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ABSTRACT

Environmental models are currently used for screening purposes as well as

deterministic and probabilistic exposure assessments. Recently, a number of

modelling scenarios have been developed in the EU and USAto standardize

regulatory assessments of pesticides. Current issues associated with

exposure modelling include selection of input parameters, selection of
models with appropriate transport mechanisms and use of appropriate

modelling endpoints to support regulatory risk assessments.

INTRODUCTION

Environmental fate models are increasingly being used to provide estimates of the

concentrations of agricultural chemicals to support environmental and ecological risk

assessments. This trend has led to the development of a numberof standardized models and

modelling scenarios which have been officially endorsed for use in regulatory risk

assessments. This paper provides an overview of the various types of models currently

being used for regulatory assessments and discusses some of the current issues associated

with regulatory modelling.

CURRENT ENVIRONMENTAL MODELS

There are many waysto classify the various types of environmental models. For regulatory

purposes, there are three basic types of models, distinguished primarily by the degree of

sophistication, level of data required and type of result produced:

1) Screening or regression models — relatively simple models based either on

experimental data or the results of more sophisticated models.

2) Deterministic models — moderately to highly complex models with individual

algorithms for the various transport and degradative processes in the environment;

deterministic models are generally run with a fixed set on input values and provide a

single, fixed set of output values.

Probabilistic models — moderately to highly complex models which utilize

distributions of input values and provide distributions or probabilities of various

output values. 



Examples of current models

There are currently a wide range of models that have been developed or adapted for

regulatory use. Examples of some of the current model are provided in Table1.

Screening models are generally relatively simple, require minimal input data and provide

conservative (i.e. high) estimates of likely environmental concentrations. Environmental

concentrations obtained using screening models are useful for initial assessments of the

relative importance of various dissipative/degradative pathways, e.g., leaching or fate in

aquatic systems. Unfavorable risk assessments based on the result of screening models

indicate the need for more refined exposure estimates.

Table 1. Examples ofcurrent regulatory environmental models

 

Model Type (1) Purpose (2) Developer

 

SCI-GROW S gw USEPA

GENEEC sw USEPA

EU Step 1-2* sw EU-FOCUS

EU Drift Calculator* d sw EU-FOCUS

TOXSWA d sw ALTERRA

EXAMS d, p sw USEPA

PELMO* d, p gw,ro FraunhoferInstitut

PRZM* d,p gw, ro USEPA, EU-FOCUS

PEARL* d, p gw RIVM, ALTERRA

MACRO* d,p gw, dr SLU

 

(1) s=screening, d = deterministic, p = probabilistic

(2) sw = surface water, gw = groundwater, ro = runoff, dr = drainage

* FOCUSversions of these models available at ISPRA (2001).

Deterministic models typically have more extensive requirements for input data but can also

provide morerealistic estimates of environmental concentrations than screening models.

Most deterministic models allow the user to provide detailed information on the various

transport and degradation mechanismsandprovide a time series of output values which can

be comparedto the duration ofvarious ecotoxicologicalstudies. 



A commonapproachto obtaining probabilistic exposure estimates is to perform a series of
deterministic calculations, varying in time (temporal variation) or both time and location

(temporal and spatial variation). A probabilistic assessment based on climatic variations can

be obtained by running the deterministic model for an extended period oftime (typically, 20-
30 years) and summarizing the probability of obtaining various exposure concentrations.

A moredetailed approach involves varying additional parameters, some of which may be

spatially correlated (e.g. chemical properties, soil type, and climatic data). The results of

probabilistic modelling provide insights into the range and frequency of temporaland spatial

variation in environmental concentrations. Probabilistic results are typically expressed in

terms of exceedence probabilities, reflecting the frequency with which specific
concentrations are observed throughout the range of scenarios being considered

Development of regulatory modelling scenarios

Deterministic and probabilistic environmental modelling requires the use of large numbers
of parameters to appropriately characterize chemical properties and use patterns,

characteristics of the soil profiles, climatic variations, and agronomic practices. In order to

standardize the modelling approaches used for risk assessment, a number of regulatory

modelling scenarios for groundwater and surface water have been developed in the EU and
the USA (ISPRA 2001; FOCUSSurface Water 2001; MUSCRAT2001).

A single modelling scenario typically consists of a selected soil profile, a fixed set of

agronomic and cropping factors and a fixed meteorological file. To use the scenario, the

user selects an appropriate set of chemical input values and application rates and runs the

model for a specific scenario (combination of crop, soil, agronomic practices and climatic
conditions). |The modelling results can be expressed either deterministically or

probabilistically.

Of necessity, modelling scenarios incorporate a large number of assumptions and include

consideration of various spatial data layers as well as expert judgment. Asa result,

environmental concentrations predicted using these scenarios are intended to provide

estimates of environmental concentrations in a range of locations that correspond to the
assumptions madein the scenario. In some cases, the transport mechanisms in the scenarios

studies (e.g. runoff rates and drainage rates) have been calibrated to data from appropriate

field to help ensure the establishment ofappropriate driving forces.

Oneof the major challenges with the creation of fixed scenarios is the determination of the

likelihood of experimentally observing the calculated result. The mean environmental

concentration can be estimated through use of a "typical" scenario and selection of typical

(e.g. mean or median) input values. Less likely environmental concentrations (e.g. "worst

case") can be created through using a series of worst-case assumptions for creating scenarios

and selecting input values, resulting in the creation of an exposure concentration that is

thought to be relatively high but with an unknown probability of occurrence. The problem

with both ofthese approachesis that the final calculated results have an unknown probability
of occurrence. 



Increasingly, probabilistic modelling is being used to help provide more information on the

range of environmental concentrations that can result from normal variations in chemical

properties and use patterns, soil types and climatic data. The use of multiple modelling

scenarios can also provide valuable insights into the variability expected due to location and

time. Probabilistic modelling results can help determine specific environmentalsettings or

specific use practices that result in concentrations of concern.

CURRENTISSUES ASSOCIATED WITH MODELLING

With the widespread adoption of modelling as a tool to provide exposure values for risk

assessment, it is appropriate to identify someofthe key issues associated with modelling that

can influence the simulated results and impactthe resulting risk assessment.

Selection of empirical or non-measured input parameters

Almost all models include input parameters which are either empirical or are not readily

measurable in laboratory or field studies. These parameters can influence the hydrologic

balance in the model (e.g. maximum root depth, maximum plant canopy, pan evaporation

correction factor) as well as the chemical balance (e.g. dispersion length, relative rate of

degradation with depth).

Asa result, it is important that models be parameterized using the best available estimates of

these non-measured parameters to ensure appropriate massfluxes of water and chemicalin

the modelling scenarios. This problem is commonly addressed through the developed of

tables of recommendedvaluesand/orthe creation of regulatory modelling scenarios in which

the empirical and non-measured parametersare fixed.

Selection of chemical input properties

Detailed mechanistic models require a wide range of chemical input data in order to provide

acceptably accurate estimates of concentrations in various environmental compartments.

The chemical data used for regulatory modelling is obtained entirely from required

regulatory laboratory and field environmental fate studies. Most of these studies were not
originally designed to provide modelling inputs and may require some judgment and/or

reinterpretation prior to being used for modelling. In some cases, it may be necessary to

obtain more data than the core regulatory data set to perform environmentalfate modelling.

Examples of chemical environmentalfate issues that arise in modelling include:

® First-order kinetics are generally required in current models. More complex kinetics

may require reinterpretation using standardfirst-order equations for use in modelling.

* Modelling of foliarly applied chemicals may require measurement of chemical

degradation and washoff studies which are not routinely conducted for regulatory

submissions. 



Morerealistic degradation rates in aquatic systems may be obtained from studies in
microcosms involving a water column, sediment and aquatic plants in an outdoor

setting.

For some chemicals, it may be necessary to consider sorption kinetics and/or sorption

to matrices other than soil (e.g. macrophytes).

For mobile, slowly degrading chemicals, it may be necessary to measure the variation

of degradation rate with soil depth to obtain reasonable estimates of potential

concentrations in shallow groundwater.

To permit simulation ofmetabolites, the pathway and kinetics for degradation must be

defined, including the formation of boundresidues.

To support probabilistic modelling, it may be necessary to perform additional

laboratory and/or field studies in order to determine an appropriate distribution of

environmental fate values.

Simulation of transport mechanisms

Current models use varying degrees of sophistication to represent the major transport

mechanismsresponsible from moving applied agricultural chemicals from one compartment

to another. Key transport mechanisms associated with surface water and groundwater

modelling include spray drift, runoff, drainage andinfiltration rates.

Spray drift

Single values of spray drift are commonly obtained from either regression equations or

tables of experimental values. These single values include the effects of crop type as well as

wind speed and direction. The FOCUSdrift calculator is based on drift data published by

the BBA (BBA 2000) and adjusts the probability of individual drift events to obtain an

overall 90th percentile probability. In addition, it integrates the drift deposition across the

width of the receiving water body.

Infiltration, runoff and tile drainage rates

The rate of leaching simulated by groundwater models can vary widely depending uponthe

assumptions made concerning dispersion coefficients and extent of preferential flow or

macropore flow permitted by the model. Similarly, the rate of runoff simulated by a model

can vary depending upon the soil type, soil moisture, rainfall intensity and the selection of

curve numbers. Therate of tile drainage is a highly site-specific value and is best modeled

by calibrating the rate to actual experimental data. For regulatory modelling, it is

appropriate to create scenarios in which the infiltration, runoff and/or drainage have been

calibrated to representative field studies to ensure appropriate hydrologic responses from the

models.

Scale issues

Current regulatory models focus almost exclusively on simulating in-field and/or edge-of-

field concentrations. However, there are many natural geographic features which can 



attenuate offsite movement from agricultural fields. Vegetated filter strips (also called

buffer zones) can reduce both runoff and erosion loadings into adjacent surface water while

catchment-scale processes integrate individual edge-of-field loadings with runoff and

drainage from non-agricultural land. Currently, larger-scale evaluationsofpesticide impacts

on a catchmentscale are based primarily on monitoring studies and efforts are underway to

develop appropriate modelling approachesto represent the observed data.

Surface water issues

Mostcurrent models represent the hydrology ofsurface water bodies in a simplistic manner,

using a constant volumetogether with a constant flow rate in and out ofthe control volume.

The newest version of TOXSWAbeing developed by FOCUSwill incorporate consideration

of the hydrology of catchments and dynamic water flow rates and depths in calculating

concentrations of chemicals entering ditches, ponds and streams (Adriaanse 2001). For more

slowly flowing water bodies (ditches and ponds), complete sets of PECsw (predicted

environmental concentration in surface water) and PECsed (predicted environmental

concentration in sediment) values can be obtained within minutes. For more dynamic

settings (e.g. streams), the computational times may require several hours.

Issues in using modelling results in risk assessments

Most current environmental models provide a outputseries of hourly or daily concentrations

in the compartmentsofinterest. This concentration time series can be highly variable with

dramatic changes fromhourto hour or day to day. In contrast, most ecotoxicological studies

are performed either using a constant exposure concentration (e.g. a flow-through aquatic

study) or a single dose which declines over time due to degradation ordissipation/dilution

(e.g. a static aquatic study).

In order to appropriately compare modelling results to ecotoxicological studies, it is

necessary to consider the both the mode-of-action and environmental properties of the

chemicalas well as the duration ofthe effects study. For rapidly-acting chemicals which are

acutely toxic, it is appropriate to compare the initial predicted concentration with the

endpoints from effects studies. For more slowly acting, chronically toxic chemicals, it is

more appropriate to use time-weighted-average concentrations from modelling that match

the durations usedin the effects studies.

Whenthe simulated exposure concentrations are highly transient, it may be appropriate to

consider conducting higher-tier effects studies that evaluate the toxicological response of

organismsto transient concentrations rather than constant concentrations. In addition, it may

be useful to analyze the simulated exposure profile to determine the frequency with which

organisms are exposed to concentrations that are know to have a biologicaleffect. Higher-

tiered evaluations such as pulsed-dose studies and time-to-event analyses combine elements

of exposure modelling with the the conduct of effects studies to provide a morerealistic

assessmentofthe toxicological impact of chemicals in the environment. 



CONCLUSION

Exposure modelling, supporting field studies and ecotoxicological testing should be

performed in a logical sequence of progressive refinement. The degree of sophistication of

the modelling should match the ecotoxicological data.

It is reasonable to compare the results of screening and deterministic modelling with

standard ecotoxicological endpoints using the concept of a toxicity to exposure ratio (TER).

However, when more refined probabilistic modelling assessments are performed, it is
appropriate to consider developing probabilistic ecotoxicological endpoints for comparison

with these endpoints. Numerous workshops and projects have addressed this probabilistic

risk assessment and regulatory guidance is currently being developed both in the EU and the
USA (EUPRA 2001; ECOFRAM 2001; PELLSTON 2001).
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ABSTRACT

This paper reviews the state-of-the-art of pesticide environmental fate

modelling, emphasizing interactive effects of non-linear and non-equilibrium

processes affecting leaching to groundwater, and the incorporation and

application of this knowledge in simulation models. The paper also highlights

significant gaps in our current understanding of specific environmental

compartments where moreresearchis clearly needed.

INTRODUCTION

Since the early 1970’s, beginning with the pioneering work of Walker (1974) and Leistra &
Dekkers (1976), simulation models have been developed to describe the complex
interactions of physical, chemical and biological processes that determine the environmental
fate of pesticides. Many of these models are now usedin the regulatory process by public
authorities, industry and consultants. Models are cost-effective tools, being both cheap and
powerful. At best, they can lead to valuable insights and improved understanding, and also
allow the user to evaluate the likely impacts of alternative mitigation strategies, while
minimizing the need for expensive long-term field experiments. For reasons ofcost, field
experiments on pesticide environmental fate can only be carried out at a few research sites,
and usually only for a limited number of years. Without the theoretical framework and
context provided by a model, conclusions that are drawn from the results of such short-term
experiments can often be misleading. The results of field experiments are also strongly
influenced by the prevailing weather and are only applicable to soils of similar properties.
Validated models enable extrapolation of the results of field experiments to strongly
contrasting environmental conditions.

It is impossible to discuss process descriptions in models without defining what the modelis
to be used for. Therefore, this paper largely focuses onthe prediction ofpesticide leaching to
groundwater. However, many of the considerations discussed in this paper will also be
relevant to pesticide movementto surface waters via sub-surface flow and drainage. Loss by
surface runoff and erosion is also mostly outside the scope of the paper, but some of the
discussion relating to generation of macropore flow mayalso be relevant for surface losses,
since macropore flow can, in some respects, be considered as a kind of ‘subsurface runoff’.
Volatilization is another loss process which is only briefly mentioned, but this is not
intended as a generalreflection ofits importance.

This paper reviews the state of the modelling art, attempting to answer the following
questions: which processes are important ? What do we know about these processes ? Why
don’t we always makeuseofthis process knowledge ? Where do we need to improve our
understanding ? 



OVERVIEW OF KEY PROCESSES

The fate of a pesticide applied to soil depends on the nature and strength of the sources and

sinks, the partitioning between phasesin thesoil (water,air and solid), and the transport process

itself. The ultimate sourceofthe pesticide is the dose multiplied by the fraction of the application

reaching the soil, which in tum is affected by crop interception, and loss processes such as

volatilization and photolysis. Since leaching responds approximately linearly to dose, even in the

presence of preferential flow, these loss processes at the surface may not be so critical for

leaching predictions. The major sink term for most pesticides is usually degradation. Small errors

in the prediction of degradation, either due to inappropriate process descriptions, or incorrect

parameter values, result in disproportionately large errors in the leaching prediction. This is not

only becausethe leaching loss is usually very small compared to degradation, but also because

leaching is an exponential function of the half-life, assuming first-order kinetics (Jury ef al.,

1987). An accurate description of sorption is also necessary, becausepartitioning determines the

availability of pesticide for both leaching and degradation. Modelsensitivity analyses, both using

the simple ‘one-at-a-time’ method, and also Monte Carlo approaches, show that leaching is

highly sensitive to parameters describing sorption and degradation (Boesten, 1991; Soutter &

Musy, 1999). Preferential flow is also a critical process, since from a regulatory point of view,

weare usually interested in leaching losses of muchless than 1% of the applied amount. In many

soils, this is likely to be the result of rapid transport in preferential flow pathways quite

unconnected to the much slower movementofthe bulk of the compound (Flury ef al., 1994).

PROCESS UNDERSTANDING

In recent years, improved understanding of the complex interaction of processes that govern

pesticide fate has led to linear/equilibrium model concepts being replaced by non-linear, non-

equilibrium approaches. Some examplesof this general trend are the use of Freundlich sorption

instead of a linear isotherm, kinetic sorption models instead of equilibrium sorption, non-

equilibrium preferential flow rather than the physical equilibrium implied by Richards equation,

and non-linear degradation models derived by accounting for sorption-degradation interactions

or microbial growth processes, rather than simple first-order kinetics. These more advanced

process descriptions can predict many phenomena commonly observed in field and laboratory

experiments (Richteref al., 1996). For example, ‘two-site’ (kinetic/equilibrium) sorption models

predict increases in the apparent sorption constant with time (Walkeret al., 1995). Linear kinetic

sorption combined with linear degradation in the liquid phase only (assuming that sorbed

pesticide is not available for biodegradation) leads to a biphasic degradation pattern (e.g. McCall

et al., 1981). A non-linear equilibrium sorption isotherm combined with first-order degradation

in the liquid phase only,leads to a quasi-linear degradation process which may be experimentally

indistinguishable from first-order, but where the (apparent) rate constant is strongly dependent

onthe initial concentration (e.g. Walker, 1976). Models which account for microbial population

growth can predict the rapid disappearance of pesticide due to microbial adaptation to repeated

applications (e.g. Walker & Welch, 1990). The most important underlying physical reason for

the non-equilibrium sorption, degradation and transport processes observed is the heterogeneous

nature of the pore space in field soils (Bergstrom & Stenstrém, 1998). Muchofthe soil pore

volume (microporosity less than c. 2 jm in size) is physically inaccessible to microorganisms.

Pesticide diffusing into such small pores is unavailable for degradation, and this slow diffusion

into a sorbing matrix is also largely responsible for the time-dependence observed in sorption,

and ‘biphasic’ departures from first-order degradation kinetics (Scow & Hutson, 1992). Pesticide 



residing in micropores is also effectively protected against leaching, since diffusion is slow
comparedto the rapid vertical convective transport occurringin the larger pores. Dual- and even
multi-region models have been developed to account for this physical non-equilibrium (Jarvis,
1998), which often results in the accelerated or ‘preferential’ transport of a small but significant
fraction of the pesticide through the unsaturated zone(e.g. Flury, 1996).

This improved process understanding has been incorporated into simulation models designed to
predict the environmental fate of pesticides, including some of those used for registration. For
example, the PEARL model (http://www..alterra.nl/models/pear!) includes two-site sorption with
a Freundlich isotherm, in which the kinetic sites are protected from degradation. The MACRO
model (http://www.mv.slu.se/bgf/macrohtm/macro.htm) includes treatment of non-equilibrium
water flow in macropores, Freundlich sorption, and also allows the user to specify separate
degradation rate coefficients for four different ‘pools’ in the soil (solid and liquid phases in
macropores and micropores). Nevertheless, there are few examples of the application of these
more advanced modelling concepts to predict pesticide fate in field soils, even though they
clearly can have a large impact on the outcome. Indeed, the failure to account for non-linear,
non-equilibrium processesis certainly the cause ofsignificant discrepancies betweenpredictions
and measurements in many model applications (Walker, 1976; Thorsenetal., 1998; Beulke et
al., 2000). With respect to regulatory modelling, none of these newer modelling concepts have
really gained a firm foothold, except for non-linear Freundlich sorption. There are perhaps
several reasonsfor this, but one of the most importantis the lack of data and perceived lack of
appropriate tools to parameterize these more advanced process descriptions. In principle, the
tools for parameter estimation do exist, in the form of inverse modelling techniques (Vinket al.,
1994; Dieses et al., 1999; Kiitterer er al., 2001). The main problem is that more complex model
descriptions require more detailed experiments and more comprehensive data in order to
unequivocally distinguish between the manydifferent process descriptions and parameterisations
that are possible. Two examples of the potential pitfalls in distinguishing different process
descriptions should suffice: Richter ef al. (1996) demonstrated that biphasic degradation curves
can be equally well explained by a deterministic model based on linear kinetic sorption and
linear degradationrestricted to the liquid phase, and by a model based onfirst-order degradation
Kinetics, but assuming spatial variability of the rate coefficient described by a gammafunction
(Gustafson & Holden, 1990). They pointed out that only additional data on the time-course of
bound residues would allow discrimination between the two models. Gaber et al. (1995)
demonstrated that both physical non-equilibrium and kinetic sorption influenced the leaching of
atrazine in undisturbed soil columns,and that without the application ofa tracer, it would have
been impossible to distinguish between parameters controlling diffusion exchange between pore
regions and parameters controlling kinetic sorption. Indeed, it is well known that the ‘mobile-
immobile’ model of physical non-equilibrium is mathematically identical to a one region flow
model assuming two-site (equilibrium-kinetic) sorption (Nkeddi-Kizzaetal., 1984).

KNOWLEDGE GAPS

Soil surface conditions

Tillage affects the ‘roughness’ or microreliefof the soil surface, the number,size distribution and
continuity of large pores, and thus the extent of macropore flow (e.g. Trojan & Linden, 1992;
Brown etal., 1999). Therefore, it may be possible to control preferential flow through soil
surface preparation, butlittle research has been performedonthis topic, even though conceptual
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models of these processes were developed as early as the 1970's (Dixon & Petersen, 1971).

Microtopography of the soil surface may also play an important role in sandy soils without

macropores. Hydrophobicity of the thin air-dry surface layer will cause small-scale surface

runoff and flow concentration in depressions. Ritsema & Dekker (1995) demonstrated a

significant lateral re-distribution of bromide tracer into preferential regions of the near-surface

soil following just 1 mm ofrain soonafter application. A related problem is the microtopography

deliberately created by ridgetill systems, commonly used, for example, in potato cultivation

(Boesten, 2000), so that infiltration is concentrated to the furrow regions.

Followingtillage, the soil surface is exposedto rainfall for several weeks before crop growth

provides effective surface cover. This leads to a consolidation of the cultivated layer and on

susceptible soils, destruction of macroporosity and sealing of the surface. These surface crusts

have significantly smaller hydraulic conductivities, but they are not continuous. Local surface

runoff will occur during rain, leading to concentration ofinfiltration through non-crusted patches

and dessication cracks. Nothing is known aboutthe influenceofthis kind of preferential flow on

pesticide leaching, but somepreliminary simulations based on measured seasonal variations in

soil surface hydraulic conductivity due to crusting suggest that it may lead to order of magnitude

differences in pesticide leaching from the topsoil (Messing, 1993).

During dry weather, the surface few millimetres of soil quickly becomesair-dry. Sorption is

known to dramatically increase as the soil gets very dry (Hance & Embling, 1979) and this, in

turn, strongly affects pesticide availability for volatilization and perhaps also for leaching by

preferential flow. However,it is difficult to measure moisture effects on sorption of concentrated

pesticide solutions in thin surface layers (Boesten, 2000). Furthermore, numerical limitations in

models, together with a lack of knowledge of near-surface hydraulic properties, mean that the

occurrence of very dry conditions in the surface few millimetres ofsoil is not easy to simulate.

For these reasons, Boesten (2000) concluded that accurate modelling of volatilization from the

soil surface is impossible with current knowledge and techniques.

Processes occurring at and very closeto the soil surface cannot be investigated satisfactorily with

current models. One-dimensional models implicitly assumea flat soil surface, and often employ

a rather coarse spatial discretisation, with computational layers several centimetres thick close to

the soil surface. Two-dimensional models applicable to pesticide fate in the soil unsaturated zone

do exist (e.g. HYDRUS-2D, http://www.ussl.ars.usda.gov/models/hydrus2d.htm), but they do

not accountfor preferential flow processes. Application of improved two-dimensional models,

including physical non-equilibrium concepts, should lead to a better understanding of the

importanceofsoil surface conditions for pesticide leaching.

Preferential flow pathways through the root zone

It is important to understand better the properties and functioning of preferential flow

pathways.In recent years,it has become increasingly clear that the location of the pesticide in

relation to the location of the water flow pathwaysiscritical for leaching (Bergstrom ef al.,

2001). If a mobile pesticide diffuses into the soil matrix, and is no longer in contact with

water flowing in macropores, then preferential flow may reduce leaching compared to

chromatographictransport (Larsson & Jarvis, 1999). On the other hand, macropore flow soon

after application will dramatically increase leaching of otherwise non-mobile compounds,

because the pesticide mostly resides either at the soil surface or adsorbed to aggregate

surfaces within the topsoil, and is therefore exposedto interaction with the rapidly flowing
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water. In one preliminary study, Larsson & Jarvis (2000) showed in scenario simulations
using MACROpre-calibrated to a field experiment on a structured clay soil, that the effects of
macropore flow should dependstrongly on the overall leachability of the pesticide. However,
much more workis clearly needed to understand the complex interactions of preferential flow
and the sorption and degradation characteristics of pesticides.

The properties of macroporelinings and aggregate surfaces are different to those of the bulk soil,
with larger clay and organic carbon contents,better nutrient supply and oxygenstatus, and larger
microbiological activity, which results in a larger sorption and degradation capacity per unit
mass of soil (Stehouwer et al., 1993; Mallawatantri ef al., 1996). The extent to whichthis is
important for pesticide leaching is not known. Much should depend on the characteristic time
scales of the processes : macropore flow is fast and degradation is relatively slow, so enhanced
microbial activity in macropores may not be important, although some preliminary studies
suggest otherwise (Pivetz er al., 1996). The significance of sorption retardation in macroporesis
still not clear, but it does not seem too important, probably because flowratesare fast in relation
to sorption kinetics, and the adsorptive surface area in macroporesis small. Field experiments
where leachingin the presenceof preferential flow has been monitored for several compounds
applied simultaneously (Kladivko ef al., 1991; Traub-Eberhard et al., 1994) seem to show an
equally fast breakthrough regardless of sorption characteristics, but that concentrations are
clearly dependent on sorption. It is still unclear whether this sorption effect occurs within
macropores during transport, or whetherit is a result of the source strength,that is, the solution
pesticide concentration in the surface soil layers where macroporeflow is mostlikely generated.

Subsoil and the deep vadose zone

In contrast to topsoil, very little seems to be known aboutlong-term pesticide degradation and
transport in the deeper vadose zone. Even thoughsensitivity analysis suggests that different
assumptions concerning subsoil degradation rates may not greatly influence predictionsoftotal
leaching (Boesten, 1991), the long-term persistence of small amountsofpesticide in subsoil may
act as a diffuse source of pesticide for groundwater contamination. This may have implications
for the time required for self-remediation of polluted aquifers. Few studies have investigated the
extent of non-equilibrium preferential flow in the deep vadose zone. In many cases, this may
diminish with depth (e.g. Li et al., 1997), since soil structure generally becomes weaker in the
absence offaunal activity and physical processes like wetting/drying and freeze/thaw. However,
preferential flow can occur to significant depths in some hydrogeological conditions, such as in
fractured glacial till or chalk (e.g. Jorgensenetal., 1998; Wellings & Cooper, 1983). Preferential
flow in the soil root zone maystill be critical even when matrix flow dominates transport at

depth. This is because the attenuation ofpesticides by sorption and degradation will generally be

much weakerin the vadose zone (Pothuluri et al., 1990; Moreau & Mouvet, 1997).

Upscalingto thefield

One unresolved problem is the extrapolation of results from small-scale experiments to the

field-scale relevant for management caused bythe spatial variability of soil properties and

pesticide sorption and degradation characteristics (e.g. Walker ef al., 2001). Stochastic

approacheshavebeen appliedto this upscaling problem that demonstrate the potentially large

effects of field-scale heterogeneity on leaching (e.g. van der Zee & Boesten, 1991). However,

the results of such analyses depend on both the assumptions underlying the process descriptions

used in the model and on how the modelis parameterised.In particular, a lack of information on
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parameterdistributions, and especially correlations, has severely limited progress. For example,

many studies havetreated the sorption constant and degradation rate coefficient as independent

parameterdistributions (Di & Aylmore, 1997), which will almostcertainly tend to overestimate

variability in leaching, since sorption and degradation are often inversely related (Cantwellet al.,

1989). Other studies focus on variability in transport characteristics, but ignore variability in

sorption and degradation because oflack of data (e.g. Wu & Workman, 1999). One dilemmais

that data may exist to characterize parameterdistributions in simple screening models (e.g. Jury

et al., 1987), but the process descriptions in these models are in some respects too simple (i.e.

steady flow, no dispersion). In contrast, process descriptions in complex models are much more

realistic, but knowledgeof parameterdistributions andtheir correlations is incomplete.

CONCLUDING REMARKS

Great progress has been madein recent years in improving our understanding ofthe interplay of

non-linear and non-equilibrium processes governing pesticide fate in soils. This improved

knowledge is also recognized in the process descriptions now included in many models, even

thoughit is not often fully exploited due to lack of data. The challenge nowis to design and carry

out the necessary experiments to meet the requirements of more complex models. Poor

predictions of pesticide fate in field soils are often blamed on inadequate process descriptions in

models (modelsare always simplificationsofreality), but are just as likely to result either from a

lack of experimental data leading to errors in modelidentification and parameterisation, or from

errors dueto extrapolation from limited data to the field-scale in the face of soil heterogeneity.

REFERENCES

Bergstrém L; Stenstrom J (1998). Environmental fate of chemicals in soil. Ambio, 27:16-23.

Bergstrém L; Jarvis N ; Larsson M ; Djodjic F; Shirmohammadi A (2001). Factors affecting the

significance of macropore flow for leaching of agrochemicals.In: Preferentialflow. Water

movement and chemicaltransport in the environment, pp 25-28, ASAE, MI,U.S.A.

Boesten J J T I (1991). Sensitivity analyses of a mathematical model for pesticide leaching to

groundwater. Pesticide Science, 31: 375-388.

Boesten J J T I (2000). From laboratoryto field: uses and limitations of pesticide behaviour

modelsfor the soil/plant system. Weed Research, 40: 123-138.

Brown C D; Marshall V L; Carter A D; Walker A; Arnold D; Jones R L (1999). Investigation

into the effect of tillage on solute movement to drains through a heavy clay soil. I.

Lysimeter experiment. Soil Use and Management, 15: 84-93.

Beulke S; Dubus I G; Brown C D; Gottesbiiren B (2000). Simulation of pesticide persistence in

the field on the basis of laboratory data — A review. Journal ofEnvironmental Quality, 29:

1371-1379.

Cantwell J R; Liebl R A; Slife F W (1989). Biodegradation characteristics of imazaquin and

imazethapyr. Weed Science, 37: 815-819.

Di H J; Aylmore L A G (1997). Modeling the probabilities of groundwater contamination by

pesticides. Soil Science Society ofAmerica Journal, 61: 17-23.

Dieses A E; Schlider J P; Bock H G; Richter O; Aden K; Gottesbiiren B (1999). A parameter

estimation tool for nonlinear transport and degradation processes of xenobiotics in soil.

In: Humanand environmental exposure to Xenobiotics, eds. A A M Del Re; C Brown;

E Capri; G Errera; S P Evans; M Trevisan, pp. 171-180, Cremona, Italy. 



Dixon R M;Petersen A E (1971). Waterinfiltration control: a channel system concept. Soil
Science Society ofAmerica Proceedings, 35: 968-973.

Flury M;Fliihler H; Jury, W A; Leuenberger J (1994). Susceptibility of soils to preferential
flow of water. Water Resources Research, 30: 1945-1954.

Flury M (1996). Experimental evidence of transport of pesticides through field soils — a
review. Journal ofEnvironmental Quality, 25, 25-45.

Gaber H M;Inskeep W P; Comford S ; Wraith J (1995). Nonequilibrium transport ofatrazine
throughlarge intact soil cores. Soil Science Society ofAmerica Journal, 59: 60-67.

Gustafson D I; Holden L R (1990). Non-linear pesticide dissipation in soil: a new model
based onspatial variability. Environmental Science & Technology, 24: 1032-1038.

Hance R J; Embling S J (1979). Effect of soil water content at the time of application on
herbicide content in soil solution extracted in a pressure membrane apparatus. Weed
Research, 19: 201-205.

Jarvis N J (1998). Modelling the impactofpreferential flow on non-point source pollution. In:
Physical non-equilibrium in soils: modeling and application, ed. H H Selim; L Ma,pp.
195-221, Ann ArborPress, Chelsea, MI, U.S.A.

Jgrgensen P R; McKay L D;Spliid N H (1998). Evaluation of chloride andpesticide transport in
a fractured clayey till using large undisturbed columns and numerical modeling. Water
Resources Research, 34: 539-553.

Jury W A; Focht D D; Farmer W J (1987). Evaluation of pesticide ground water pollution

potential from standard indices of soil-chemical adsorption and biodegradation. Journal of
Environmental Quality, 16: 422-428.

Katterer T; Schmied B; Abbaspour K C; Schulin R (2001). Single- and dual-porosity
modelling of multiple tracer transport through soil columns: effects of initial moisture
and modeofapplication. European JournalofSoil Science, 52: 1-12

Kladivko E J; van Scoyoc E G; Monke E J; Oates K M; Pask W (1991). Pesticide and nutrient

movement into subsurface tile drains on a silt loam soil in Indiana. Journal of
Environmental Quality, 20: 264-270.

Larsson M H; Jarvis N J (1999). Evaluation of a dual-porosity model to predict field-scale solute

transport in a macroporoussoil. Journal ofHydrology, 215: 153-171.

Larsson M H; Jarvis N J (2000). Quantifying interactions between compound properties and

macropore flow effects on pesticide leaching. Pest ManagementScience, 56: 133-141.
Leistra M; Dekkers W A (1976). Computed leaching of pesticides from soil under field

conditions. Water, Air and Soil Pollution, 5: 491-500.

Li K; Amoozegar A; Robarge W P; Buol S (1997). Water movement and solute transport

through saprolite. Soil Science Society ofAmerica Journal, 61: 1738-1745.

Mallawatantri A P; McConkey B G; Mulla D (1996). Characterization of pesticide sorption and

degradation in macropore linings and soil horizons of Thatuna silt loam. Journal of
Environmental Quality, 25: 227-235.

McCall P J; Vrona S A; Kelley S S (1981). Fate of uniformly carbon-14 ring labeled 2,4,5,-

Trichlorophenoxyacetic acid and 2,4-Dichlorophenoxyacetic acid. Journal ofAgricultural
and Food Chemistry, 29: 100-107.

Messing I (1993). Saturated and near-saturated hydraulic conductivity in clay soils. Reports and

Dissertations, 12, Department of Soil Sciences, Swedish University of Agricultural
Sciences, Uppsala, Sweden, 66 pp.

Moreau C; Mouvet C (1997). Sorption and desorption of atrazine, deethylatrazine, and

hydroxyatrazine by soil and aquifer solids. Journal ofEnvironmental Quality, 26: 416-424. 



Nkeddi-Kizza P; Biggar J W; Selim H M; van Genuchten M T; Wierenga P J; Davidson J M;

Nielsen D R (1984). On the equivalence of two conceptual models for describing ion

exchange during transport through an aggregated oxisol. Water Resources Research, 20:

1123-1130.

Pivetz B E; Kelsey J W; Steenhuis T S; Alexander M (1996). A procedure to calculate

biodegradation during preferential flow through heterogeneoussoil columns. Soil Science

Society ofAmerica Journal, 60: 381-388.
Pothuluri J V; Moorman T B; Obenhuber D C; Wauchope R D (1990). Aerobic and anaerobic

degradation of alachlor in samples from a surface-to-groundwaterprofile. Journal of

Environmental Quality, 19: 525-530.
Richter O; Diekkriiger B; Nértershauser P (1996). Environmental fate modelling ofpesticides.

VCH Verlag: Weinheim, Germany.

Ritsema C J; Dekker L W (1995) Distribution flow: a general process in the top layer of water

repellent soils. Water Resources Research, 31: 1187-1200.

Scow K M;Hutson J (1992). Effect of diffusion and sorption on the kinetics of biodegradation:

theoretical considerations. Soil Science Society ofAmerica Journal, 56: 119-127.

Soutter M; Musy A (1999). Global sensitivity analyses of three pesticide leaching models using a

Monte Carlo approach. Journal ofEnvironmental Quality, 28: 1290-1297.

Stehouwer R C; Dick W A; Traina S J (1993). Characteristics of earthworm burrow lining

affecting atrazine sorption. Journal ofEnvironmental Quality, 22: 181-185.

Thorsen M; Jgrgensen P R; Felding G; Jacobsen O H; Spliid N H; Refsgaard J C (1998).

Evaluation of a stepwise procedure for comparative validation of pesticide leaching

models. Journal ofEnvironmental Quality, 27: 1183-1193.

Traub-Eberhard U; Kérdel W; Klein W (1994). Pesticide movement into subsurface drains on a

loamysilt soil. Chemosphere, 28: 273-284.

Trojan M D; Linden D R (1992). Microrelief and rainfall effects on water and solute movement

in earthworm burrows.Soil Science Society ofAmerica Journal, 56: 727-733.

van der Zee, S E A T M; Boesten J J T I (1991). Effects of soil heterogeneity on pesticide

leaching to groundwater. Water Resources Research, 27: 3051-3063.

Vink J P M; Nortershauser P; Richter O; Diekkriiger B; Groen K P (1994). Modeling the

microbial breakdown of pesticides in soil using a parameter estimation technique.

Pesticide Science, 40: 285-292.

Walker A (1974). A simulation model for prediction of herbicide persistence. Journal of

Environmental Quality, 3: 396-401.
Walker A (1976). Simulation of herbicide persistence in soil. I. Simazine and prometryne.

Pesticide Science, 7: 41-49.

Walker A; Welch S J (1990). Enhanced biodegradation of dicarboxymide fungicides in soil. In:

Enhanced biodegradation ofpesticides in the environment, eds. K D Racke; J R Coats,

ACS Symposium Series, 426: 53-67.

Walker A; Welch S J; Turner I J (1995). Studies of time-dependent sorption processes in soils.

In: Pesticide movement to water, eds. A Walker, R Allen, S W Bailey, A M Blair, C D

Brown,P Giinther, C R Leake, P H Nicholls, pp 13-18, BCPC Farnham, U.K.

Walker A; Jurado-Exposito M; Bending G D; Smith V J R (2001). Spatial variability in the

degradation rate of isoproturonin soil. Environmental Poliution, 111: 407-415.

Wellings S R; Cooper J D (1983). The variability of recharge of the English chalk aquifer.

Agricultural Water Management, 6: 243-253.

Wu Q J; Workman S R (1999). Stochastic simulation of pesticide transport in heterogeneous

unsaturated fields. Journal ofEnvironmental Quality, 28: 498-512. 




