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ABSTRACT
Forecasting, modelling, and risk assessmentare all activities that take place as
part of the decision-making process for pest and disease management.
Decision theory integrates these activities, so providing a basis for
formulating the characteristics of prediction systems and for assessing the

usefulness of the predictions that we make by means ofthese systems.

"We demand rigidly defined areas of doubt and uncertainty!" Thus said an irate
representative of the Amalgamated Union of Philosophers, Sages, Luminaries and Other
Thinking Persons (Adams, 1979), nicely capturing the problem of prediction. We cannot

make a decision without formulating some idea of what the future may hold (Drummond,

2001), but our idea of what the future may hold is subject to doubts and uncertainties that

defy rigid definition. In order to make progress we must make judicious use of current best
evidence. Clinicians who adopt this perspective on decision-making refer to the practice of
‘evidence-based medicine’ (Sackett et al., 1996; Ashby & Smith, 2000). The application of

decision theory in pest and disease managementis the basis for an evidence-based approach
to crop protection.

Models used in pest and disease management are the result of attempts to identify and

quantify the key risk factors influencing the spread of pest and pathogen populations in time
and space. Decision theory provides a framework by means of which we can incorporate
data on risk factors into evidence-based management of pests and diseases. For example, in

the two-group case, we are faced with the choice between applying crop protection measures

or withholding them. We must make this choice before we know for certain whether or not
crop protection measures actually were required, because by the time we can measure

economic croplosses, it is too late to prevent them. Thus, we need to make decisions based

on predictions oftheir consequences. The purpose ofa pest or disease management modelis

therefore to provide a prediction, or forecast, of the requirement for crop protection
measures. In practice, predictors rarely, if ever, provide perfect discrimination. In addition to

crops that are treated where intervention really was required (true positives) and those that

were not treated where intervention really was not required (true negatives), there may be

some decisions to treat crops that really did not require it (false positives), and some

decisions not to treat crops that really did require it (false negatives). The rates of true

positive decisions (sensitivity) and true negative decisions (specificity) characterize the
accuracy of a predictor (Yuen ef al., 1996). We can alter the sensitivity and specificity of a

predictor by changing the operational threshold adopted for its use. For a predictor that

generates a score positively correlated with the actual need for crop protection measures, the

adoption of a low threshold score reduces false negative decisions, while the adoption of a

high threshold reduces false positive decisions. The effects of different choices of threshold
predictor score on the error rates for decisions can best be seen by means ofa graphicalplot
of sensitivity against 1-specificity, referred to as a receiver operating characteristic (ROC)
curve (Twengstrém ef al., 1998). 



Sensitivity and specificity are characteristics of the predictor. Sensitivity, for example, tells

us the probability of a prediction of the need for crop protection measures, given that they

actually were required. For practical decision-making, we need to be able to reverse the

conditionality: that is, we wish to know the probability that crop protection measures are

actually required, given a prediction of the need for crop protection measures. Bayes'

theorem is the means by which this is achieved. Using Bayes’ theorem, sensitivity and

specificity are combined with information on the prior probability of the need for crop

protection measures to calculate the posterior probability of the need for crop protection

measures, given the evidencerelated to risk factors.

Generally, it is impractical to develop prediction systems for pests and diseases that occur

very frequently or very infrequently. For infrequently occurring pests and diseases, the prior

probability of need for crop protection measures is low, so a predictor with very high

sensitivity and specificity would be required in order for a prediction of occurrence to

increase the posterior probability of need for crop protection measures to a level at which

action might be taken by a decision-maker. For frequently occurring pests and diseases, the

prior probability of need for crop protection measures is high, so a predictor with very high

sensitivity and specificity would be required in order for a prediction of non-occurrenceto

decrease the posterior probability of need for crop protection measures to a level at which

action might not be taken by a decision-maker. Wider use of predictors might be expected

for pests and diseases that are neither particularly infrequent nor frequent (Yuen & Hughes,

2002). In this situation, even predictors with relatively modest sensitivity and specificity

attributes might be useful guides to decision-making in the practice of crop protection.
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ABSTRACT

Rule-based systems for predicting the occurrence of pests have been proposed and

used for over fifty years. More modern versions of these have been used in various

computer-based implementations since the 1970s. It is often unclear how such sys-

tems are developed. In addition, objective methods for evaluating such systems are

often lacking. This paper intends to present methods for evaluating such systems, and

also describes statistical regression methods for the development of such rule-based

systems.

INTRODUCTION

Plant protection decisions in agriculture, if they are to be applied on a case by case basis,

need information about the occurrence ofpests. This information needs to arrive in advance

of the pest itself, and usually needs additional lead time in order for the control measures to

be applied to the crop. For some diseases,it is not sufficient to wait for the appearance of

disease symptoms, since these may appear too late for the control measureto be of any use. For

fungal pathogens, wherethe control measure is (often) the application of fungicides, waiting for

symptoms to appear may give the pathogen a head start that can be difficult, if not impossible,

to retake, Protectant fungicides have little effect on the pathogen propagules that have already

invaded the plant, though they may give protection against subsequentinfections.

Howeasyisit for us to predict the future? If one looks far back in history, our ancestors looked

to changes in natural phenomenato see if they could see what the future might hold. Even

today, there are people that use tea leaves or tarot cards to have a glimpseinto the future.

Systemsthat use the action of birds, how tortoise shells crack when heated, or tea leaves are

usually not used to predict the occurrence of plant diseases. As scientists, we are equipped

with additional information that we can use to help us predict when a particular disease will

affect a crop. This is information that we use automatically when giving advice regarding the

occurrence of disease. For example, assume that cabbage is planted in a field. If that field

had been planted with cabbage the year before, and that the cabbagein that field was severely

affected with club root, most of us could then use that information to predict that the cabbage

planted this year would also have club root. It is because of our knowledge ofthe life-cycle of

the pathogen (Plasmodiophora brassicae) that enables us to makethis prediction.

In making these predictions, we use our knowledge of the biology of pathogen. Sometimes the

biology is complicated so that predictions need to be based on several pieces of information. In

the club root example, the mere fact that cabbage was planted the year before is not sufficient

to make a prediction about club-root. It is the fact the cabbage was affected by club root thatis

important. The numberof years between the previous cabbage crop and this oneis also of some

importance, although the pathogen is long-lived and can also survive on some weeds,

The mere existence of a predictive system (or evenit’s use) does not necessarily meanit is good,

correct, or of any use. Take an example of eyespot of wheat in Sweden. An information sheet 



on plant protection was published in Sweden (Olvang, 1992) and discussed someofthe factors
that might affect diseese development, based on knowledge of the biology of the pathogen,

Pseudocercosporella herpotrichoides(the asexual stage of Tapesia yallundae). The author went

as far as to assign varicus numbersofpoints to factors such as foliage density, weather, previous

crop, straw residues, weeds, and cultivar of wheat (Table 1).

While the author himself stated that the table was of limited use in predicting the use of fungi-

cides, this did not hinder the ministry of agriculture in Sweden from requiring the use ofthis

table for farmers who applied for subsidies related to “environmentally friendly conventional

agriculture’.

Table 1. Risk factors that affect development of eyespot in wheat

(Olvang, 1992). These were also used by the Swedish min-

istry of agriculture in a quantitative mannerfor steering ap-

plication of fungicides.

 

Sparse, poorly developed 0

Normal -

Dense,luxuriant pap

Dense, very luxuriant +4444

Spring weather Dry 0

Normal +

Wet

Very wet

Previous crop Winter wheat, rye,triticale

Winteror spring barley, spring wheat

other

Straw residues (on soil surface slight

after winter wheat,ryeortriticale abundant

Ground covering weeds slight

(chickweed, Verenica sp.) abundant

Variety Solid/Kosack

Holme/Hildur/Helge

Folke/rye/Triticale

 

Is the schemeefficient or not? Does the use of this scheme aid farmers to reduce the use

of pesticides, or to reduce the risk of eyespot damage? One methodof assessing this is to

select some wheatfields, examine the amount of eyespot damage (in the absence of fungicide

application) and to calculate the numberof points that the table would have generated. If the

schemeis efficient, we should see more points in those fields that had higher levels of eyespot. 



In other words, there should be somecorrelation between eyespot and the numberofpoints. A

graph of the numberofinfected plants in the spring, and the numberof points from the scheme,

however, indicate that the predictoris of little use (Figure 1). One would think that there is a

better way.
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Figure 1. Eyespot incidencein the spring and the sum of points using

the table 1 from wheatfields in Sweden from 1987 and 1988.

 

IDEAS AND TERMINOLOGY

Evaluating Prediction Systems

One important factor to consider in predictive systems is how often they give incorrect predic-

tions. Although manyprocess-based epidemiological models use amountofdisease as the final

output, farmers are usually faced with making yes-no decisions (Bernoulli variables) that entail

the use of pesticides or not. In this context, errors and correct decisions can be summarized in

a2 x 2 table, using methods borrowed from (human)clinical epidemiology (Yuenet al, 1996).

Table 2. Definition of true and false positive rates based on recom-

mendations and actual outcomes

 

Disease Present Disease Absent

Spray A B

Don’t Spray C D

Total A+C B+D

A/(A+C) True Positive B/(B+D) False Positive 



The proportion of correct predictions when the pestis actually presentis called the sensitivity.

Likewise, the proportion of correct decisions when thepestis absentis called the specificity.

Predictive schemes often have a continuous(or almost continuous) variable as an output. This

can result from various point schemes (such as the eyespot example). In this case, varying

the cutoff level where the control measures are to be applied (referred to here as the decision

threshold) can affect both sensitivity and specificity.

Refer again to Table 1, where increasing numbers of points are given to factors that favour

disease evelopment. A lower decision threshold will, in general, cause more fields to receive

fungicides. This can raise the sensitivity of the predictor, but also decrease the specificity. A

decision threshold of zero, fer example, will lead to all fields being sprayed. Such a predictor

has high sensitivity (i.e. all fields that need a spray receive one) but poor specificity (i.e. all

fields that don’t require pesticides also receive them).

The opposite situation occurs with an extremely high decision threshold. If this is so high that

no fields receive a spray, then the specificity is good (we haven’t sprayed thosefields that didn’t

need one)butsensitivity is poor(fields that needed a spray are missed).

By varying the decision threshold, a range of values for sensitivity and specificity can be ob-

tained of these. A plot of these (often the x-axis is 1-specificity, also called the false negative

rate) is referred to as a receiver operating characteristic (ROC) curve (Metz, 1978). Various

theoretical curves are presented in Figure 2. The predictor A is the best, B is a little worse, and

C has no predictive valueatall.

 

True |
Positive

   
False Positive

Figure 2. Theoretical ROC curves, ranked from best (A) to worst (C)

A ROCcurve from the initial eyespot data presented in the introduction (with 30% disease

severity as the economic threshold) is not shown but resembles predictor C in the Figure 2. One

can argue thatthis is a poor outcome(incidence at DC 30 is a poorpredictor for diseaselater) 



but the data set lacks sufficient number of observationslate in the growing season to use eyespot

incidenceat a later date as the final outcome. The poor performance of the predictor, however,

was not unexpected given the poor correlation between disease and the point sum (Figure 1).

A ROC curveprovides a rapid, easy to use methodof presenting a predictive system. The sen-

sitivity and specificity that is coupled with a specific decision threshold can be easily read from
the graph, and the graphical presentation allows comparison of systems that have completely

different scales.

Development of Prediction Systems

The origin of many rule-based systems is not always clear. The developmentof the apple scab

rules by Mills was not a simple task, and contained much revision and adjustment (MacHardy

& Gadoury, 1989). While much biological information must be used in the development of

rules in this manner, there is also much subjective judgment that may (or may not) be justified.

The need to apply pesticides (or not) was considered a Bernoulli variable in the previous sec-
tion. This leads to a classification problem, where we wouldlike to ascertain the characteristics

that will enable us to distinguish the fields that require pesticides from those that do not. Two

statistical procedures that can be usedforthis type of classification problem are the discriminant

function and logistic regression. While the discriminant function is more efficient in separat-

ing two groups, it requires more stringent assumptions (multivariate normality of the explana-

tory variables) than logistic regression. In the absence of such conditions, logistic regression

provides a robust method for separating two groups, and even performs reasonably well with

multivariate normal populations (Press & Wilson, 1978).

Logistic regression calculates the logarithm of the predicted odds of the outcome(in our case

the odds of pest:no pest) as a function of the explanatory variables. These can be both cate-

gorical variables or continuous variables. Logistic regression falls within the family of general

linear models, a concept which unites it with other types of models such as analysis of variance

(ANOVA), multiple regression, Poisson regression, and probit analysis (McCullagh & Nelder,

1989). One drawbackto logistic regression is that the estimation of the regression parameters

cannot be performed analytically, and that numerical methods have to be used to perform the

regression. Given the performance and cost of modern computers, this is not a major drawback.

Logistic regression allowsus to validate a set of predictive rules if we have accessto a suitable

data set. Analysis of the eyespot data used to present Figure 1 was less than promising. Of

the variables that were available in the data set, none was able to predict the need to apply

fungicides for eyespot. The information needed for this kind of prediction was not available in

this data set.

Onestudy conducted in Sweden was able to validate a predictor for Sclerotinia stem rot with

a large data set using logistic regression (Yuen et al., 1996). It was found that some variables

could be eliminated, and that new point values could be assigned to the remaining variables.

If one examinesthe original point table (Table 3) proposed by Twengstrém & Sigvald (1993),

one can wonderjust why the difference between no infection and low infection in the last crop

(equal to 10 points) gave the same changein risk as the difference between more than normal

rain and normalrain in June (also equal to 10 points). By examining all of these factors together

in a regression model, one can determine whichvariables are confounded with others and which

ones are unnecessary. Confounding of variables can take place in two ways. In one way(rain

in June and rain the last two weeks) the variables represent almost the same information, and 



one can beeliminated if the other one is present. In another type of confounding, one variable

must be present for the other variable to have explanatory value. The number of years since

the last oilseed crop is an exampleof this, which is only importantif level of infection is also

included. Somevariables (such as the one concerning peas) have no explanatory value alone or

in combination withthe others.

A statistical analysis of different decision rules can do more than just eliminate unnecessary

variables. The linear predictor resulting from the analysis represents the logarithm ofthe pre-

dicted odds of disease occurrence. Thus, the regression coefficients from the analysis can be

used to adjust the points assigned to the different answers.

A comparisonofthe recalibrated rules with the original set using ROC curves indicated that the

new rules performedas well, or better than the original. The new rulesare not perfect, however,

and still leave room for the errors that were mentioned above.
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Figure 3. Receiver operator characteristic curves from the original dis-

ease forecast algorithm for Sclerotinia stem ret (—C0—-)

and the recalibrated algorithm after logistic regression

(—-o—-).

CONCLUSION

Rule-based decision support systems can be a valuable component in modern agricultural pro-

duction. As a minimum requirement, the possibility for errors in these systems should be

acknowledged, and the performance of the rules documented with sensitivity and specificity.

Knowingthe performanceof a system will enable the targeting of areas wherethere is a chance

that it might be used. The use of ROC curves allows presentation of sensitivity and specificity

even with varying decision thresholds, and is also a method of comparingrisk algorithms that

do not have the same scale. An added advantage is that it allows for flexibility on the part of

the decision maker. Variable decision thresholds, with varying TP and FPrates, canreflect the

different risk attitudes. A risk averse decision maker may spray his fields with a lower "point 



Table 3. Risk factors for sclerotinia stem rot prediction with points

from original prediction algorithm

 

Risk factor Possible Answers

Numberofyears since last oilseed crop more than 6 years

5-6 years

3-4 years

1-2 years

Level of infection in last oilseed crop None

Low (1-10%)

Moderate (11-30%)

High (31-100%)

Don’t know (low risk)

Don’t know (highrisk)

Havepeas been grownin the field during No

the last five years Yes

Foliage density (including weeds) 0.5 m_ Thin

above ground Normal

Heavy

Rain in June Less than normal

Normal(35-55 mm)

More than normal

Rain the last two weeks Less than 10 mm

10-30 mm

More than 30 mm

Weatherforecast High pressure

Variable

Lowpressure

Regional risk value for apothecia devel- 0-5

opment(per 100 sclerotia) 6-10

11-20

21-100

  



accumulation’, when comparedto a decision maker morewilling to take risks. He could thereby

increasehis sensitivity, but at the cost of decreasing the specificity. The advantage of the ROC

curves is that the rate of both kinds of errors can be estimated. Given these error rates and the

relative costs of both kinds oferror, the decision maker can determinea critical value for his

decision threshold, that reflects his attitudes toward risk. Sensitivity and specificity are also

required for a Bayesian analysis of the predictive system (Yuen & Hughes, 2002).

Logistic regression provides a way ofverifying, calibrating, and even developing decision rules

if data sets of sufficient size and resolution are available. The importance ofdifferent factors

that affect disease can be evaluated in a systematic manner, and the relationships between these

different factors quantified. Unnecessary factors can be eliminated. Although thelinear rela-

tionship among the explanatory variables seems to imply an additive relationship,thisis related

to the logarithm of the odds of disease occurring, and thus assumes a multiplicative relation-

ship betweenthe factors. The logistic regression approach is more robust when compared to

discriminant analysis, though it maybeless efficient.

Documentation of the performance of decision rules regarding pest control and pesticide appli-

cation is an importantstep if they are to becomea part of modern agricultural production.
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ABSTRACT

A new approach towards data mining algorithms was developed to predict

Septoria tritici on winter wheat (cv. Riband) using meteorological data. Using

binary data, we derived a qualitative model predicting the presence or absence of

disease (at a 5% severity level) from weather data before GS 33 (temperature from

January until early March and windspeed from late April unti] early May). Above

the decided level, we used a linear regression to predict severity at GS 75 from

rainfall data during stem extension. In order to validate the algorithm, we also

deriveda test statistic using bootstrap analyses.

INTRODUCTION

Severe losses of yield and quality can result from poor disease control. As a consequence,
there is a tendency for crop managers to be very risk averse. However, as most crops do not

get most diseases in most seasons (Hardwicket al., 2001), this strategy leads to over-use of

fungicides and a reduction in margin for the grower.

Because weather is often a very important factor in the spread of plant pathogens, many

models (mechanistic and statistical) have been developed in the past to predict disease

severity using meteorological variables (Rouzet & Murer, 1988; Shtienberg, 1991). However,

such models are often seen as complicated and unreliable and have rarely been used in

practice to aid disease management. Farmers generally prefer to rely on “rules of thumb”to

decide the appropriate fungicide dose.

Coakley et al. (1982) developed an algorithm to explore the relationship between weather

variables and disease, based on data mining. The algorithm has been usedto derive predictive

models for diseases of wheat and rice. For example, Hansen et al. (1994), Coakley er

al.(1985) and Parker et al. (1999) worked on Septoria tritici and Coakley et al.(1982)

analysed yellow rust. Although the algorithm has often been criticized as potentially

unreliable (Shaw, 2002), no detailed work investigating this assertion has ever been

published. We therefore generalized the algorithm and tested its validity using bootstrap

analyses. To improvethe original version of the program, we developed a two-step analysis to

allow the construction of predictions that are qualitative (“Will an epidemic happen?”) and

quantitative (“How much disease would there be if the crop were left untreated?”’). We used

this approachto predict Septoriatritici on winter wheat in England. 



“WINDOW PANE” EARLY DEVELOPMENTAND PREVIOUS USES

Coakley er al. (1982) developed an iterative algorithm (WindowPane)to relate weather to

winter wheat disease severity. At the same time, a similar approach was developed in

horticulture by Goldwin (1982) and was then used in entomology (Thomas efal., 1983; Rispe

et al., 1998), In the Window Pane algorithm, correlations between disease and a numberof

weather “functions” (e.g, mean, number of days when a given weather variable is above a

threshold, etc...) are calculated for different “windows”. These windows are defined by a

starting date and a window length (Figure 1). For every weather function analyzed, the

window of highest absolute correlation with disease is found (“optimum window’). The
functions with the largest correlations with disease are then combined within a multiple linear

regression to derive predictive models of disease severity. The algorithm used by Goldwin

(1982), although based on aniterative search like Window Pane, was more restrictive than the

latter and only allowed mean values as weatherfunctions.

Over the past 20 years, Window Pane has been used to derive predictive models of various

diseases such as yellow rust (Coakley et al., 1988) and Septoriatritici (Coakley et al., 1985;

Hansen et al., 1994; Parker et al., 1999) on winter wheat. Coakley er al. (1985) used a

restricted disease data set (12 years at one site) and measured disease severity over the whole

crop. They derived a model from Window Pane by deriving a very large number of weather

functions (e.g. the “total consecutive days with temperature less than or equal to 7° C”) from

three weather variables (rain, minimum and maximum temperature), In their work, Hansen er

al, (1994) pooled together data from the two Septoria species (Septoria tritici and Septoria

nodorum) at 197 localities during 10 years. Severity was measured as a percentage green leaf

area over the whole plant. When using WindowPane,they restricted themselves to weather

functions derived fromrainfall. In 1999, Parker e¢ al. (1999) reported an analysis done on 20

observations of Septoria tritici at GS 73/75 on leaf layer 2. In this work, they logit-

transformed the disease data before reporting the weather “functions” found to be highly

related to disease severity.

Both Goldwin’s “correlogram” (Rispe et al., 1998) and Window Pane rely on the same

iterative search for large correlations. This has often been seen as the main weakness of the

method andit has been argued that such a screening method would almost always lead to high

correlations because of the large number of variables and windowstested (Shaw, 2002). It

may therefore appear surprising that this problem has never been addressed in the past and

that the validity of the correlations reported in the cited work mentioned above has not been

tested and/or reported. Although Coakley er al. (1985) presented a numberof test and

validation criteria, these were only concerned with the selection of the sub-medels and did not

test the weather variables selected by the algorithm. Many other studies using Window Pane

have also relied on observations of p-values to test the significance of the correlations found

despite the inapplicability of the p-value for repeated tests on the same data. When hefirst
introduced his “correlogram’, Goldwin (1982) mentioned the issue of iterativity and

recommended the use of cross-validation or of new independent data sets to validate the

model, but did not give any methodto assess the validity of a given correlation before having

derived the model. In more recent work, Rispe et al. (1998) used Monte Carlo simulation to

overcome the inadequacy ofp-values to test the significance of the highest correlations they

found. In order to reduce the risk of considering spurious correlations, Thomasef al. (1983) 



and Hansen ef al. (1994) chose to restrict their analysis to time periods likely to be of

importance a priori. This approach is questionable for two main reasons. First, it makes it

harder, if not impossible to suspect any dubious or “by chance” correlation as their validity

might not be tested very hard because of their a priori biological meaning. Second, this

approachis very restrictive as no unexpected correlation will ever be found.

Sowing GS 31 GS 75

!
10511 12 1 2 3 4 5

Window
le

Starting date

Figure 1. Example of a window withits starting date late November and a

windowlength of 70 days.

 

 

Time lag

AN IMPROVED VERSION OF WINDOW PANE

In our modified version of the initial Window Panealgorithm,wefirst addressed the problem

mentioned above causedbytheiterative nature of the program. We developeda test statistic,

based on the numberN of “consecutive”(e.g. starting on January 5", 10" and 15") windows

with a “significant” correlation. Using a bootstrap technique, we showed (Pietravalle eg al.,

unpublished data) that a careful study of the N statistic allows better differentiation of “likely

genuine correlations” from “likely spurious correlations”.

All previous analyses based on the Window Pane algorithm have considered disease severity

scored on a continuous scale between 0 and 100%. However, disease is relatively rare, so

observations taken from crops are commonly skewed towards low disease severity. This can

cause problems when modelling, because the cluster of points corresponding to low observed

severities inappropriately increases the number of degrees of freedom of the regression and

may lead to an artificially good fit. We therefore improved the original algorithm by allowing

disease severity to be classified using a binary scale and using the proportion of observations

which could be correctly classified using the value of a weather function as a measure to

replace correlation. In our analysis, we used data of Septoria tritici on winter wheat (cv.

Riband) collected during four years (1993/94 until 1996/97) at nine sites throughout England.

From there, we developed a “two-step process” (Figure 2). First, sites were scored “0”

(absence of disease) if severity was lower than 5% over the top three leaf layers at GS 75 or

“1” (presence of disease) otherwise. In order to ease the use of the program, we redefine the

windowsusing a “time lag” to define the starting date (Figure 1). We used our generalized

version of the algorithm with misclassifications to find weather variables initiating the
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epidemic. Those variables were subsequently combined with a discriminant analysis to derive

a discriminant function (Eq. 1) allowing qualitative prediction of severe Septoriatritici at GS

75,
A site is classified as “non-diseased”if:

h(x)= 2.7 Wind,,, [78,25]+ 0.41 min y,,., [190,70]— 33.7 >0 Eq.(1)

where Windy, represents the average wind speed throughout the window and Tminnog,7 is the

numberof days during the window when the minimum temperature is less than 7 °C. The time
lag (numberof days before GS 75) and window length are shownin the square brackets.

In a second step, a correlation approach using actual severity estimates was used, but

restricted to sites where the epidemic was present at a 5% threshold at GS 75 (i.e. severity

greater than 5% overthe top three leaf layers). After optimizing the window forthe largest

correlation, a linear regression was obtained to derive a quantitative estimate of Septoria

tritici at GS 75 (Eq.2).

$65.6 =13.8 (1.5) Rainv4.9

where Rainyop-9 is the number of days in the window when more than 9 mm rain fell. The

time lag and windowlength are shownin square brackets and the standard errors are between

round brackets.

[90;37]+ 6.1(2.8) Adj. R?=86% Eq.(2)
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Figure 2. Two-step process prediction of Septoria tritici. First, a qualitative

model was derived to predict the presence or absence of disease

and, if Septoria tritici is present (at a 5% severity over the top

three leaf layers), a quantitative model gives a prediction of the

actual severity of Septoria tritici on the top three leaf layers at GS

75 if the field is left untreated.

DISCUSSION

Previous studies that used data mining techniques such as Window Paneneverits validity and
based their results on observations of p-values. Such analyses are limited in their value

because of the autocorrelation of some weather variables (e.g. temperature) , the complexity
of such data mining techniques and the need for a better test for the selection of weather

variables. One large correlation between disease severity and weatheris likely to be due to

infection events occuring over a long time-period. On the contrary, even if spurious

correlations will still occur, because of the autocorrelation of weather variables, these will be 



on a much smaller range. Therefore, the number of significant correlations in time lags

around the optimum window was chosen andused asourtest statistic in the study presented

here.
The analysis of the data set clearly suggested that Septoria tritici epidemics are driven by a

two-step process. The most important step towards disease prediction and fungicide-use

optimization is the distinction between years when the crop will be at risk from years whenit

will not. To that extent, the binary approach (epidemic/no epidemic) developed in this study

would appear to be particularly useful. The 5% threshold, used to differentiate between high
and Jow years for disease risk, has a practical value for decision making. Using a modelling
approach, Paveley et al. (2001) tested the sensitivity of optimal fungicide dose to untreated

disease on the top three leaf layers during grain filling. From their data, a 5% loss of canopy

in a typical crop (max. GAI (Green Area Index) = 6.5) would require muchless than 0.4 units
of fungicide (where a unit is the label rate) for optimal control. Similarly, based on estimates

of yield loss using a model derived from the data of Thomas ef al. (1989), 5% loss of the

upper canopy would notjustify treatment above 0.25 dose units in an average crop.
Wehave foundthat the initiation of the epidemic can be predicted from temperature in winter

(from January until early March) and windspeedatthe start of stem elongation (until GS 33 -

from late April until early May). In orderto efficiently protect the upper canopyof the crop,it

is generally acknowledged that, if needed, fungicides should first be sprayed at about GS 32

(Anon, 2000). Unlike other models previously developed, the binary model will allow the

farmer to have an accurate prediction ofthe likelihood of a future epidemic by early March in

the best case and between GS 31 and 33atthelatest. This, together with the simplicity of the

weather variables to measure, makes the model a usable and accurate tool for predicting

Septoria tritici epidemics and might be extended in a similar way to predict epidemics of

other diseases. Also, there now exists a comprehensive network of meteorological stations

throughout the UK. As shownfor Septoria tritici in this work, the predictive models described

use widely available weather variables. Therefore, it could be possible to generate maps of

areas af risk early during the season. These could be published, in the form of an early

warning system, in the farming press and would meet farmers’ need for simple but more

accurate “rules of thumb”.
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ABSTRACT

Evidence from the DEFRA-funded national disease surveys indicated that farmers
have reacted differently to disease risk and timing of fungicide sprays for disease
control in oilseed rape and cereals. In winter wheat there was single shift in timing
from GS 59 to GS 37 sprays in 1994 andin oilseed rape twoshifts, in 1995 and 1999.
All these shifts were in response to advice on optimum disease control arising from
advice following extensive research. For winter wheat the change came 10 years
later, in oilseed rape after only four years. There were only gradual increases in
fungicide use in winter barley. The difference in rapidity of response between the

two crops is surprising, given that the crops are under common management. We
suggest that farmers are responding differently to the scientific evidence and
commercial technical information presented to them and indicate why this might be
so. The relatively rapid introduction of new chemistry, subtle recommendations on
dose and timing and changes in cultivars as they become more disease susceptible
complicate decisions and there is a tendency to remain with the familiar. Also of
concern is that overall fungicide inputs have not changed despite annual changes in
disease risk, indicating that farmers are still applying sprays routinely, rather than in
response to the balance between disease pressure and host resistance. This has major
implications for effective technology transfer.

INTRODUCTION

Diseases and agronomic practices, including fungicide use, have been quantified in stratified
surveys on winter wheat since 1970 (King, 1977), winter barley since 1981 (Polley et al., 1993)
and winter oilseed rape since 1986 (Hardwick er al., 1993). Disease control adds significantly to

the costs of production, but it can be highly cost-effective when applied efficiently. Many
treatments are poorly timed or applied inappropriately and this is in spite of guidance from
research. The surveys provide an annual update of data on how farmers’ respondto scientific
development thorough the monitoring of disease levels and inputs, and indicate how quickly shifts
in advice or uptake of new technologies e.g., in the form of new chemistry, are incorporated in
their decision making. This paper sets out to examine the data from the cereals and oilseed rape
disease databases for pointers to successful uptake of advice and technical developments.

MATERIALS AND METHODS

The methods used in the annual surveys were as described by Hardwick er al., (1989), King
(1977), Polley & Thomas (1991) and Polley et.al. (1993). Farm selection was made on a regional

basis. The distribution of crops between regions was proportional to the regional area of winter
wheat, winter barley or oilseed rape grown, except for Wales, where additional crops were
sampled in order to obtain meaningful figures for the area. The farms for wheat and barley were
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selected at random from the returns of the previous years June DEFRA Agricultural and

Horticultural Census (Anonymous, 1969-2000), those for oilseed rape from farms which provided
as representative sample for each county as possible. From 300-400 crops of winter wheat and
barley and 95-125 crops of winter oilseed rape were sampled eachyear in each survey.

The cereal disease surveys were carried out in June and July. Winter barley crops were sampled
at the watery-ripe to early-milk growth stages (GS 71-73; Zadoks et al., 1974) and winter wheat
sampling was carried out at the early to medium-milk growth stage (GS 73-75). Fungicide
treatments designated as being applied at GS 31 (first node) cover the range GS 29-35 (nine of
moretillers to five nodes detectable); sprays at GS 39 cover GS 36-48 (six nodes to boot swollen)

and those at GS 59 cover GS 49-71 (awnsvisible to caryopsis watery ripe). Winter oilseed rape

crops were sampled on three occasions: late November to early February (mid-leaf production,
GS 1.5 to 1.9; Sylvester-Bradley, 1985); late March to early April (one internode detectable, GS
2.0 to green bud, GS 3.3,) and early July (pod ripening, GS 6.3 to 6.5). On each occasion, 25

single plants were assessed from each crop.

For cereals, foliar diseases were recorded as the percentage area of the flag and second leaves
affected, using standard area keys (Anonymous, 1976). For oilseed rape, foliar and pod diseases
were assessed on a whole plant basis to give a mean percentage leaf or pod area figure for each
individual disease (Anonymous, 1979). Stem diseases were assessed as the percentage of stems
affected. Details of cultivar, sowing date, previous cropping, pesticide use and method of
application were recorded for each surveyed crop. Data were entered into an INFORMIX
relational database and analysed to produce tablesof figures for interpretation.

RESULTS

Fungicides

Total fungicide use in winter wheat has changedlittle since 1992, varying between 95 and 99%
cropstreated (Fig. 1). There has been a gradual increase in the use of sprays applied at GS 39 and

a shift in dominance in 1994 fromsprays applied at GS 59 to sprays applied at GS 39.

With the exception of 1994, the percentage crops where sprays were applied at GS 31 exceeded

all others. Although GS 31 is the main timing for the control of eyespot, since 1998 only less than
18% of crops weretreated with a fungicide targeted against the disease at this stage (Fig. 1); years
which have seen an increasein the severity of the disease.

Overall fungicide inputs into winter barley have remained fairly stable over the past 10 years with
between 90 and 97% cropstreated (Fig. 2). Fungicide use at GS 31 has remainedfairly static but
sprays as GS 39 have showna steady increase from 50 to 71% overthe last 10 years.

Fungicide use in winter oilseed rape has lagged behind that of cereals with 90% crops sprayed
being reached in 1998 (Fig. 3), compared with 1985 and 1989 for winter wheat and winterbarley,
respectively. There has been a majorincrease in the use of autumn sprays since 1994 anda slight
reduction in sprays at flowering. The dominant spray timing in 1992 wasat flowering; by 1995
this had changed to the spring and in 1999 to the autumn(Fig.3). 
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Figure 1 Percentage winter wheat crop treated with fungicide at main growth

stages and those applied at GS 31 that contain substances targeted
against eyespot(flusilazole, prochloraz, cyprodanil and MBC)
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growth stages 



The introduction of strobilurins fungicides in the mid-1990s resulted in a rapid uptake by farmers

reaching over 90% of crops treated within 4 years in winter wheat, with winter barley following a
year behind buttailing off at 79% (Fig. 4). The introduction of triazoles for broad-spectrum

disease control in oilseed rape showed a more modest uptake, reaching over 90% crops treated

after seven years (Fig.4).
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Figure 4 Useof strobilurin fungicides on winter wheat and winter barley and

triazoles in winter oilseed rape

Diseases

In winter wheat, sprays applied at GS 39 showeda steady increase, but disease severity fluctuated
from year to year (Fig. 5). There was a major contrast between 2000 and 2001, where fungicide
input wassimilar but the severity of septoria leaf blotch is almost 75% lower.

HH Septoria leaf blotch

—¢— Cropstreated at GS 39

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Figure 5 Severity of septoria leaf blotch of winter wheat and fungicide applied
at GS 39

As with winter wheat the major disease of winter barley show seasonalfluctuations in severity,
but cropstreated with fungicides at GS 39 showed steady increase (Fig 6). 
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Figure 6 Severity of leaf blotch of winter barley and fungicide applied at GS 37

and beyond

As with cereals, increases in fungicide inputs nationally in oilseed rape did not correlate with a
decrease in disease severity (Fig. 7). From 1997, canker severity showeda slight increase as the
percentage cropstreated in the autumn also rose. Cropstreated both in the autumn and spring
showedon average less disease than cropstreated either in the autumn orspring alone meaned for
1992-2001 (0.55, 0.77 and 1.84 stem area affected by light leaf spot for autumn plus spring,

autumn andspring only, respectively).

MBL ight leaf spot
CJ) Canker
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Figure 7 Severity of light leaf spot and phomaleaf spot on winter oilseed rape

Cultivars

In response to a question in the 2001 survey more than 50% of farmers indicated that they did not
select cultivars primarily on the basis of their disease resistance ratings. Two popularcultivars of
the 1990’s were those of Brigadier in winter wheat andBristol in oilseed rape, each reaching over
20% of the crops surveyed (Fig. 8). Theresistance rating of Brigadier to yellowrustfell from 9 in
1995 to 1 in 1998 andthatofBristol to light leaf spot from 5 in 1994 to 2 in 1997.

The numberof sprays applied to control diseases in winter wheat were similar, irrespective of the
disease resistance rating ofthe cultivars grown, e.g. the mean numberof sprays from 1992-2001
applied to Hereward (aresistant cultivar) was the same as Riband (asusceptible cultivar) at 2.1
sprays per crop. Timingsof the applications werealso similar. 
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Figure 8 Per cent cropsdrilled with winter wheat cv Brigadier and oilseed rape

cv Bristol

DISCUSSION

Fungicides are applied to crops to control disease in order to increase the net economic output.
Fungicide use has remained fairly static over the past 10 seasons while disease levels have
fluctuated. Not all treatments were applied at appropriate timings; indeed few oilseed rape
growers achieved control of canker with fungicide sprays (Gladderset al., 1998). Other factors
have an impact on disease severity. The chief amongst these is the seasonal variation in the
weather. It has been argued thatall fungicides have achieved is to keep diseasesat a level they
were before fungicides were introduced so that the agronomic advances in producing higher
yielding cultivars more responsive to increased nitrogen inputs can be realised (Hardwick et al.,
2000). In some years, where weather conditions are particularly favourable to some diseases, as
in the wet season of 2000, fungicide use alone cannot keep diseases underfull control.

In response to disease pressure and advice arising from research, there have been changes in
fungicide timing. The classic case was the switch in predominance in 1994 from spraysappliedat
GS 59 to GS 39 in winter wheat. Research in the 1980's indicated that the optimal timing of
fungicides to control foliar and ear disease was at GS 39 and not GS 59 (Cook & Jenkins, 1988).

However, it was not until 10 years later that the change was made nationally (Hardwicket al.,
2001). With winter barley the only change has been a gradual increase in fungicides applied at
GS 39. This has coincided with rise in severity of both leaf blotch and net blotch, for whichthis
timing is appropriate, the assumption being that farmers are responding to disease pressure.

In contrast, over the past 10 years there have been two majorshifts in the dominant spray timing
in winter oilseed rape; in 1995 from flowering to the spring, with the decline in the incidence of
sclerotinia stem rot and alternaria dark leaf and pod spotto the controlof light leaf spot (Turner er
al., 2000). A further change took place in 1999, from the spring to the autumnfor control oflight
leaf spot and also canker. The trigger in the first case was high levels of light leaf spot recorded
in 1995 which developed before spring sprays were applied. Research published in 1995
indicated that for effective control of light leaf spot and canker must begin in the autumn

(Gladderser al., 1998; Sansford, 1995; Sutherland ef al., 1995), and this has been confirmedin the
results from the survey.

The change in response to disease events appears to be more rapid in winter oilseed rape, with two
changes in the dominanceof sprays within a period of only four years compared with 10 years for
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winter wheat. Disease increases in cereals have been more gradual, whereas oilseed rape has seen

more sudden changes, e.g. the sclerotinia epidemic of 1991 (Turner & Hardwick, 1995). While
the majority of farmers do not consider disease to be a prime factor in cultivar selection
(Hardwicket al., 2001; Hardwick & Slough, 2001); when major disease events do occur, such as

a breakdownof yellow rust in Brigadier, or an instance of high disease pressure on a popular but
disease susceptible cultivar, such as Bristol, then farmers do respond quickly by ceasing to grow
them.

There are subtle differences in the way in which growers respond to the managementofcereals
and oilseed rape and it is difficult to understand why this should be so when they are under

common management. The rapid uptake of new chemistry in the form of the strobilurins, which
quickly demonstrated initial major benefits, contrasts with triazole use on oilseed rape where the
difference in performance compared with existing chemistry were not so readily apparent.
Oilseed rape is subject to a smaller range of damaging diseases and being, in comparison with
cereals, a relative minor crop there is a limited range of fungicide products (less than 30 used in
2001, compared with over 80 used on winter wheat) and sources of information In contrast,

cereal farmers are subjected to more commercial pressures with the promotion of numerous
products and many(often conflicting) sources of advice.

However, two related issues arise. The first is that farmers do not respond to genetic and
agronomic information to adjust fungicide inputs. The second is the emphasis placed on the

fungicide responsiveness of cultivars (Paveley et al., 2002). The differences in yield between
fungicide treated and untreated cultivars can be indication of their disease susceptibility and
growing these cultivars is not helpful in reducing disease risk or fungicide inputs. The disease
and fungicide trends indicate that more fungicide does not necessarily mean less disease. Also, a

major factor in the equation is the current unpredictability of forecasting high disease risk years
and therefore being able to respond appropriately.

The relatively rapid introduction of new chemistry, subtle recommendations on dose and timing
and changesin cultivars as they become more disease susceptible complicate decisions and there
is a tendency for farmers to continue to use familiar strategies rather than change. Reductionsin
sources of independent advice also contribute to the slow response to the introduction of best
practice. Robust disease forecasts would be of considerable benefit to farmers trying to reduce
fungicide inputs and some progress has been made to develop decision support systems.
However, further developmentand validation will be required before users have the confidence to
modify current practice.
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ABSTRACT

Pest risk assessment is an essential yet problematic stage in pest risk analysis

(PRA) procedure that concernsthe extent of the risk and the consequencesofpest

introduction. In this review the authors discuss current national and international

practices of pest risk assessment and the increasingly relevant concerns about

invasive species and biosafety. The authors also review research on qualitative

and quantitative approachesto risk assessment, taking into account achievements

in risk analysis in other disciplines. Consideration is given to the role of

subjectivity, the introduction of weighting into risk assessment, issues of

uncertainty and expert judgement and the need for a simplified yet rigorous
approachto quantitative risk assessment.

INTRODUCTION

The Agreement on the Application of Sanitary and Phytosanitary Measures (SPS Agreement)

of the World Trade Organisation (WTO)introduced in 1995 brought about a revolution in

plant quarantine. In accordance with the central doctrine of the SPS Agreement, phytosanitary

measure that may affect international trade shall be based either on international standards or

risk assessment supported by scientific principles and evidence (WTO, 1995). The

International Plant Protection Convention (IPPC)is identified in the SPS Agreement as the

reference for phytosanitary standards. A series of concept standards has been established

under the IPPC, International Standards for Phytosanitary Measures (ISPMs), to assist in

harmonising phytosanitary decision-making procedures. However, as there are no specific

pest-related international phytosanitary standard equivalent to animal health standard under

the International Office of Epizootics (OIE), WTO member governments must base their

phytosanitary measures on risk assessment.

The SPS Agreement doesnotrefer to “risk analysis”, but uses the term “risk assessment” in a

general way. The secretariat of the IPPC uses “risk assessment” to describe a component of

risk analysis (Stage 2). Although risk analysis is well known and has a long history in other

disciplines, its application for phytosanitary decision-making only emerged in the late 1980s

(Griffin, 2002). While the quarantine policies of most countries have historically been based

on an assessmentof pest or diseaserisks, pest risk analysis (PRA) has only become prominent

as a discrete scientific discipline since the formation of the WTO in 1995 (Stynes, 2002). The

term pest risk analysis has been used to refer to the evaluation of the biological factors

affecting importation decisions (Khan, 1979). In 1995, pest risk assessment was formally

defined as part of PRA and includes factors concerned with trade, economics and
environmental impactas well as biology. 



Risk assessment is a technique for identifying, characterising, quantifying and evaluating

hazards. Irrespective of the application, risk assessment seeks to answer the following

questions: a) what can go wrong? b) how likely is it to happen? and c)if it happens, what

consequences are expected? (Oryang, 2002). In the wider context of risk analysis, a further

question should be resolved: how to manage (eliminate or reduce) the hazard to an acceptable

level? A good risk assessment result should be convincing, scientifically based and

transparent, and documentany areas ofuncertainty for further review. In commonwith risk

assessment in some other disciplines, a number of problems must be overcome, e.g.

subjectivity, uncertainty, non-quantifiable variables, and the needto integrate information into

a simple statement of risk. This paper reviews international developments in methodologies

for pest risk assessment.

INTERNATIONAL STANDARDS AND CURRENT PRACTICES

International standards for phytosanitary measures

The International Workshopon the Identification, Assessment, and Managementof Risks due

to Exotic Agricultural Pests in Virginia, October 1991, endeavoured to harmonise PRA with

the proposal for an international standard. A decadelater, several international and regional

standards for PRA have been established. ISPM2 “Guidelines for pest risk analysis” (IPPC,

1995) was thefirst, and has been widely recognised and used by national plant protection

organisations. ISPM11 “Pest risk analysis for quarantine pest” (IPPC, 2001) is the latest

update of ISPM2 and it includes characterisation of pest risk in terms of likelihood of entry,

establishment, spread and economic consequences, and documentation of the areas and the

degree of uncertainty. Although ISPM11 provides a detailed characterisation of the factors to

be considered, it does not recommend any specific methods to conduct a PRA, or how

detailed a PRA should be under different circumstances. No guidance is given on how risk

should be estimated from each criterion (biological, economic, environmental and social), or

how the overall assessment is derived. ISPM11 does explicitly recognise the involvement of

uncertainty and expert judgement but offers no specific guidelines concerning them.

Regional and national PRA guidelines

Some Regional Plant Protection Organisations e.g. European and Mediterranean Plant

Protection Organisation (EPPO) and North American Plant Protection Organisation have also

established PRA guidelines or schemes which followed the general principles of the ISPMs

but are more sophisticated and operable. The EPPOpest risk assessment scheme, for example,

contains two sections that relate to the first two stages of PRA:initiation, and risk assessment.

Section A is a qualitative assessment in the form of a binary decision tree to determine

whether a pest has the characteristics of quarantine pest. Section B is a detailed assessment

taking the form ofa series of questions, to which replies are elicited, expressed on an ordinal

scale (a score between | and 9). It considers the probability of introduction (entry and

establishment) and the economic impact that together express the final assessment

(OEPP/EPPO, 1997). This wasthe first schemeto indicate that some risk factors/questions are

more important than others and suggests that risk scores can be weighted, prior to being

combined in an appropriate way. This schemeplaces the spread potential of pests within the

scope of economic impact because the speed and extent of the spread is regarded as more
related to the economicloss than introduction. Continued efforts have been made to improve

the EPPO scheme but considerable weaknesses remain, e.g. a) how to ascribe a score; b) how

912 



to combine the individual scores into a final statement of risk level; c) how to derive

weightings and then incorporate these into the risk assessment, d) the existence of

duplications and ambiguities in the questions.

Condensed versions of the recognised schemes have also been devised for rapid assessments,

e.g. a short, summary qualitative scheme was developed in the UK, which contains the major

factors in the ISPM2&11. It can be completed very quickly to decide action against pest

interceptions and whether a detailed analysis is required before committing extra resources.

The EPPO PRAschemecan then be used for detailed analysis (Bakerer al., 1999).

Environmental risk assessment in relation with PRA

Concermsare growing rapidly that guidelines for risk assessment related to invasive species,

genetically modified organisms and biosafety are urgently needed. Classic environmental

impact assessment used to be human-centred, and although ISPM includes environmental

impact, PRA used to consider the impact only within agricultural and forest systems.

Guidelines for plant/pest-centred environmental risk assessment outside of agricultural

systems are not yet available. An IPPC supplementary standard to ISPM11 was initiated in

2000: Environmental Impact Standard for Quarantine pests, including Invasive Species that

are Quarantine Pests (Sequeira, 2002a; Kareiva & Quinlan 2002).

RESEARCH ON PEST RISK ASSESSMENT METHODOLOGIES

Risk assessment methods can be broadly characterised as qualitative or quantitative.

Qualitative assessments usually rely on binary or ordinal scoring of risk, whilst quantitative

assessments usually employ stochastic and probabilistic approaches. Subjectivity is the

weakest point with qualitative assessments, whereas lack of data (experimental or heuristic)
limits the application of quantitative approaches.

Characterising risk

Whichever approach is employed, the first step has usually been to characterise the risk

factors in some systematic way; this equates to identifying “what can go wrong?”. In the

EPPOrisk assessment scheme, for example, there are about 45 risk factors, each of which

takes the form of a question. Identifying and structuring risk factors has not usually involved

any particular methodologies but Mindmapping was used by Zhuetal. (2000)to facilitate risk

identification by disaggregating pest risk into a series of nested risk factors, from general to

specific. This highlighted dependencies among risk factors and helped to distinguish factors

that are manageable (“control points”) as an aid to the selection of risk management measures.

Quantifying specific risk factors

For those risk factors that are amenable to quantification, it is possible to provide detailed

predictions. Some computer-based approaches have been usedto assess risks associated with

specific factors such as establishmentpotential. Spatial analysis using geographic information

systems was employed in the USA to monitor pest outbreaks, to assess the hosts at risk and

the risk of spread. It has recently been applied to Medfly, Karnal bunt and citrus canker

(Sequeira, 2002b). The automated software, CLIMEX decision-support system developed by

Sutherst and Maywald in 1985 was used in Australia and UK to evaluate the risk of
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establishment of exotic species in relation to climate in a new environment. CLIMEX is
applicable to any pest species, provided something is known aboutits current geographical

distribution. The software provides insights into the species’ performance in new

environments (Sutherster al., 1991; Baker, 1996; Bakeret al., 2000).

Dobesberger (2002) describes some multivariate analysis techniques used to predict

establishment potential. Examples include a multiple liner regression model for soybean rust,

discriminant analysis for bacterial leaf blight of rice, and logistic regression for pink

bollworm.

Probabilistic scenario analysis (PSA) has been used since the 1940s to assess the risks

associated with nuclear technology, other engineering applications, financial analyses, and

general economic evaluations. A PSA example implemented in PRA was described by

Oryang (2002) striving to present PSA asa structured and practical approach. Scenario type

risk analyses were also used in Australia in import risk analysis (Stynes, 2002).

Other quantitative techniques may have applications in PRA. Probabilistic risk analysis based

on systems analysis and Bayesian probability have long been used in disciplines such as

astronautics and nuclear safety. Although there are reservations about the use of Bayesian

probability, it is used because there are seldom enough data for a classical statistical analysis

(Pate-Cornell & Dillon, 2001). McDowell (2002) describes the tools and skills that are needed

to conduct quantitative analysis, discusses various data analysis techniques and predictive

models that may be useful for PRA.

Simplifying risk assessment

Pate-Cornell & Dillon (2001) make the point that “/t is generally impossible to include all

components andall event scenarios in a PRA [referring to probabilistic risk analysis], and an

adapted screening procedure is necessary. This screening procedure is meantto filter out the

scenarios that are low contributors to the overall risk while retaining the important ones”.

With similar issues in mind, Zhu et al. (2002) investigated decision-makings in risk

assessment in an attempt to identify the more important risk factors and assess their

consistency between different cases, Multivariate statistics (principal components analysis,

PCA) and genetic algorithms were employed in an attempt to simplify the risk assessment

without losing important information. It was found that: a) risk factors were correlated and

therefore redundancy/simplification of risk factors was possible; b) weightings could be

derived and risk factors prioritised from PCA provided there were sufficient PRA data; c)

high risk is associated with a few particularly influential risk factors; and d) weightings and

key criteria differ for different groups of pests. Although considerable simplification was

possible, the nature of the simplification depended to a greater or lesser degree on the specific

case. Thus,it is unlikely that a general model could be devised.

Uncertainty and expert judgement in PRA

Difficulties in assessing risk under uncertainty are obvious and the use of expert opinion with

its associated subjectivity is inevitable. Major uncertainties in PRA concern the behaviour and
pest status of non-indigenous organisms in new environments (McDowell, 2002). Inputs

based on expert judgement are also essential to developing probabilistic models of pest risk

(Dobesberger, 2002). Asis often the case, the problem with the precautionary approach is that

conservative estimates of the pest risk are used as a way to accommodate uncertainty, with
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alarming and discouraging results for trade. Bias often exists in subjective judgement. Zhu et

al., (2000) suggested using Delphi techniques to reduce the individual biases in expert
judgement. Such an approach requires, however, a pool of PRA practitioners to give their

opinions independently and adjust the outcome collectively. EPPO, through their PRA panel,
uses a similar approach for some PRA cases, although not necessarily by means of a formal
Delphi study. Zhu et al, (2001) also described various sources of uncertainty and suggested

several methods such as using fuzzy logic, sensitive analysis and Monte Carlo simulation to

handle these.

CONCLUSIONS AND FUTURE NEEDS

Organisational andinterdisciplinary cooperation. Risk assessment has been the subject of

muchless research in plant quarantine than in a numberof other disciplines. It has been left

largely to the plant quarantine authorities themselves to devise workable schemes. PRA would
benefit from a more academic framework and the involvementof different stakeholders such

as researchscientists and industry. PRA is an essentially multidisciplinary activity combining

environmental science, economics, mathematics and biology. Some aspects have receivedless

attention than others and in particular, guidelines for economic impact assessment need to be

developed or reviewed.

Simplifying risk assessment approach. Simplified approaches that maintain the rigor ofrisk

assessment without sacrificing necessary detail and depth is needed to accelerate the

phytosanitary decision-making procedure. Such approaches would be particularly attractive to

developing country trading partners who may have severe resource limitations.It is inevitable

that simplification will lead to loss of accuracy and perhapsa central question concerns where

the balance between simplification and accuracy shouldlie.

Incorporating weighting into PRA. Ideally, weighting should come from historical data of

the pests that have already been introduced to new areas. Previous pest introductions and

invasions can provide valuable information for PRA but previous data do not necessarily

apply to new situations. Some common groundcertainly exists in the weightings appropriate

for different pest groups and these can provide at least a starting point for new pests.

Improving quantitative analysis. Due to the diversity and large quantity of information

involved in PRA, it is extremely difficult to collate it to provide an overall pest risk

assessment. Limiting a quantitative assessment to a few risk factors (which is often the case

currently) might lead to errors. Methods should be developed for risk ranking and scoring, as

well as combining risk scores. Also, it might be asked whether some risk factors cannot be

quantified. If so, how are they to be recognised in the final risk assessment?

Finally, a lesson learned from probabilistic study of the space shuttle was that “conservative

estimates should not be mixed with probabilities that represent mean future frequencies of

failures. Otherwise the results are meaningless and possibly counterproductive” (Pate-

Cornell & Dillon, 2001). In PRA there may also be a tendency to apply the precautionary

principle for those risk factors where more uncertainty exists. When combined with more

accurate risk assessments of other factors, the overall result may be equally questionable.

Instead the uncertainty should be explicit and open for scrutiny. 
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