Measuring IPM adoption

Dr Henry Creissen
Research Fellow in Crop Protection
Scotland’s Rural College

Leading the way in Agriculture and Rural Research, Education and Consulting
Integrated Pest Management process

PREVENTION

EVALUATION

INTERVENTION

DETECTION
VI/PHC IPM assessment plans

♦ Tool to facilitate discussion between farmer and agronomist

♦ Data collection
 ♦ Baselines
 ♦ IPM score (0-100)
 ♦ Identify issues/topics
 ♦ Direct R&D + KTE

Research Article

Measuring the unmeasurable? A method to quantify adoption of integrated pest management practices in temperate arable farming systems
Distribution of IPM scores

<table>
<thead>
<tr>
<th></th>
<th>Arable</th>
<th>Grassland</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. completed</td>
<td>4723</td>
<td>292</td>
</tr>
<tr>
<td>Mean score</td>
<td>64.8</td>
<td>56.9</td>
</tr>
</tbody>
</table>
Country difference: Arable IPM

SRUC
Rotations: continuous cereals (5+ years of cereals in same field)
Soil cultivation

% Sample

England Northern Ireland Scotland Wales

Direct drill Min-till Reg. plough Reg. subsoil Rot. Plough Strip till
Problem pests: Arable

England
- Black Grass: 2,000
- Septoria: 500
- Slugs: 1,500
- Yellow Rust: 1,000

Northern Ireland
- Blackspot: 4.0
- Fathen: 3.0
- Nematodes: 4.0
- Slugs: 4.0

Scotland
- Mildew: 30
- Septoria: 20
- Slugs: 40
- Wild Oats: 10

Wales
- Black Grass: 7.5
- Flea Beetle: 2.5
- Septoria: 5.0
- Slugs: 12.5
- Wild Oats: 20
Weed Prevention: Arable

Crop inspections

Precise control e.g. spot spray, roguing

Optimal timing

Cleaning machinery etc.

Stale seedbed

% Sample

England
Northern Ireland
Scotland
Wales
Factors influencing decision to adjust spray programme

High influence | Moderate influence | No/low influence

- Weather conditions and forecasts
- Resistance management
- Predictions of Decision Support Systems (where available)
- Observed levels of pest/weed/disease presence in the field (including thresholds)
- Lack of availability of plant protection products
- Industry crop monitoring information (e.g. aphid/disease alerts)
- Growth stage of the crop
- Crop economic potential
- Calendar date
- BASIS qualified agronomist recommendation
- Availability of plant protection products
- Actions of/advice from other farmers in the area

Arable
Factors influencing decision to adjust spray programme

- Weather conditions and forecasts
- Sward growth potential
- Qualified adviser recommendation
- Price of herbicide products
- Presence of clover
- Predictions of Decision Support Systems (where available)
- Observed levels of weed presence in the field
- Lack of availability of herbicide products
- Growth stage of the weed
- Growth stage of the sward
- Calendar date
- Availability of herbicide product information
- Availability of a contractor
- Actions of/advice from other farmers in the area

Legend:
- High influence
- Moderate influence
- No/low influence
Arable: High/Low IPM adopters

- Cont. cereals
- Rotation
- Var. choice
- Prevention measures
- Planning factors
- Discussion group.

IPM Points awarded

Max

Bottom 25% farmers
Top 25% farmers
Grassland: High/Low IPM adopters

IPM Points awarded

- **Prevention measures**
- **Planning factors**
- **Spray adj.**
- **Cultural adj.**
- **Discussion group.**

Legend:
- **Max**
- **Max**
- **Max**
- **Max**

- **Bottom 25% farmers**
- **Top 25% farmers**
IPM Score - Arable area
IPM Score - Grass area

![Graph showing IPM score vs. grassland area with different categories indicated.]

- Temporary
- Permanent
- Rough

[Graph image with axes labeled: IPM Score on the y-axis, Grassland (ha) on the x-axis. The graph shows a scatter plot with various data points clustered in different areas.]
Knowledge => Uptake

Arable

Grassland

Q. How familiar are you with IPM? (1-5 scale)
Info source preference

Arable

- Contractors
- Social media
- Other farmers (not including discussion groups)
- Farming press
- Farmer discussion groups
- Information and updates from membership, levy and research organisations
- Evaluating previous control strategies
- Open days/crop walks
- Independent (e.g. AICC member) or in house agronomist
- Agronomist employed by a distributor

Grasslands

- Contractors
- Social media
- Other farmers (not including discussion groups)
- Farming press
- Farmer discussion groups
- Information and updates from membership, levy and research organisations
- Evaluating previous control strategies
- Open days/crop walks
- Independent (e.g. AICC member) or in house agronomist
- Agronomist employed by a distributor
Information source is key
Information source is key
VI/PHC IPM assessment plans

♦ Assess overall IPM strategy
♦ Tool to facilitate discussion => IPM action plan
♦ High adopters:
 ♦ More preventative measures
 ♦ Consider more factors when IPM planning
 ♦ Actively seek IPM knowledge
♦ IPM advice: clear, consistent, evidence-based
♦ Continually developing sector specific plans
 ♦ Arable
 ♦ Grassland
 ♦ Specialist horticulture (coming soon)
Crop Specific IPM plans (LMP)

Environmental Land Management: Test & Trial project

<table>
<thead>
<tr>
<th>Pest Issues</th>
<th>STHV aphid vectors</th>
<th>Caterpillar larvae</th>
<th>Flies</th>
<th>Fruit Fly</th>
<th>Leafhopper</th>
<th>Oulina</th>
<th>Saddle gall midge</th>
<th>Slugs</th>
<th>Summer adults</th>
<th>Wheat bulb fly</th>
<th>Insectivorous birds</th>
</tr>
</thead>
</table>
| **Rotation** | Avoid following
Wheat
Barley
Bean
Lentil
Pea |
| **Drilling method** | In Use |
| **Crop Establishment** | Extra
outlining |
| **Crop Management** | Link to
Decision Support Tools |
| **Resistance Assessment** | Monitoring
pest management plans |

Crop Establishment

- **Do you support resistance to plant protection products used to control the pest?**
 - Yes: Not Used
 - No: In Use

- **Have you checked with IPM resistance has been reported in the UK?**
 - Yes: In Use
 - No: Not Used

- **Has resistance been found?**
 - Yes: Not Used
 - No: In Use

Crop Management

- **Link to Decision Support Tools**
 - Short: Not Used
 - In Use: In Use

Resistance Assessment

- **Do you support resistance to plant protection products used to control the pest?**
 - Yes: Not Used
 - No: In Use

- **Have you checked with IPM resistance has been reported in the UK?**
 - Yes: In Use
 - No: Not Used

- **Has resistance been found?**
 - Yes: Not Used
 - No: In Use
Crop Specific IPM plans (LMP)

Non-chemical control strategies in arable crops – Weeds in cereals

<table>
<thead>
<tr>
<th>Current chemical control for comparison</th>
<th>Sensitivity weeds</th>
<th>Herbicide resistant grasses</th>
<th>Herbicide resistant BLW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field history, rotation & break crops</td>
<td>4 3 4 5 4 4 4 4 4</td>
<td>1 4 4 3 4 4 3 3 127</td>
<td>4</td>
</tr>
<tr>
<td>Select low-risk locations</td>
<td>3 4 3 5 4 4 3 3</td>
<td>1 4 3 3 4 3 3 3 374</td>
<td>4</td>
</tr>
<tr>
<td>Drawiag</td>
<td>2 2 4 5 2 3 3 4</td>
<td>5 9 423</td>
<td>4</td>
</tr>
<tr>
<td>Early harvest</td>
<td>4 3 4 5 3 4 4 4 4</td>
<td>297,425,557</td>
<td>2 4 4 3 5 5 3 3 294</td>
</tr>
<tr>
<td>Flooding</td>
<td>3 2 3 4 2 2 4 1</td>
<td>536</td>
<td>3 2 3 3 4 1 1 536</td>
</tr>
<tr>
<td>Hygiene</td>
<td>4 4 4 4 5 5 5 4 4 5</td>
<td>75,347,275,545</td>
<td>2 4 3 4 5 5 3 3 294</td>
</tr>
<tr>
<td>Primary cultivations (crop residue burial)</td>
<td>4 4 3 5 4 5 4 5 343,388,453,568</td>
<td>4 3 3 3 4 5 3 4 4</td>
<td></td>
</tr>
<tr>
<td>Secondary cultivations (drilling method)</td>
<td>4 4 3 5 4 3 4 5 343</td>
<td>3 4 3 3 4 3 4 4 401</td>
<td></td>
</tr>
<tr>
<td>Seed rate</td>
<td>4 4 2 5 5 3 4 4</td>
<td>343</td>
<td>3 3 2 3 5 3 3 3</td>
</tr>
<tr>
<td>Seedbed quality</td>
<td>3 3 5 2 3 3 3 3 3</td>
<td>3 3 3 2 2 3 3 3</td>
<td></td>
</tr>
<tr>
<td>Sowing date</td>
<td>4 4 2 5 2 4 4 4 4</td>
<td>343,390,82,371</td>
<td>4 4 2 3 2 3 4 4 4</td>
</tr>
<tr>
<td>Stubble management</td>
<td>4 3 3 5 4 3 4 4 4</td>
<td>391,193</td>
<td>4 3 3 3 4 3 3 4 13,217</td>
</tr>
<tr>
<td>Use of cover crops</td>
<td>3 2 2 5 2 4 2 4 4</td>
<td>34,410,147</td>
<td>4 2 2 3 2 4 2 4 314</td>
</tr>
<tr>
<td>Varieder choice</td>
<td>3 3 3 5 3 4 3 3 3 345,76,133,151</td>
<td>3 3 3 3 4 3 4 3 3</td>
<td></td>
</tr>
<tr>
<td>Various mixtures</td>
<td>Bioproductants & low risk PPPs</td>
<td>2 2 1 2 496,178</td>
<td>2 2 1 2 1</td>
</tr>
<tr>
<td>Additional (if necessary)</td>
<td>2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental Land Management: Test &Trial project
Crop Specific IPM plans (LMP)

- Focussed on effective evidence-based IPM methods
- 1-2 hours
 - Enables farmers to create IPM LMPs
 - Guides users towards effective IPM methods
 - Provides users with links to further guidance
 - Records current implementation of IPM
 - Records commitments to implement additional IPM

Behavioural Insight (interview) results

- Key barriers to uptake of IPM practices were highlighted as ‘economic’, ‘lack of knowledge or understanding of IPM’, and ‘mindset or habits’
Measuring to inform IPM decisions

♦ Assess overall strategy
 ♦ Benchmark against yourself
 ♦ Action plans to increase IPM adoption

♦ Crop*pest specific approaches
 ♦ What are the pest x crop issues?
 ♦ Current adoption recorded
 ♦ What did/didn’t work?
 ♦ => Next steps

Reduction in risk associated with pests and pesticides
Integrated approach needed to increase IPM adoption

Dara et al. 2019. J. of IPM 10
Acknowledgements

- VI/NFU/PHC IPM assessment plan
- Henry Creissen & Elliot Meador, SRUC
- Spencer Collins & Alison Taylor, NFU
- Fiona Burnett, SRUC
- Sonia Humphris, PHC
- Neal Evans & Jim Orson, Voluntary Initiative

 Creissen et al. 2019 *Pest Man.Sci.* 75
 Creissen et al. 2021 *Pest Man.Sci.* 77

- Test & Trial Funding: Defra
- Project management
 - Chris Hartfield, NFU, Phil Walker & Neil Paveley, ADAS
- *IPM Land Management Plan tool*
 - John Gadsby, ADAS
- Behavioural insight
 - Kath Behrendt, Holly Clarkson, Kathleen Wolton & Olivia Green, ADAS
Measuring IPM adoption

Dr Henry Creissen
Scotland’s Rural College

Thank you