SYMPOSIUM PROCEEDINGS NO. 72

Gene Flow and Agriculture Relevance for Transgenic Crops

Chaired by P J W Lutman

Proceedings of a Symposium held at the University of Keele, Staffordshire 12 - 14 April 1999

CONTENTS

Page

Preface	VIII
Symposium Organising Committee	IX
Abbreviations	X
SESSION I	
GENETICALLY MODIFIED CROPS – THE CURRENT SITUATION	
Transgenic plants: field testing and commercialisation including a consideration	
of novel herbicide resistant oilseed rape (Brassica napus L.)	
S Barber	3
Deliberate release of genetically modified organisms: the UK regulatory framework	
P Burrows	13
The role of DNA technologies in crop breeding	2.2
G C M Sage	23
A long term perspective on Ag-biotech W de Greef	22
vv de Greer	
SESSION 2	
GENE FLOW – MEASUREMENT AND IMPLICATIONS	
Defining and measuring gene flow	
A F Raybould and R T Clarke	41
Gene flow and risk assessment	
C J Gliddon	49
Gene flow at the landscape level	
G R Squire, J W Crawford, G Ramsay et al.	57
Genetic pollution: concepts, concerns and transgenic crops	/ [
R E Daniels and J Sheail	63
CECCION 3	
SESSION 3 CONSEQUENCES OF GENE FLOW WITHIN SPECIES	
Gene flow in genetically modified herbicide tolerant oilseed rape	
(Brassica napus) in the UK	
E C Simpson, C E Norris, J R Law et al.	75
Gene flow between sugar beet and weed beet	
Y Vigouroux, H Darmency, T G de Garambe and M Richard-Molard	83
GeneSys: a model of the effects of cropping system on gene flow	
from transgenic rapeseed N. Calbach, J.M. Mayrard, C. Clarmont, Dayrbin and A. Massáan	20
N Colbach, J M Meynard, C. Clermont-Dauphin and A Messéan	07
Regional patterns of gene flow and its consequence for GM oilseed rape	95

Modelling the potential for gene escape in oilseed rape via the soil seedbank: its relevance for genetically modified cultivars C Pekrun, P W Lane and P J W Lutman	101
SESSION 4 CONSEQUENCES OF GENE FLOW BETWEEN SPECIES – I	
Gene flow and rape – the Canadian experience	100
R K Downey	109
Gene flow from oilseed rape (Brassica napus) to related species R B Jørgensen	117
Gene flow from oilseed rape to weeds A M Chèvre, F Eber, M Renard and H Darmency	125
Gene flow from transgenic canola to wild radish – a model system to determine the risks	
M A Rieger, C Preston, T Potter and S B Powles	131
Fitness costs associated with transgenic glufosinate tolerance introgressed from <i>Brassica napus</i> ssp <i>oleifera</i> (oilseed rape) into weedy <i>Brassica napa</i>	
A A Snow and R B Jørgensen	137
Gene flow from oilseed rape to <i>Sinapis arvensis</i> : variation at the population level C L Moyes, J Lilley, C Casais and P J Dale	143
SESSION 5 CONSEQUENCES OF GENE FLOW BETWEEN SPECIES – 2	
Predicting the environmental impact of transgene outcrossing to wild and weedy rices in Asia M B Cohen, M T Jackson, B R Lu et al.	151
The production of herbicide-resistant jointed goatgrass (Aegilops cylindrica) x wheat (Triticum aestivum) hybrids in the field by natural hybridization	
and management strategies to reduce their occurrence	
S S Seefeldt, F L Young, R Zemetra and S S Jones	159
Potential for gene flow between wheat (<i>Triticum aestivum</i>) and jointed goatgrass (<i>Aegilops cylindrica</i>) in the field	175
C A Mallory-Smith, J Snyder, J L Hansen et al.	163
Assessing potential risks of transgene escape from fiber plantations S P DiFazio, S Leonardi, S Cheng and S H Strauss	171
SESSION 6	
CONSEQUENCES OF GENE FLOW BETWEEN HIGHER PLANTS AND OTHER ORGANISMS	
Insecticidal transgenes into nature: gene flow, ecological effects,	
relevancy and monitoring C N Stewart	179
Gene flow from virus-resisitant transgenic crops to wild relatives	
or to infecting viruses P-Y Teycheney and M Tepfer	191

Interactions between insect tolerant genetically modified plants	
and natural enemies	107
T H Schuler, G M Poppy, Ř P J Potting et al.	197
Non-target effects of proteinase inhibitors expressed in potato	
as an anti-nematode defence S E Cowgill, D Coates and H J Atkinson	203
	203
Honeybees as vectors of GM oilseed rape pollen G Ramsay, C E Thompson, S Neilson and G R Mackay	200
G Namsay, C.E. Mompson, 3 Neilson and G. Mackay	207
SESSIONS 7 AND 8	
GENE FLOW – THE FUTURE	
Concerns about gene flow and the implications for the	
development of monitoring protocols	
J E Hill	217
Molecular aspects of multiple transgenes and gene flow to crops and wild relatives	
I J Senior and P J Dale	225
Management of transgenic crops within the cropping system	
J Champolivier, J Gasquez, A Méssean and M Richard-Molard	233
Assessing the impact and consequences of the release and	
commercialisation of genetically modified crops	241
J B Sweet, C E Norris, E Simpson and J E Thomas	241
Gene flow and the practical management of genetically modified crops in the UK	2.47
J H Orson and J F Oldfield	247
POSTER PAPERS	
Monitoring weediness and persistence of genetically modified oilseed rape	
(Brassica napus) in the UK	
C E Norris, E C Simpson, J B Sweet and J E Thomas	255
Millet as a model-crop to assess the impact of gene flow toward weed populations	
H Darmency, L Assémat and T Wang	261
Origin of wild beet and gene flow between Beta vulgaris and B. macrocarpa in California	
D Bartsch, J Clegg and N C Ellstrand	269
Evaluating the risk of transgene spread from Brassica napus to related species	
R Pinder, N Al-Kaff, M Kreike and P Dale	275
Estimation of allele frequencies for Bacillus thuringiensis resistance	
in diamondback moth, Plutella xylostella and cotton bollworm, Helicoverpa	
armigera: an isofemale line (F2) approach M Ahmad and R Roush	281
FIZERING GIRG INTOUGHT	201