulk field wilting pH organic

density capacity point carbon

sand 1.000

silt -0.858 1.000
clay -0.893 0.537 1.000

bulk density 0.348 -0.322 -0.291 1.000
field capacity -0.936 0.717 0.912 -0.327 1.000
wilting point -0.888 0.678 0.870 -0.321 0.941 1.000

pH -0.422 0.250 0.481 -0.231 0.496 0.474 1.000

organic carbon -0.184 0.256 0.080 0.314 0.154 0.126 -0.113 1.000

Table 2. Distribution of soil profile characteristics

 

Profile (cm) Properties n mean max min Std. dev.

Sand 115 51.6 95.2 6.1 19.0
Clay 115 19:2 51.2 23 11.1

0-35 pH 92 G7 8.2 5.3 1.1
Oc 92 2.4 195 0.5 2.8

Depth 115 23.6 40.0 3.0 13.4
Sand 115 S342 91.3 3.7 22.2
Clay 115 20.1 63.8 1.0 13.4
pH 92 7.1 8.3 $.3 1.0
OC 92 12 6.9 0.1 1.1

Depth 115 55.9 75.0 45 8.4
Sand 115 46.8 91.6 0.8 26.0
Clay 115 25.8 75.6 0.7 171
pH 9) 13 8.8 4.7 1.1
OC 92 0.8 4.2 0.1 0.7

Depth 115 106.8 140 75 17.4
 

Meteorological data, collected at four weather stations situated aroundthe lake, are available

from 1980 to 1995. Theyinclude daily rainfall, minimum and maximum temperature and pan

evaporation. The area is characterised by a typical Mediterranean climate with winter-
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dominant rainfall ranging from 700 to 900 mm/year. Potential evaporation exceeds

precipitation from May to August so that irrigation is required for maize, which is the crop

mainly grown in the area. For this exercise it is supposed that the whole area was cropped by

maize and treated the same day with atrazine at a rate of 2 kg a.s./ha. Crop information is

reported in Table 3. Koc and half-life values of atrazine were determined for nine soil profiles
(Vischetti & Businelli, 1992; Table 3). Other pesticide properties are from Tomlin (1994).

Table 3. Agronomic and pesticide information

 

max interception water (%) 30 date of emergence 5/05

max active root depth (cm) 80 date of treatment 1/05

max soil cover (%) 100 date of maturation 28/9

soil condition after harvest residue date of harvest 15/10

irrigation (mm) 300

atrazine Koc (ml/g) 108 + 40 atrazine half-life in soil (days) 80+ 15
 

Model

PELMOis a one dimensional model simulating the vertical movement of chemicals in soil by
chromatographic leaching. PELMO version 3.2 was used (FOCUS, 2000). Twostrategies of

simulation are compared: stochastic and megaplot. The stochastic approach is based on many

simulations performed through a Monte Carlo modification of key input data such as soil

texture, organic carbon and pesticide properties. Upscaling is performed by assigning the

meanofthe results (i.e. cumulative fluxes of pesticide below 1 m depth) over the whole area.

The megaplot approachis used to simulate the potential for pesticide leaching at a large scale

and to reduce the number of simulations. Megaplot is based on identification of unique

combinations of weather, soil and crop characteristics. Upscaling is performed assigning the

same parametervalue to all profiles within the same unique combination.

Stochastic approach

Simulations were carried out for a soil profile divided into three horizons. All parameters are

defined according to the FOCUS parameterisation procedure (FOCUS, 2000). Spatially

distributed input data for PELMO(soil clay and sand content, soil organic carbon content, pH,

horizon depth, and atrazine Koc) werestatistically analysed in order to assign the type of

distribution. A total of 400 values have been randomly created using a Monte Carlo generator

(Poptool). The number of Monte Carlo random values could be calculated from the event

probability and the confidence interval of the error. In case of a confidence interval of 95%

and event probability of 50, the number of Monte Carlo random values is 400 (Snedecor &

Cochran, 1989). The 400 simulations were performed for a period of 15 years randomly

varying the meteorological data and considering for the analysis only the results of the last 10

years of simulation. Cumulative fluxes of water and pesticide below 1 m depth were recorded
for each year of simulation.

Megaplot approach

Weather conditions are quite similar for the whole area and maize is assumed to be the only

crop. Therefore unique combinations were determined using only soil profile characteristics.

The actual sand, clay and organic content parameters ofthe first horizon were divided into five

classes, as shown in Table 4. Considering all the class combinations, 44 unique combinations 



were found: 29 combinations included more than oneprofile, and the first 9 represent 45% of
the profiles. Simulations for all the unique combinations were performed for a period of 15

years using fixed pesticide data (Koc = 108 ml/g, and t)2 = 80 days) and considering for the

analysis results from onlythe last 10 years of simulation. Annual average concentrations of

pesticide below 1 m depth were recorded for each year of simulation andthe 90" percentile

calculated.

Table 4. Class distribution ofspatiallydistributed variables of the upper soil horizon

 

°Class Range n mean Std. Coefficient of

profiles deviation variation

Sand
1 0 - 24 15 7.01 44.6

24 - 42 22 4.66 1337

42 - 60 21 5.41 10.5

60 - 70 20 2.81 4.4

70 - 100 27 6.20 TS
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RESULTS AND DISCUSSION

Stochastic approach

3910 simulations were performed and the annual average concentrations of pesticide leached

below1 m depth wererecorded.Descriptive analysis is reported in Table 5.

Table 5. Descriptive statistics for the stochastic and the megaplot approaches.

 

AAC (t1¢/1) DAC (g/l) AAC(g/l) 90AAC(tg/1)

stochastic megaplot megaplot megaplot
Mean 0.12 0.61 0.61 1.56

Std. Error of Mean 0.01 0.32 0.15 0.80

Median 0.00 0.09 0.002 0.25

Std. Deviation 0.61 2.13 3.10 5.30

Minimum 0.00 0.00 0.00 0.00

Maximum 13.08 14.06 43.18 34.93

90"Percentiles 0.16 L1y 1.16 2.23

AAC = annual average concentration below 1 m; DAC = 10-year average concentration below | m;

90AAC= 90"percentile of annual average concentration

 

  



The mean ranges between 0.10 and 0.14 g/l (at 95% of probability). Stepwise regression
indicates that spatially distributed input data and outputs from the model are not well
correlated. The best model explains only 11% of variability (Table 6). Analysis of variance

showsthat weather conditions significantly (p=0.0026)affect the results.

Megaplot approach

440 simulations were performed (44 unique combinations for 10 years) and the annual and 10-

year average concentrations of pesticide below 1 m depth were recorded. The 90" percentiles

of these data were also computed to take into account the influence of weather conditions.

Descriptive analysis is reported in Table 5. The mean at 95% probability of the annual average
concentration of pesticide leached below 1 m ranges between 0.32 and 0.90 g/l. The same

mean of 10-year average concentration ranges between 0.00 and 1.24 yg/I.The 90" percentile

of the annual average concentration of pesticide leached below 1 m weighted to take into
account the unique combination frequencies is 1.28 g/l. This value is higher than the 90"

percentile from the stochastic approach (0.16 g/l) which is a comparableresult.

Table 6 summarisesthe results of a stepwise regression carried out to evaluate the relationship

between outputs andeither spatially distributed variables or the classifying variables of unique
combinations. A stepwise regression builds a regression model by repeating a process that

adds (probability F=0.05) and deletes (probability F=0.05) variables from list of candidates.

The stepwise process stops when no variables not already in the model meet the selection

criterion and no variables in the model meetthe eliminationcriterion. For spatially distributed

variables, the mode] obtained explains 25% of variability and this indicates that this approach

has a high level of uncertainty. For classifying variables of unique combinations, the model
obtained explains 3% ofthe variability.

Table 6. Summary of stepwise regression of annual average concentrationofpesticide leached

below 1 m against all input data of the stochastic approach (A), all input data of

unique combinations(B) and classifying variables of unique combinations(C).
 

Predictors Re SE of the Estimate
 

A CL2, CL3, DAY80, KOC, OC1, OC2, OC3, PH2, PROF3 0.111 0.574
B  CL2,CL3, DAY80, OC3, PROF1, SA2, SA3 0.243 2.712
Cc OCI 0.026 9.342
 

CL2=clay content 2™ horizon; CL3=clay content 3" horizon, DAY80=totalrainfallin the first 80 days;
OC1=Organic carbon content 1* horizon; OC2=Organic carbon content 2“ horizon; OC3=Organic

carbon content 3" horizon; PH2= pH 2“ horizon; PROF 1=depth of 1* horizon; PROF3=depth of 3"
horizon; SA2=sand content 2"! horizon; SA3=sandcontent 3" horizon.

Uncertainty evaluation

Due to the lack of correlation with spatially distributed data, upscaling of results from the

stochastic approachto large scale is possible only by assigning the same value to the whole

area. The uncertainty related to this procedure could be assumed to be the standard error ofthe
mean (0.12 + 1.96*0.01, where 1.96 is the value of ¢ for probability—0.05 and degrees of

freedom = «). In this case the uncertainty (at 95% of probability) is approximately 14%. The

uncertainty is also affected by weather conditions: this effect could be assumed to be the

standard error of the annual mean grouped by weather condition and the uncertainty related is

approximately 25%. Thenthetotal uncertainty becomes approximately 40%. 



The megaplot approach allows upscaling byassigning the same value to profiles belonging to

the same unique combination. The uncertainty related to this procedure could be assumed to
be the error encountered during the process of selection of unique combinations. As indicated
in Table 7, only organic carbon content describesthe variability of the results. It is possible to
calculate the uncertainty deriving from the definition of unique combinations definition from

the coefficient of variation of organic carbon content (Table 4): it ranges from 7 to 40%

dependingontheclass. The uncertainty related to the weather conditions could be the same as
the previous approach andthe total uncertainty of the megaplot approach ranges between 32

and 65%.

The combination of the two approaches seems to be very interesting. Then the stochastic

variation of input data for each unique combination increases the knowledge of uncertainties

linked with the processofclassification and simultaneously the megaplot approach allowsto

upscale to a large scale. The time of simulation could be reduced, for example, by decreasing

the number of Monte Carlo runs (Snedecor & Cochran, 1989) or by using a latin hypercube

generator (Soutter & Pannatier, 1996).
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ABSTRACT

The influence ofsoil degradation and sorption parameters on simulated losses of

pesticides via drainflow and runoff in FOCUSsurface water Step 3 scenarios
were investigated in a collaborative project. Losses via drainflow in six

standard scenarios were simulated using MACRO,whilst losses via runoff in a
further four scenarios were simulated with PRZM. Further evaluation of these

results will be used to develop appropriate losses via drainflow or runoff at

earlier steps (1 and 2) of the proposed procedure and will be compared with

measurements from field studies and monitoring data.

INTRODUCTION

The FOCUS Surface Water Scenarios Working Group proposes a stepwise procedure for the
determination of exposure of pesticides in surface water. Exposure scenarios will be used to

determine PEC,y and PECs.q as part of the aquatic risk assessments conducted by the EU

rapporteur memberstates for consideration of the inclusion of plant protection products on
Annex1.

Entry routes from drift, runoff and drainage are considered. At Step 1, loadings from drift

and runoff or drainage occur simultaneously. At Step 2, runoff or drainage occurs four days

after the last application. At Step 3 deterministic models (MACRO and PRZM)are used to

derive runoff and drainflow concentrations from predefined scenarios of soil, crop and

weather. These are inputs (together with drift events) into TOXSWA, which simulates the

fate of agrochemical products in standardized water bodies (ditches, streams and ponds).

Descriptions of this process and the scenarios have been previously reported (Linders, 2001)

The proposed introduction of ten “Step 3” scenarios, representative of vulnerable agro-

climatic areas of Europe is a new development within the EU exposure assessment process.

This paper summarises a collaborative effort to evaluate the influence of pesticide soil
degradation and sorption parameters on the flux and concentrations in surface runoff and

drain flow. The results of these Step 3 tests will be used to derive generic losses from runoff

or drainage for the Step 2 scenarios. This feedback mechanism ensures that the PEC,, and

PECeg values calculated at Step 2 are in the range of the highest values calculated at Step 3.

A comparison of the runoff and drainage losses at Step 3 and Step 2 is presented. 



MODEL SIMULATIONS

Test compounds

Modelsimulations were conducted with a series of eight test compounds. Theseare notreal

compoundsbut coverthe typical range ofhalf-life and adsorption values influencing losses of

pesticides to surface water via runoff and drainage. Koc values ranged from 10 to 1000 L/kg;

soil degradation half-lives (at 20°C and —10kPasoil moisture content) ranged from 3 d to 300

d (Table 3). A ninth possible combination of Koc (10) and haif-life (300 d) was not

evaluated as this was considered an unrealistic combination of parmaters. Other

environmental fate parameters were kept constant. The Freundlich exponent (1/n) was

assumedto be 1, water solubility was set as 1 mg/litre and all compounds were assumed to be

non-volatile (vapour pressure = | x 10° Pa).

MACROSimulations with Step 3 Scenarios

Losses of the test compounds to surface water via drainflow were simulated with a B-test

version of the shell program “MACROin FOCUS”which utilises MACRO v4.2. This shell

program includes the Step 3 drainage scenarios (each a function of soil, crop and weather)

defined by the FOCUS working group. The Step 3 evaluation consists of a sixteen-month

assessment period. Pesticide applications (100g a.i./ha) were made for seven consecutive

years (six-year warm-up period followed by 16-month assessment). The pesticides were

assumedto be applied to a winter wheat crop as this was a crop commontoall six drainage

scenarios. The impactofapplication timing on losses was evaluatedfor each test substance.

Simulations were performed following application pre-emergence (September to November,

depending upon Scenario), early post-emergence (February to May) andlate post-emergence

(Marchto July).

PRZM Simulations with Step 3 Scenarios

Losses ofthe test compoundsto surface water via runoff were simulated with a B-test version

of the shell program “PRZM in FOCUS”whichutilises PRZM v3.12. The procedures were

similar to those described for the drainage scenarios above. A total of 96 simulations were

performed (8 test substances x 4 scenarios x 3 application dates). However, only results for

the water balance are presented here.

Runoff/Drainage Losses using “Steps1-2 in FOCUS”

At Step 2, runoff/drainage inputs to surface water represent the ‘worst-case’ loss from a

rainfall event occurring 4 days after the final application of pesticide. The amount of

pesticide entering surface water is a function of the season of application (autumn, spring or

summer), region (Northern or Southern Europe), crop interception factors and pesticide fate

properties. Currently losses via runoff or drainage can range from 1% to 4% ofthe pesticide
residue remaining in soil at the time of the discharge to surface water, although the amount

entering in the dissolved phase is a function ofsoil adsorption. In the current version of the

steps1-2 in FOCUScalculator, the maximum lossesare:

4% - Autumn, N Europe

2% - Spring, S Europe

1% - Spring, N Europe; Summer, N and S Europe 



RESULTS AND DISCUSSION

Water balance

Tables 1 and 2 show the water balances predicted by MACROforthe six drainage scenarios

and by PRZM for the four runoff scenarios respectively. Drainage predicted by MACRO

varies between 115 mm/year at Scenario D4 (Skousbo) weather to 264 mm/year at Scenario

D3 (Vredepeel weather). As an example the drainflow at scenario D5 (La Jalliere weather for

1978) is shown in Figure 1. At all locations the pattern of drain flow for the selected

assessment years is similar, with little or no drainflow through the summer months.

However, selection of appropriate assessment years for runoff is more complex as runoff

events are generally a response to periods of intense rainfall, sometimes only one day (or

less) in duration. Therefore a different calendar year was selected for each scenario

depending upon the timing of the first application of the pesticide (Table 2). For example, a

pesticide applied in March for scenario R1 was assessed using the weather data for 1984 from

Weiherbach (the 50" percentile year for runoff during the period March to May) whereas for

a pesticide applied in June, weather data for 1987 is used. The 50"percentile runoff for the
scenarios range between 11-110 mm during the selected season and between 32-184 mm per

year. These represent between 4-24% of all precipitation received during the year. In

general the orderofrunoff risk was: summer = spring < autumn.

Pesticide Balance and Drainflow/Runoff Concentrations

Figure 2 presents the simulated average daily drainflow concentrations for Pesticide D (Koc

= 10, half-life = 30 d) for scenario D5 following application to a winter wheat crop in

Autumn (19 October), Spring (14 March) and Summer (31 May). The product of these

concentrations and the drainflow allow the daily flux to receiving water bodies to be

calculated. The peak concentration for test compound D following application in the autumn

in Scenario D5 was 6.83 ppb and occurred on 24 January near the start of the evaluation

period. This occurred on a day with the equivalent of 10.9 mm of drainflow and

corresponded to a peak daily flux of 0.74% of each annual application. This value together

with maximum daily fluxes for the eight test compoundsfor all six drainage and four runoff

scenarios are presented in Table 3. This table also includes the % of applied pesticide

calculated to be lost at Step 2 in runoff or drainage and entering the water phase of a
receiving water body.

The maximum daily fluxes from the drainage scenarios varied from < 0.01% to 7.63% of

applied pesticide depending upon pesticide fate properties, scenario and timing of

application. In general simulated losses for any one compound were greater from scenarios

D1, D2 and D6 than D3, D4 and D5. Losses were greater following autumn and spring

applications than summer. For compounds with a Koc value of 1000, maximum daily fluxes

of greater than 1% of applied pesticide were only predicted for compoundI (half-life of 300

days) in 1 scenario (D6, autumn application). Maximum daily fluxes of greater than 1% were

predicted for compounds with a Koc of greater than 10 following autumn andspring

applications in scenarios D2 and Dé.

In most cases the maximum fluxes of pesticides were less than corresponding losses

calculated at Step 2. Of the 144 drainage simulations only 20 values at Step 3 exceeded the 



calculated losses at step 2 and most were associated with compoundswith a long degradation

half-life (300 d).

CONCLUSIONS

Results from these tests have helped in an understanding ofthe relative vulnerability of the

ten Step 3 scenarios. Further evaluation of these simulations is needed. The model outputs

will be used as loading inputs into the TOXSWA model. This will allow comparisons of

predicted environmental concentrations in surface water at each ofthe steps and the scenarios

to be madein orderto assessrelative vulnerability and define appropriate inputs for runoff or

drainagelossesin the earlier Steps 1 and 2.
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Table 1. Water balances predicted by MACROforthe drainage scenarios for winter wheat.

All figures are in mm,for the last 12 months of the 16-month simulation (1/5 to 30/4).

 

Weather Evapo-

Station transpiration

DI Lanna 534 159 20 344

D2 Brimstone 623 260 15 354

D3 Vredepeel 818 319 0 523
D4 Skousbo 706 145 39 521

DS La Jailliere 626 199 0 429
D6 Thebes 733 300 22 433

Scenario Precipitation Drainage Percolation

Table 2 Water balances predicted by PRZMfor the runoff scenarios for winter wheat (except

for R2, maize). All figures are in mm, for each four-monthperiod.

 

Season for Selected Year

First (50" %ile for Precipitation Runoff
Application runoff)

Marto May 1984 817 40
Weiherbach Jun to Sep 1987 778 32

Oct to Feb 1975 807 39
Mar to May 1977 1906 184

Jun to Sep 1989 1370 178

Oct to Feb 1977 1906 168
Mar to May 1977 688 85
Jun to Sep 1977 688 95

Oct to Feb 1986 969 64
Mar to May 1992 1000 164

Jun to Sep 1985 573 122

Oct to Feb 1985 573 136

Weather
Scenario Station
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Figure 1. Simulated drainflow for scenario D5 (La Jalliere weather

January 1978 to April 1979) under a winter wheatcrop.
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Figure 2. Simulated daily concentrations in drainflow for scenario D5
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winter wheat crop following application of test compound D 



Table 3. Simulated maximum daily fluxes (% of applied) via drainage for the six Step 3

drainage scenarios and two Step 2 scenarios following applications of test compounds in

Autumn, Spring and Summer.

 

Application Test compound
Scenario time A B Cc D E F H I

Koc (L/kg) 10 100 1000 10 100 1000 100 1000

DT50(d) 3 3 3 30 30 30 300 300

Autumn 0.10 0.04 0.01 0.67 1. 0.10 2.05 0.85

Spring <0.01 <0.01 <0.01 0.05 0.37 0.02 0.73 0.46

Summer 0.01 <0.01 <0.01 0.07 0.26 0.03 0.23 0.21

Autumn 1.39 0.58 0.01 3.84 1.53 0.15 2.79 0.92
Spring 1.51 0.38 0.01 2.17 1.66 0.02 2.3 0.6
Summer <0.01 <0.01 <0.01 0.11 0.32 0.01 0.3 0.15
Autumn <0.01 <0.01 <0.01 0.04 <0.01 <0.01 O11 <0.01
Spring <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.09 <0.01

Summer <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.02 <0.01

Autumn <0.01 <0.01 <0.01 0.53 0.21 0.02 0.87 0.17
Spring <0.01 <0.01 <0.01 0.05 0.02 <0.01 0.50 0.12

Summer <0.01 <0.01 <0.01 0.03 0.05 0.01 0.14 0.04

Autumn <0.01 <0.01 <0.01 0.74 0.29 0.02 1.26 0.17
Spring <0.01 <0.01 <0.01 0.03 0.01 <0.01 0.60 0.12
Summer <0.01 <0.01 <0.01 0.07 0.04 <0.01 0.24 0.06
Autumn 0.09 0.22 0.01 1 0.82 0.43 2.19 1.67
Spring 2.00 4.43 0.05 7.63 0.53 <0.01 6.14 0.87

Summer <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.44 0.38

Step 2, Autumn 1.48 0.96 0.20 3.42 2.19 0.48 2.38 0.52

N.Europe Spring 0.37 0.24 0.05 0.85 0.55 0.12 0.59 0.13

Summer 0.37 0.24 0.05 0.85 0.55 0.12 0.59 0.13
Step 2, Autumn 1.48 0.96 0.20 3.42 2.19 0.48 2.38 0.52

S.Europe Spring 0.74 0.48 0.10 1.71 1.09 0.24 1.19 0.26
Summer 0.37 0.24 0.05 0.85 0.55 0.12 0.59 0.13

Values in bold indicate maximum daily flux at Step 3 is greater than loss in corresponding scenario at
Step 2

 




