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ABSTRACT

Plants of Solanum nigrum (black nightshade) and Polygonum persicaria
(redshank) were grown in a greenhouse until the fourth leaf stage. These plants

were sprayed with a mixture of metsulfuron-methyl (100 and 75 g a.i/ha,
respectively) and isodecyl alcohol ethoxylate (0.75 % v/v) using an air-pressured

laboratory track sprayer. The level of carbon dioxide (CO2) fixation as well as the
relative quantum efficiency of photosystem II electron transport (PSII efficiency)

and the relative quantum efficiency of photosystem I electron transport (PSI
efficiency) were simultaneously assessed between 2 and 4 days after treatment.

Measurements showed that CO, fixation, PSI and PSII efficiencies for treated

plants were much lower than for unsprayed control plants. These results suggest

that already few days after application the photosynthetic apparatus of S. nigrum
and P. persicaria were affected by ALSinhibiting herbicides. An extensive set of

experiments is being prepared to study these effects in moredetail and to explore
whether photosynthesis parameters can be used for early assessment of herbicide
efficacy underfield conditions.

INTRODUCTION

In 1991, herbicides accounted for almost half of the pesticide use worldwide in terms ofthe

volume of active ingredient. Increased concerns about environmental side effects of
herbicides, developmentof herbicide resistance in weedsand the necessity to reduce the cost
of the inputs have resulted in increasing pressure on farmers to reduce the use of herbicides.

The quantity of herbicides applied to crops can be reduced by cutting down the number of
applications, by applying spot spraying rather than full-field applications or by using reduced
dose rates. However, these methodsincrease the risk of inadequatecontrol.

Therefore, weed managementstrategies aiming at using low herbicide dosesideally consist
of a combination of two components. First, a method should be available to reliably predict

the dose rate that is just appropriate for killing the weedsin the field. Second, a means should
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be available to verify rapidly whether or not the herbicide application will, in fact, result in

the death of the weeds. Underfield conditions,the visible effects of herbicide action are only

apparent 10 to 20 days after spraying, which is too long a delay in the event that a second

application of herbicide is necessary. An early detection method would permit a prompt

second herbicide application in case offailure. This last element is of particular importance

for ensuring that even though minimal doses of herbicides have been employed, there is a

guarantee that the treatment will be successful in eliminating the weeds. Such a guarantee

contributes to the adoption of this methodology by farmers, agricultural contractors and

others,

The Minimum Lethal Herbicide Dose (MLHD)technology, developed by Plant Research

International in the Netherlands (Ketel, 1996; Kempenaar ef al, 2002), has shown itself to be

a promising decision support system leading to the use of lower rates of photosynthesis-

inhibiting herbicides. This method allows the calculation of the minimum dose of a

photosynthesis inhibiting herbicide needed to control a weed population. Simple and rapid

measurements of photosynthetic activity are used to evaluate the efficacy of the treatment

shortly after application. Only a minority of herbicides, however, act directly to inhibit

photosynthesis, and photosynthesis is the only biological process in the plant whose activity

can be rapidly and simply measured in the field. An obvious question is how effectively can

measuring instruments and methods that work so well to measure the effect ofphotosynthetic

herbicides work in detecting the effect of non-photosynthetic herbicides by their indirect

effect on photosynthesis?

Acetolactate synthase (ALS) inhibitors are an important group of herbicides. They selectively

inhibit acetolactate synthase, which is the first common enzyme involved in chloroplastidic

biosynthesis of essential branched chain amino acids (valine, leucine and isoleucine).

Photosynthesis is not regarded to be a primary target of ALS inhibiting herbicides, but

changes in chlorophyll fluorescence responses have been observed in treated plants. Judy ef

al, (1990) found effects on the fluorescence from barley 2 h after treatment with imazaquin

and Percival & Baker (1991) found effects on the fluorescence from wheat leaves 24 h after

treatment with the ALS-inhibitor imazamethabenz methyl at the recommendedfield rates.

Van den Boogaard & Harbinson (unpublished data) worked with photosystem I, which

contained P700, the chlorophyll “a” dimer that functions as a primary electron donor. They

observed that two days after sunflowerplants (Helianthus annus L.) had been treated with the

ALSinhibitor amidosulfuron the rate-constant for the reduction of the P700° pool decreased

significantly. For rape (Brassica napus), though treatment with amidosulfuron had no effect

on the rate-constant for P700* reduction, there was an easily detectable effect on the pattern

of P700 oxidation following the start of the illumination of dark-adapted leaves (Van den

Boogaard & Harbinson, unpublished data). How exactly these events are related to the

primary events caused by ALS-inhibiting herbicides remains unknown. Madsenef a/. (1995)

found that photosynthetic parameters like fluorescence and carbon dioxide exchange rate

were significantly affected after treatment with glyphosate, another well-known. herbicide

whichinterferes with the essential aromatic amino acid synthesis.

There are no published methods for predicting the effectiveness of an ALStreatment after a

relatively short period of time. However, these previous studies have demonstrated the effects

of various ALS inhibitors on photosynthesis within a few hours or days of application

suggesting that photosynthetic parameters might be useful indicators of herbicidal efficacy.

The purposeofthis study was to determine if, how and when the photosynthetic apparatus of
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Solanum nigrum(black nightshade) and Polygonumpersicaria (redshank) were affected by
ALSinhibiting herbicides.

MATERIALS AND METHODS

Plant material

S. nigrum and P. persicaria were raised from seeds (Herbiseed, UK) and grown in a
greenhouse between January and March 2003 at Plant Research International (Wageningen,
The Netherlands). The plants were grown with day/night temperatures of 18 °C / 14 °C, 70 %
relative humidity and a 12 h photoperiod provided by natural light supplemented with high-
pressure mercury lamps. Water and soil nutrients were kept at a level so that they were not
limiting for growth.

Spraying procedure

Five week old S. nigrumand P. persicariaplants (both at the 3-leaf stage) were sprayed with
an air-pressurised laboratory track sprayer delivering 400 litres/ha at 303 kPa. S. nigrum
plants were treated with 100 g a.i/ha of metsulfuron-methyl (Ally, DuPont) and 0.75 % v/v
isodecyl alcohol ethoxylate (Trend 90, DuPont). P. persicaria plants were sprayed with 75 g

a.i./na of metsulfuron-methyl and 0.75 % v/v isodecyl alcohol ethoxylate. Isodecyl alcohol

ethoxylate is used as a surfactant to improve the uptake of metsulfuron-methylby the leaves.

Photosynthesis measurements

To have an indication on the relative performance of the photosynthetic apparatus of ALS-
treated plants the level of carbon dioxide (CO2) fixation, the relative quantum efficiency of

photosystem II electron transport (PSII efficiency) and the relative quantum efficiency of

photosystem I electron transport (PSI efficiency) were assessed for both control and treated
plants. Equipment similar to that described by Kingston-Smith et al. (1997, 1999) was used.

CO) fixation was measured using an infra-red gas analyser (Mark 3, Analytical Development

Company, Hoddesdon UK). Actinic light was provided by a quartz halogen lamp filtered by

NIR and Calfex dichroic mirrors (Balzers, Liechtenstein), and light-intensity was adjusted

using metal film neutral density filters (Balzers, Liechtenstein) (Kingston-Smith et al., 1997).

Two wavelengths (560 and 660 nm) were used to excite the chlorophyll fluorescence in order

to measure PSII efficiency. These two excitation wavelengths penetrate the leaf differently

and the fluorescence they each produceis electronically recovered and displayed separately.

The efficiency of PSI was measured using the irradiance-induced absorbance change around

820 nm. The CO) fixation and efficiency measurements were madein air consisting of 21 %

(v/v) oxygen (O), 370 umol/mol CO, with the remainder nitrogen (N2), at a temperature of

21 to 23 °C. Photosynthesis parameters were measured when photosynthesis was in steady

state after acclimatization to the irradiance level, which typically occurred after 45 to 60
mins.

The light response curves of CO, fixation (in tsmol/m’.s), PSI and PSII efficiency to

increasing irradiance were measured for both control andtreated plants ofS. nigrumand P.

persicaria. The actinic light source was used to provide the step increasein irradiance from 0
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to 1500 umol/m”.s (light level stepn = 1.5 x light level stepn-1)). Based on these observed

light response curvesa single light-intensity was selected for each species that was sufficient

to saturate CO;fixation and which would serve as a standard irradiance for the comparison of

PSI and PSII efficiencies in the presence or absence of herbicide. Once this standard had

been determined the same parameters were measured at this light intensity on additional

plants. For S. nigrum the measurements were made 2 and 3 DATonthe secondorthird leaf.

For P. persicaria the measurements were made 3 and 4 DATonthe third leaf.

RESULTS

At 2 to 4 DAT CO;fixation, PSI and PSII efficiencies were always higher for control plants

than for treated plants for both S. nigrum (Figure 1) and P. persicaria (data not shown). The

rate of CQ) fixation was most strongly reduced especially at high light intensities (light

intensities from 500 to 1000 umol/m’.s). These results clearly demonstrate that the ALS

inhibiting herbicide metsulfuron-methyl has major effects on photosynthesis. Whether these

are primary or secondary effects remains unknown. Based onthe light response curvesforS.

nigrum it appeared that the most appropriate light intensity for later measurements was 500

umol/m’-s. ForP. persicaria thelight intensity selected was 700 umol/m’.s.
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Figure1. The effect of irradiance (umol/m?.s') on (a) CO2 fixation

(umol/m’.s); (b) PSIefficiency; (c) PSII efficiency for one S.

nigrum control plant (black squares) and one S. nigrum treated

plant (3 DAT, grey circles).

Six week old plants (5 leaves, measurementonthe fourth) treated

with 100 g/ha metsulfuron-methyl + 0.75 % v/v isodecyl alcohol

ethoxylate. Light intensity 500 umol/m’:s.

CO, fixation, PSI and PSII efficiencies were assessed at 2 and 3 DAT for both control

(Csoxn1) and treated (Tsoxn1) S. nigrum plants. For P. persicaria plants (Cpoirr and Tpo.re)

the measurements were performed at 3 and 4 DAT. These data clearly demonstrated that for

S. nigrum at both 2 and 3 DATthe three parameters presented here were strongly reduced by

the ALSinhibiting herbicide (78 to 82 %reduction for the COz fixation, 28 to 34 % reduction

for the PSI efficiency and 40 to 45 % reduction for the PSII efficiency). Already 2 DAT, the

differences between Csorn: and Tsoxnt plants were highly significant, as given in Table 1. 



For P. persicaria the results show that 3 or 4 DAT CO)fixation, PSI and PSII efficiencies

were reduced bythe herbicide (Table 2). These reductions were onlystatistically significant

for COfixation and PSII efficiency.

Table 1. Mean values for COfixation, PSI efficiency and PSII efficiency

measured on 3 S. nigrum control plants (C sotni) and 3 S. nigrum

treated plants (T sotn1) sprayed with 100 g a.i./ha metsulfuron-

methyl + 0.75 % v/v isodecyl alcohol ethoxylate at (a) 2 DAT

and (b) 3 DAT.Light intensity 500 umol/m/.s.

 

Treatment DAT CO),fixation PSI efficiency PSII efficiency

(umol/m?.s')
 

(a)
C soni 5.66 * 0.759 * 0.507 *

T soLni 1.26° 0.543 ° 0.304 °
%reduction 78 % 28 % 40 %

LSD 005 1.15 0.073 0.141

(b)
C sotnt 5.76 °* 0.786 ? 0.512?

Tsont 1.05° 0.522 ° 0.282°
% reduction 82 % 34% 45 %

LSD 0.05 0.857 0.122 0.110

P=0.05 according to one-way ANOVA(Genstat6)
 

Table 2. Meanvalues for CO) fixation, PSI efficiency and PSII efficiency

measured on two P. persicaria control plants (C poype) and three

P. persicaria treated plants (T po_pe) sprayed with 75 g a.i/ha

metsulfuron-methyl + 0.75 % v/v isodecyl alcohol ethoxylate at

(a) 3 DATand (b) 4 DAT.Light intensity 700 umol/m7.s.

 

Treatment DAT CO;fixation PSlefficiency PSII efficiency

(umol/m?.s!)
 

(a)
C pope 6.33 ° 0.669 * 0.443 ?

T pote 4.60° 0.545? 0.348 °
% reduction 27% 18% 21%

LSD 90s 173 NS 0.048

(b)
C pope 6.45? 0.645 * 0.426 *

T poLre 4.60° 0.536 ® 0.350°
% reduction 29 % 17% 18 %

LSD 90s 0.790 NS 0.045

NS: Not Significant at P=0.05 according to one-way ANOVA(Genstat 6)
  



DISCUSSION

This exploratory study showed that the photosynthetic apparatus of both S. nigrum and P.

persicaria plants were affected by an ALS-inhibiting herbicide. The effects were detectable

shortly after application (2 to 4 DAT). This indicates that there might be scopefor utilising

easily measured photosynthetic characteristics, such as PSII efficiency, as practical early

indicators for the success of an ALS-herbicide application. Still many scientific and practical

questions arose. More experiments are needed to answer questions like: “How soon after

application are photosynthetic parameters affected?” or “Are photosynthetic parameters

predictive enough to be used as early indicators of plants death?”. An extensive set of

experiments is being prepared to study these effects in more detail. Lastly, the question as to

how these non-photosynthetic herbicides affect the operation of photosynthesis only a few

days after application, and how different species (e.g. Brassica and Helianthus) can respond

so differently, still needs to be answered.
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ABSTRACT

This paper outlines the performance ofa prototype device that wheninstalled

near the induction hopper of an agricultural sprayer will allow the accurate

loading of the sprayer and automatic creation of spray records. The device

consists of a weighing platform with an integrated RFID (Radio Frequency

[Dentification) read/writer. An electronic tag, attached to the chemical

container, stores information about the content and recommendations foruse.

Byplacing the container on the weighing platformit is possible for the sprayer

to automatically log quantities and identify the concentrate(s) loaded into the

tank. Trials conducted indicate that it is possible to automatically identify and

weigh the product to accuracies comparable to those of conventional methods

even though the unit has to work in a vibrating and dirty environment. The

information collected can be combined with location, time and weather data to

form precise spray records and/or be used for improved automatic control of

the sprayer, without operatorintervention.

INTRODUCTION

Supplychain traceability is becoming increasingly important forall those involved with the

handling offoods destined for human consumption (Hobbse/ a/., 2002). There are a number

of reasons for this. From a food safety perspective, the retailer wants to ensure that products

on their shelves are from knownsources, are grown to specific standards particularly with

regard to anyresidue levels, and are as fresh as possible. In the event of product problems,

efficient traceability systems are vital, because the retailer/producer needs to be able to find

both the source and extent ofthe problem, to allowefficient public notice and recall.

Traceability systems can be paper based, but these are only human readable and difficult to

manage in volume. AIDC (Automatic Identification and Data Capture) technologies

including Barcode and RFID (Radio Frequency [Dentification) have been used extensively

in the food supply chain from processor onwards to improve the management and flow of

information. These trends have also been seen in agriculture. Examples include the

automatic identification of animals (Rossing, 1999) for improved herd management. the

Cristal Project (Debecker, 2000) implemented by ECPA to standardise the use of barcodes

on pesticide containers and the Cyanamid closed transfer system incorporating RFID in kegs

for improved logistics management. Animalidentification is nowan established component

of integrated systems for livestock production and used as part of traceability systems for

disease control] and monitoring. 



There is increasing emphasis on the use of electronic technology to automatically control

and monitor tractors and implements for maximum efficiency. Precision farming systems

allow variable site specific applications of inputs and the monitoring ofyield (Miller, 1999).

The office computer provides convenient storage for production and operation records.

Integration of AIDC into these systems could allow the production of electronic records,

which are ultimately destined for use in supply chain traceability systems. They may also

lead to improved control of tractor and implement combinations. Oneparticular example is

that of agricultural spraying. This is a highly regulated, expensive and, should things go

wrong, potentially dangerous operation. Frequently however, records are little more than

paper based modifications of the agronomists recommendation.

EXPERIMENTAL METHODS

Apparatus

The basic experimental unit consists of a load cell for the determination of chemical

quantity loaded, and an RFID reader for reading information from RFIDtags attached to the

base of chemical containers. The unit was controlled by a portable computer so as to give

flexibility during the development of the system. Data is transferred from the load cell and

RFID reader via a data logger to the computer which stores information to hard disk. The

computeralso has the capability of displaying relevant data about the quantity and types of

chemical loaded in real time. A detailed description of the unit is given by Watts ef al.

(2003).

Position antenna Sprayer computer Sprayer control
valves

 
: Displa— play

Productidentification
aesi (RFID)

Figure 1. Diagram of experimental automatic recording apparatus.

Fortrials purposes, the unit was mounted near the induction hopper of a 1000litre fully

mounted sprayer. A graphical representation of the system asinstalled is given in Figure 1.

Procedure

The automatic recording device was compared with conventional methods of loading the 



sprayer using the following fourcriteria:

e Speed of operation;

e Reliability of recording;

e Accuracy of recording; and
e Accuracy of dispensing.

A blocked experimental design was used to enable a comparison of performance of the

system with manual methods of loading, using an analysis of variance of the listed

performancecriteria. The experimental design took into consideration the possible effects of

differences resulting from the use of water and test liquid conforming to BS 6356-8:1996
(Anon, 1996) with a density of 0.9 kg/litre, the use of various container sizes (100 ml to 10

litres) and differing dispensing amounts of simulated chemical (50 mlto 5 litres).

Forthetrials, 11 sprayer operators each undertook 24 individual loading cycles of which 12

required use of the automatic recording device (procedure shown Figure 2). After

completion of the loading, the operators were asked to complete a record oftheir actions to

the minimum recommendedstandard as described in the Code of Practice for the Safe use of

Pesticides on Farms and Holdings (Anon., 2001). This recorded the load size, chemicals

used (water and test solution) and arbitrary field data.

Containers were weighed on a laboratory balance before and after each loading operation to

determine the actual amount of liquid dispensed. Operators were timed for each operation,

including the creation of the record. At all times during the loading operations, the

tractor/sprayer combination was running, to simulate normaloperating conditions.

 

Place container Remove Place measuring
on platform wait container jug on platform

for read from platform wait for read

\
Rinse jug or Add to Dispense required
container as induction quantity into jug using
appropriate hopper display as reference

 

     

 
  

         
  

Figure 2. Procedure for the measuring of part containers with the automated

recording system.

RESULTS

Accuracy of recording and speed of operation

Recorded values plotted against actual dispensed values for the automatic recording device

are given in Figure 3. The data plotted has been edited to remove system errors of which 5
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occurred in 264 loadings undertaken (1.8 %). These were caused either by a no read ofthe

RFID tag (0.75 %) or when the unit entered calibration mode whilst a load with RFID tag

waspositioned on the platform (1.05 %).
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Figure 3. Dispensed and recordedloads for the automatic recording system.

An ideal loading characteristic would conform to the equation y = x, and the amount

recorded would equal the amountloaded. Figures 3 and 4 give an appreciation ofthe levels

of error found in both conventional and the automatic methods of loading and recording.

The error associated with the automatic recording device was associated with factors such

the accuracyofthe loadcell and signal processing systems used while operating in the harsh

vibration environment. However, even in this environment the system performance (Figure

3) was shown to be comparable with that of conventional recording methods. The

conventional recording data is given in Figure 4. It can be seen that there is only error along

the x-axis (dispensed load). This was because the operator always assumed that the amount

he had dispensed was the amountrequired, and therefore the record always represented the

required amount, not the actual dispensed amount. Errors in the dispensed amount for

conventional methods were mainly due to incorrect selection of measuring cylinder, or

incorrect reading of measuring cylinder graduations.

Table 1 is a summaryofresults from the analysis of variances, showing loading time and

recording accuracy information. Extra time spent at the induction hopperwasa statistically

significant 15 seconds per loading when using the automatic recording device. When record

creation was taken into consideration, something which does not need to be done with the

automatic device, average loading cycle time was reduced by 4 seconds when using the

automatic device. Although notstatistically significant, it indicates that the unit could have

labour saving benefits. 



The analysis also showed that there was nostatistical difference in the accuracy of the

automatic and conventional systems, or any difference between types of chemical loaded,

size of container or amount dispensed.
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Figure 4. Plot of conventional dispensed and recorded loads.

Table 1. Summary of automatic and conventional loading data.

 

Recorded Amount Cycle time excl. Cycle time inc.

Mean = 1140ml record (s) record (s)

 

Automatic Mean 1134.4 L 68.5

Meanerror (automatic) 5.6 - -

Conventional Mean 1141 7 72.8

Mean Error (Conventional) 1.0 -

S.E.D 717 . 2.40
 

Failure mode analysis

The prototype device is only automatic if the operator follows a prescribed sequence when

undertaking a loading. The software is not yet sufficiently comprehensive to overcome

errors introduced by incorrect operation. Calibration of the load cell is programmed to

occur every 70 seconds. During calibration, the platform must not have objects placed on it,

leading to errors. Methods to resolve this may include allowing the operator to tare the

platform manually, or modification of the program to check the presence of RFID labelled

container before attempting calibration.

One RFID tag failure occurred during the trials. This only occurred after prolonged use,

located on the base of the container and with no protection. It is thought that this problem 



will be overcome with the moulding of the RFID tag into the container during production,it

is recognised that appropriate default actions will be needed for situations when the RFID

tag is not read correctly or completely.

CONCLUSIONS

Trials conducted to evaluate the performanceofthe automatic recording device show that it

is possible to use RFID technology in conjunction with load cells in the farming

environmentto robustly produce electronic records, which can be used in farm management

software or passed through the supply chain. This was achieved without operator

intervention. The accuracy of the recording was comparable with conventional methods of

loading. Although time spentat the loading hopper wasa statistically significant 15 seconds

per cycle longer, if records are considered as part of the overall loading, the automatic unit

showed a 4 second percycle improvement on conventional methods. The data collected will

also allow improved automatic setup and control of sprayer for the creation of “as applied”

treatment maps based onthe tanks actual active chemical contents.

It is likely that in the future, devices similar to that trialled will become commercially

available with integration of the concept into the existing sprayer controller. Future work

will concentrate on the production of the “as applied” application map based on actual

recorded active chemical quantities, forward speed and nozzle flow rate and GPSposition.

Once this has been completedit will be necessary to define how information that should be

passed to the supply chain.
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ABSTRACT

Precise targeting of weed control is essential for efficient modern arable farming

systems. The Weed Management Support System (WMSS)is being developed as

a module of the Decision Support System for Arable Crops (DESSAC). WMSS

will provide farmers and advisers with a tool to plan weed managementstrategies

for future rotations and to optimise inputs within the current cropping year.

INTRODUCTION

Weed control is an expensive necessity within any arable farming system. Improved

targeting of weed management can result in financial gain to the farmer and potential

environmental benefits from increasing the biodiversity of arable land. A range of

computerised Decision Support Systems (DSSs)are currently being developed. DSSsare not

designed to make an absolute decision, but instead they collate and process relevant

information and interpret and communicate a range of suitable options to be used in the

decision making process (Audsley ef al., 1997). The Decision Support System for Arable

Crops (DESSAC) aims to integrate a suite of DSS modules (Brooks, 1998). The main

advantageof this integrated approach is that data commonto all DSSs can be shared, and so

need only be entered once.

The Weed Management Support System (WMSS) is a DSS module designed to fit within

DESSAC. WMSSoffers farmers, agronomists and distributors a robust tool to plan and

develop weed managementstrategies. A rotational planning tool allows users to consider

weed control options over a rotation and in moredetail in the winter wheat crop byusing the

‘in-season’ planning tool. Both of these parts of the system are model based, using data

specific to a particular farm. The user can investigate their own scenarios by altering the

model’s settings. This system will also produce a list of control strategies which aim to

optimise profit margin.

Parker & Clarke (2001) showedthat in the more successful DSSs users were involved in the

design from conception through to delivery, ensuring the systems met the needs of their
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intended users. The WMSS project has followed this approach with regular user
consultations and an active project management committee, including representatives from

industrial and government sponsors and membersof the farming industry.

Someof the key features of DSS that can commonly cause them to fail were highlighted by

Parker (1999). These include poor interface design, the system being too time-consuming to
use, out of date background data or science and inappropriate models. A lack of underpinning

technology (e.g. computers, internet links) and a lack of integration with related software also

impact the take-up of the system. WMSShas addressed these issues from early development.

User requirements

The four-year WMSSproject began in October 2000 and the first user consultations took

place in December 2000. The meetings were attended by a range of people who regularly

make weed management decisions. These initial consultations highlighted the need for the

ability to;

investigate the effect of weed control strategies over a rotation;

see the financial implications ofactions;

intervene and override the default values used by the models;

enter data easily and, where appropriate, be able to import data from other systems;

understand the assumptions made within the system;

optimise future strategies and compare the outcomesofdifferent options;

manageherbicideresistance in tactical and strategic decision making.

This paper describes how these requirements are being met within WMSS.

SYSTEMS AND MODELS

Whenthe user enters the system forthe first time, they will be asked to create a list of weeds

and estimate of population size for their individual fields. The managementofthis selection

of weeds canbe investigated either through a long-term rotational strategy, or by considering

herbicide and cultivations control within a winter wheat crop.

System Design

WMSSconsists of several modules (Figure 1), (i) biological module (BM), which contains

the crop and weed models, (ii) decision module (DM), which contains algorithms that

suggest a family of optimal weed control strategies and functions that evaluate profit margin,

(iii) herbicide module (HM), that extracts herbicide information from the databases, and (iv)

weed module (WM), that extracts weed biology information from the databases. Because

WMSSoperates within the DESSACshell, information stored in the DESSAC databases is

available to WMSS. The DESSAC databases accessed by WMSS comprise of a farm

database, which contains data such as field information and crop observations, a local

weather database, and a pesticide database, which contains regulatory information and

pesticide costs. Data specific to the WMSSapplication are held within the WMSSdatabases.

These include information on weed biology, herbicide efficacy, the effects of cultivation

techniques on weed population dynamics, rotational information and limited spray

application information.
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Figure 1. Schematic diagram of the WMSSsystem

The BM and DMaccessdata held within the DESSAC databases and the WMSSdatabases

through the HM and the WM. Otherdata used by the models, including pesticide, herbicide

and weed biology data, are accessed via the HM and WM.

User Interface

Therotational screen (Figure 2) allowsthe user to investigate weed control strategies over a

six-year rotation. Dialogue boxes enable the user to input agronomic information such as

crop rotation, cultivations, drilling date and an estimate of the expected cost of weed control.

The system has default values, but the information the user enters for their farm will increase

the accuracyofthe final output. This screen displays the simulated changes in seed bank and

an estimate of profit margin for each cropping year and summarises the margin over the

whole rotation, allowing the user to compare different rotational scenarios.

The ‘in-season’ screen (Figure 2) enables the user to investigate alternative weed control

strategies in a winter wheat crop. A dialogue box allows the user to alter herbicide and

cultivation programmes. Herbicide application is defined in terms of product dose and time,

and cultivation in terms of type and date. Spray icons indicate when herbicides have been

applied, and their effect is shown for each weed. The screen highlights the cost of each

managementstrategy on the yield or profit margin indicator bar (Figure 2). The contribution

of each weedto the yield is also shown, to check the economic necessity for controlling a

particular weed.

Models

The seed bank for each weed is modelled over the rotation using a population dynamic model

to estimate the risk of particular strategies, depending on the weed species present and the

number of weeds observed. The user’s weed observations increase the precision of the

output. Calculations assessing the input to the seed bank due to seed shed and output from

germination of weeds from freshly shed are included in the models. These models include

components for germinability of the seeds, their longevity in the soil seed bank and density-

dependent seed production. These models are also driven by the movement of the seeds

within the soil following cultivations, such as inversion or non-inversiontillage. All these
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factors determine the numberof seeds which germinate and survive to produce mature plants

to contribute to the subsequent seed return and cause yield loss to the crop (Moss, 1990).
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Figure 2. The provisional ‘rotational’ (top) and ‘in-season’ screens (bottom).

There are growth and competition models for both crop and weedsthat are key to the ‘in-

season’ part of the system. These require meteorological data and crop sowing date to

calculate plant growth and development. The ‘in-season’ model is based on the INTERCOM

ecophysiological model (Kropff & van Laar, 1993). WMSSinitially includes parameters for

12 commonarable weeds anda full range of herbicides for use in winter wheat.

Competition within a single season depends on the rate of growth of crop and weeds, which

is governed by light, temperature etc. Users have access to both a long term meteorological

dataset and local information. The calculated green area index and growth stages can be

updated bythe user, so that yield loss due to weed growth is more accurately calculated.

Resistance managementplays vital role in the decision models and was one ofthe key user

requests. As a result, WMSS has developed a ‘Resistance Risk Rating System’ through

consultation with research and industry to ensure that any proposed managementplan will

considerthe risks involved. The useris notified of high-risk strategies by an alert box.
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Decision Algorithms

The algorithm chosen to optimise a model-based problem will depend heavily on the model

formulation and the type of decision variable (e.g. discrete, continuous or mixed).

Additionally there will be computational restrictions: a user of a DSS would not expect to

have to wait fora solution more than a few minutes and will only have the processing power

of a standard PC.

The population dynamic model in the rotational part of the system lends itself well to a
stochastic dynamic program formulation, as used by Sells (1994) for control of Alopecurus

myosurides Huds. (black-grass) and Avenafatua L. (wild oats) in winter wheat. The effect of

rotation is followed using seed bank numbers. In any year the seed bank may be in one of a

range of values. The model calculates the probability of moving from one range to anotherin

the next year given certain cultivations, crops or herbicide input costs. Weed controloptions

are chosen using solution iteration strategy (Howard 1960). Profit margins from ‘in-season’

weed control strategies are calculated from herbicide data and biological model outputs.

Standard techniques of optimisation would use too much time and memory. The WMSS‘in-

season’ optimisation algorithm uses expert knowledge to search and rank the solution space

efficiently.

Validation of models

The information used to develop these models has been sourced from a wide range of
datasets, generated mainly through Defra (UK Department for Environment, Food and Rural

Affairs) funded research projects. Another user request included ‘understanding and having

confidence in any assumptions made within the system’. This has been addressed in WMSS

by usinga star rating against a particular species to indicate how much information has been

available to model that species. There has obviously been more informationavailable for the

key arable species, including 4. myosuroides, Galium aparine L. (cleavers) and Stellaria

media (L.) Vill. (chickweed), but whenless data are available for other species the star rating

makes the user aware ofthis. The availability of data is a limiting factor when validating any

model and we are addressing this with additional field experiments, described later in this

paper. Where less information is available weeds are grouped by similar growth and habit

into‘functional groups’.

Validation of the system output

In order to generate additional data to validate the biological models, including herbicide

effects and weed competition, field experiments were undertaken in 2002/2003 at

Cambridge, Edinburgh and Hereford. The speciestested include A. myosuroides, G. aparine

and S. media against a range of herbicide treatments and application timings. Screening

experiments have also been carried out in the glasshouses to generate data on the ‘rarer’

weeds of environmental importance, where information onherbicide effects was lacking.

The system outputis currently being validated by experts to ensure that the decision results

are logical and accurate. This will guarantee that all parts of the system are functioning

correctly and the information located in the databases is accurate. The experts include weed

scientists and key representatives of the farming industry with a detailed knowledge and

understanding of weed managementpractices. Additional information providing parameters
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for models are sourced from published scientific literature, including previous datasets and

other required information to fill gaps in the databases. All this information is subsequently

validated by expert opinion.

SUMMARY

WMSSwill benefit the farming industry by helping to improve the profitability of UK

agriculture and assist in the Defra policy of minimum justifiable use of pesticides, while

promoting arable biodiversity. The main users of WMSSwill be farmers and advisers, who

will directly benefit from precise and readily available information for weed management.

The priorities for the remainder of the project include ensuring that the key user requirements

are delivered by the time the WMSSis available commercially.
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ABSTRACT

Although most vegetable growers walk their crops regularly, keep records and

make decisions based ontheir findings, there is rarely any soundstatistical basis

for their various approaches. In addition, the concept of ‘nil tolerance’,

propounded by multiple retailers, does not fit easily into a sample-based system

since all plants in a field would need to be sampled to be certain that none was

infested. Thus, growers require a rational andstatistically sound approach to crop

walking and decision-making whichis in line with the quality control procedures

developed and used regularly by other industries. This paper describes the

preliminary results of a project to develop a robust cost-effective management

system for foliar pest control in Brassica crops. The paper focuses on thefirst

objective of the project, which is to determine the influence of pests (principally

aphids and caterpillars) on the quality of marketable crops, so that the

management system can be designed to achieve an acceptable level of pest

infestation in the end-product. Harvested crops (broccoli, Brussels sprout,

cabbage, cauliflower) were sampled in packhouses to determine levels of pest

infestation prior to despatch. Losses, due to pest damage and contamination, were

measured and categorised, and compared with packhouse assessments of quality.

No samples wasentirely free from pests. Aphids were the most numerous pest

insects and high numbers of Brevicoryne brassicae (cabbage aphid) and Myzus

persicae (peach-potato aphid) were found at several sites. Caterpillars were

considerably less numerous. Slugs and slug damage were also evident at several

sites and, at onelocation, slugs had damaged 295 of 300 cabbage heads.

INTRODUCTION

In the UK, most Brassica crops are grown under the Assured Produce Scheme. The Assured

Producecrop protocols (Anon., 2003) provide a systematic approach to help growersidentify

and managetherisks involved in crop production. Within the protocols, the mainprinciple

guiding pest control is that it is only necessary when the pest is present. Consequently,

routine applications of insecticides at set time intervals are not advised. Regular systematic

crop walking to monitor pest levels is recommended as part of the Assured Produce

Integrated Crop Management (ICM)strategy. However, although most growers walk their

crops regularly, keep records and make decisions based on their findings, these have no
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soundstatistical basis. In addition, multiple retailers will not accept produce that is infested
or damaged bypests (‘nil tolerance’). This does not fit easily with a sample-based system,

since all plants in a field would need to be sampled to be sure that none was infested. Thus,

growers require a rational and statistically sound approach to crop walking and decision-

making, which is in line with the quality control procedures developed and used regularly by

other industries. There has been substantial development of statistical quality control

techniques for industrial use (e.g. Duncan, 1974; Wetherill, 1977), which can be adapted for

use in agriculture/horticulture, and some more recent development of techniques for use in

crop protection (Binnsef al., 2000).

Managementsystemsfor foliar pests of Brussels sprout and broccoli crops have beentested with

some success in experimental field plots in the UK (Blood Smyth ef al., 1994). However,

commercial growers question their performance,particularly in situations where there is a ‘nil

tolerance’ for pest damage. Growers are concerned about 1) the time spent inspecting crops,2)

the risks attached to ‘omitting’ sprays and 3) the costs of implementing such systems. Theyalso

believe that because thresholds greater than zero are used to target treatments, the systemis

inherently flawed. This paper describes the preliminary results of a project to develop a robust

cost-effective management system for foliar pest control in Brassica crops. The paper focuses

on the first objective of the project, which is to determinethe influence of pests on the quality of

marketable crops, so that the management systemis designed to achieve an acceptable level of

pest infestation in the end product.

MATERIALS AND METHODS

Sampling of crops from packhouses

During 2001 and 2002, samples of 32 Brassica crops were taken from seven packhouses to

determine the percentage infestation by aphids and caterpillars prior to despatch. Each

sample consisted of whole heads or an equivalent sample (sellable unit) of Brussels sprout

buttons (usually 10 buttons), Samples were taken during July-December from green

cabbage, cauliflower, broccoli (calabrese) and Brussels sprout crops grown in the UK (two

samples of each crop type/packhouse). Samples were taken from packhouses in Kent,

Lincolnshire, the Midlands and Lancashire.

To obtain a representative sample of heads of broccoli, cabbage, cauliflower or individual

Brussels sprout buttons they would ideally have needed to be taken randomly from the whole

batch of produce. However, this was both impractical and likely to cause problemsforthe

packhouse staff. Therefore, sampling was based on taking whole trays of produce spread

across the batch (cauliflower, cabbage and broccoli) or groups of Brussels sprout buttons

spread throughout the processing of a batch. For cauliflower, green cabbage and broccoli at

least 100, and more usually 300, heads were sampled on each occasion. These were obtained

as full trays from each packhouse. Samples were taken from as manypallets as was practical

for the packhouse. By sampling this numberof units, it was possible to detect relatively low

levels of pest infestation.

The samples were examined carefully in a laboratory and assessed for the presenceofaphids,

caterpillars and their damage. Although the project is aimed at the pest insects of Brassica

foliage, assessments were madealso ofslug presence and damage. Finally, the presence of 



other invertebrates wasalso recorded.

The data were analysed to identify effects of crop (cabbage, cauliflower, broccoli and

Brussels sprouts), area (Lincolnshire, Midlands, Kent and Lancashire), harvest date (July,

August, September, October, November, and December), and any interactions between these

effects. Unfortunately, the seasonality of some crops (broccoli, Brussels sprout) and the

difficulty in collecting samples from some areas meantthat it was not possible to entirely

discriminate betweentheeffects of the different factors. The numbers of samples with either

aphids, caterpillars or damage were analysed as proportions of the numbers of samples

assessed, within a generalised linear model (GLM) framework assuming a binomial

distribution andlogit link function, Separate analyses were performed for eachclassifying

factor (crop, area, harvest date) and combination ofpairs of classifying factors, for each of

four variables (aphid presence,caterpillar presence, aphid damage,caterpillar damage). The

mean deviances were compared with the appropriate chi-square distribution to identify

statistically significant effects and differences wereillustrated by calculating predicted mean

proportions (expressed as percentages) for each crop, area, harvest date or combination.

RESULTS

Although theinitial aim was to obtain similar numbers of samples from each area, there was

a strong bias towards Lincolnshire (a major Brassica production area in the UK) and 17

samples (53 %) came from this area in contrast to one sample (3 %) from Kent. Asa result,

for the analysis, Lincolnshire was divided into two areas (Boston and Spalding). Because of

the seasonality of certain crops it was not possible to differentiate between the effects of 1)
crop and 2) harvest date on pest numbers.

Noneof the 32 samples was entirely free from pests. Aphids were the most numerouspest

insects; high numbers of Brevicoryne brassicae (cabbage aphid; maximum 487 aphids on 300

cabbage heads) and Myzus persicae (peach-potato aphid; maximum 364 aphids on 3074

Brussels sprout buttons) were found at several sites. Caterpillars were considerably less

numerous. Plutella xylostella (diamond-back moth) was the most common species

(maximum 26 individuals as larvae or pupae on 300 cabbage heads). Slugs and slug damage

were evidentat several sites; at one location, slugs had damaged 295 of 300 cabbage heads.

The single sample from Kent produced the highest numbers of aphids (57 B. brassicae and

364 M. persicae on a sample of 3074 Brussels sprout buttons). Aphid numbers in samples

from the Midlands and the Boston area were generally low. Broccoli was the crop least

affected by the presence of aphids and Brussels sprout was most affected. Aphid presence
(both species) was highest in July, November and December and lowest in September (Table

1). .M. persicae was relatively more common towards the end of the year and was most

numerousin Brussels sprout crops. Aphid infestation levels of 5 % or more occurred in 0/9,

4/8, 4/7 and 4/8 broccoli, Brussels sprout, cabbage and cauliflower samples respectively.

Aphid damage was higher in the Spalding area and the Midlands (Table 1). Broccoli was

undamaged, whereas Brussels sprout and cabbage suffered some damage. Damage was

highest in crops harvested in July/August and December and lowest in crops harvested in

October. When damagelevels across each complete Brusssels sprout sample (3,000 to 4,000

buttons) were estimated, they ranged from 0 to1.83 %. 



Table 1. Predicted mean percentages (calculated from GLM analyses) ofassessed units

with aphids present, aphid damage orcaterpillar damage in samples collected

in different regions, from different crops and at different times ofyear.

 

No. Aphid presence Aphid damage Caterpillar

samples (%) (%) damage (%)

Kent 1 44 0.3 11

Midlands 6 2
Boston 11 3

Spalding 6 6

Lancashire 8 6

Crop

Broccoli

Brussels sprout

Cabbage

Cauliflower

Month

July 6

August 5
1
7

Region

September

October
November 0

December 2

Caterpillar numbers were lowin general (< 2 % plants infested) and crops in Lincolnshire

were the least infested. More caterpillars were found on cabbage than on the other crops.

There was no overall temporal pattern, although the highest numbers of caterpillars were

found in crops harvested in September.

Caterpillar damage washighestin Kent (one sample) and lowest in Lancashire. Cabbage and

Brussels sprout crops were the mostaffected and damage wasgreatest in crops harvested in

September/October. When damage levels across each complete Brusssels sprout sample

(3,000 to 4,000 buttons) were estimated, they ranged from 0 to 3.8 %.

Slug damage wasgreatest in Brussels sprout and cabbage crops, whereasbroccoli suffered no

slug damageatall. All of the Brussels sprout crops suffered some damage(on average 35 %

of assessed units were affected) with between | and 12 % ofbuttons affected. Overall, slugs

damaged 17 % of cabbage heads. However, this mean is influenced considerably by one

crop where 98 % of heads were damaged. Excludingthis sample the mean was only 3 %. A

mean of 1 % of cauliflower heads were damagedbyslugs

A range ofother species/contaminantsinfested the cabbage crops in particular (mean of 32 %

headsinfested). These included thrips, cabbagerootfly and other insect species. A mean of

12 % of cauliflower crops were infested with other species followed by Brussels sprouts (6

%). Broccoli wasvirtually free of other species/contaminants.

To provide a comparison with the harvest data, Figure | gives the phenologyof B. brassicae,

M. persicae and all species of caterpillar on 20 insecticide-free Brussels sprout plants that

were monitored weekly throughout summer 2001 at HRI Kirton (Lincolnshire). The
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numbers of B. brassicae colonies, M. persicae apterae and caterpillars (all species) are

plotted on a log scale. It is apparent that there were two periods whenaphids ofboth species

were most numerous (approximately July and October) and aphid numbers declined

considerably between these two periods. Caterpillar numbers were low, but they were most
numerousin July — September.

DISCUSSION

Manyof the crops taken into the packhouse were infested and damagedbypests and control

was certainly much worse than the desired level indicated by multiple retailers (‘nil

tolerance’). Unfortunately it has not been possible to obtain many of the growers’ own

assessments of the produce in terms of marketability. However, a crop in which 113 aphids

were found on 2 out of 300 broccoli heads was considered to be “good’, as was a cabbage

crop where more than 50 heads (of 307) showed signs of slug and/orcaterpillar damage.
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Figure 1. Phenology of pest insects on Brussels sprout plants monitored at HRI Kirton
(Lincolnshire) in 2001.

Of the four crops, broccoli was affected only slightly, whereas pests and their damage were

most apparent in cabbage and Brussels sprout crops. This is undoubtedly due in part to the

structure of the plant, its suitability as a host for pests, the crop part that is harvested andits

accessibility to insecticide sprays. The seasonality of each crop andthe length of its growth

cycle will also have an effect. The leafy Brassica crops (cabbage and Brussels sprout) were

considerably more affected by slugs, whilst those with a structure providing ‘funnels’

(cabbage and cauliflower) were the most heavily infested with ‘other pests’.

Although the timing of the peaks and troughs in aphid numbersvaries from year to year and

region to region, the pattern (Figure 1) is similar from year to year. The timing of

infestations by Pieris rapae and other resident Lepidoptera also follows a predictable pattern.
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P. xylostella is the least predictable species because it does not appear to overwinter

successfully in the UK and is a migrant pest. The timing of the peaks and troughsis certainly

reflected in the infestation levels of harvested crops and pest phenology/population dynamics

is a major consideration in the developmentof an effective treatment strategy. Preliminary

observations within this project indicate that there may be periods in the pest/crop cycle when

treatments are most effective, andit is important to identify them so that interventions can be

targeted for maximum impact.

During recent studies on the sampling and control of aphid and caterpillar pests in Brussels

sprout crops (Collier & Mead, 1999), a threshold of 5 % plants infested was used to make

treatment decisions, based on inspection of samples of 25 to 40 plants (Collier & Mead,

unpublished data). The relationship between sample size and treatment threshold is fairly

simple and, to maintain reproducibility, increased sample sizes are required to detect

deviations from lowerthresholds. Thus, a treatment threshold lower than 5 % mightrequire

growersto take very large samples (> 40 plants) that would be impossible to manage. With

the exception of broccoli, aphid infestation levels of 5 % or more occurred in approximately

half of the crops sampled in the present study. All of these crops were deemed suitable for

harvesting andit is likely that most were sold in supermarkets. This suggests that a treatment

threshold of 5 % mayindeed besufficiently low to facilitate the production of Brassica crops

that are acceptable to multiple retailers. The next stage of this project is to determine, for

each type of crop, the relationship between damageat harvest and the level of infestation

allowed at various stages of crop growth, to confirm that such a threshold will be sufficiently

robust for commercialuse.
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ABSTRACT

Combinatorial approaches to model developmentwereused to predict emergence
and crop-weed competition as affected by environmental factors. For emergence
as affected by soil depth, the Gompertz curve was modified by incorporating
either a logistic or an exponential model for parameters that varied with soil
depth. This modified model simulated well the effect of soil depth on seedling
emergence for rice and Echinochloa spp. For crop-weed competition as affected
by herbicide at a range of doses, the rectangular hyperbola was modified by
incorporating a logistic model for the effect of herbicide dose on winter wheat
grain yield at different densities of weed infestation. This model simulated well
the effect of crop-weed competition and herbicide application on grain yield.

INTRODUCTION

The prediction of biological phenomenais a key element of decision-making in agricultural
practices and allows optimised use of inputs; the right amounts at the right place and time.
Various approaches have been used to mathematically model biological phenomena under
specific conditions. However, environmental conditions are very diverse and change
dynamically with time, so more than onefactoris involved, indicating that biological models
mustinclude several factors for good description and prediction. The combinatorial approach
combinesindividual elements to produce a newstructure or system which can cover varied
conditions: one of its most successful applications is drug discovery using combinatorial
chemistry. However, this approach has not been used widely in biological modelling. Many
existing models for predicting biological effects are rather descriptive and only work well for
specific conditions. Since biological phenomena are affected by a numberof environmental
etc. factors, such models need to be modified for accurate prediction under natural
conditions. In this study, to modify the original models and incorporate the effects of other
factors, combinatorial approaches were employed.First an original model was selected as a
template, next the relationships between its parameters and other factors were investigated,
and then mathematical models for these relationships were incorporated stepwise into the
template. We have used this approach to develop models for predicting emergence and crop-
weed competition with the Gompertz curve (Gompertz, 1832) and the rectangular hyperbola
(Cousens, 1985), respectively, as templates. 



COMBINATORIAL APPROACHES

Asthe template model for cumulative emergence over time, the Gompertz curve (Gompertz,

1832; equation 1) wasselected:it is simple and widely used (e.g. Cussansef al., 1996).

y=C/er™ (1)
Here y is the cumulative emergence at days

T

after sowing, C is the maximum emergence, B

is the rate of increase of emergenceafterinitiation and M is a timelag to reach 50 % of the

maximum cumulative emergence. Equation | can predict emergence over time for a specific

condition, When another factor, such as soil depth (i), is involved the parameters in equation

1 will be affected. Then, equation 1 can be rewritten as equation 2, the most complex model.

yse,f/e (2)
If each parameter of equation 2 changes as a continuous function with the change in soil

depth (i), then this change can bestatistically modelled. Combinatorial model incorporation

into the template model (equation 2) was conducted stepwise. First, parameter B; was plotted

against soil depth (i) to select the best model to describe the change of B with soil depth.

Then, the model for parameter B was incorporated into equation 2 by replacing B;. F-tests

assessed if the new model wassignificantly different from its predecessor. The same method

was used to incorporate parameters M; and C; stepwise into the template model (equation 2).

The template model for crop-weed competition was the rectangular hyperbola (equation 3),

commonly used for the relationship between crop yield (Y) and initial weed density (x)

(Cousens, 1985) for a crop grown at a single density. This can predict crop yield at a weed

density of x, but cannotpredict crop yield when another factor, such as herbicide application,

is involved.

Here Y, is the weed-free crop yield and f is the competitivity of the weed (a weed density of

1/B reduces crop yield by 50 %). Crop yield generally increases with increasing herbicide

dose as more herbicide causes a decrease in the effects of weed infestation. The herbicide

may also affect the crop directly. Relationships between the parameters and herbicide dose

are not known, so each herbicide dose (j) needs to be parameterised separately (equation 4).

y=Y,/(+8,x) (4)

Changes of parameters were investigated stepwise to select the most appropriate model for

the change of each parameter with herbicide dose. Then, the selected model for each

parameter was incorporated into equation 4 and F-tests were conducted to verify if the

modified modelwassignificantly different from its predecessor.

All observed data were initially subjected to analysis of variance (ANOVA). Non-linear

regression was used to fit both the Gompertz curve for emergence and the rectangular

hyperbola for crop-weed competition. If there was no evidence ofa lack offit for the most

complex model, each model in the sequence was compared with its predecessor by

calculating the F-value (equation 5). Here RSS and dfare the residual sum of square and the

degree of freedom, respectively, +1 is the reduced model from its predecessor (f) and a

represents ANOVA.If the F-value was lower than the tabulated F-value (5 % level) with

(df,+)-df;, df.) degrees of freedom,the reduced model wasaccepted.

Kx [a5 - RSS, |S S)

af... — 4, df, 



MODEL DETERMINATION

Generation of biological data

For emergence, pot experiments were conducted at the Experimental Field Station of Seoul
National University in 1993. Rice (Oryza sativa L. cv. Dongjin) and Echinochloa crus-galli
var crus-galli were sown in sandy clay loam soil at soil depths of 0.2, 1, 2, 3, 4, 6, 8, 10, and
12 cm in April/May. Pots were keptin a side-opened glasshouse with outdoor temperatures,
no rain on the pots and soil water content at typical field capacity. Emerged seedlings were
measured daily until 25 days after sowing. There were three replicates in a completely
randomised design,

For crop-weed competition, a field experiment was conducted at Long Ashton Research
Station in 1996/97. Two winter wheat cultivars (Triticum aestivum L. cvs. Avalon and Spark)
with contrasting competitive abilities were drilled at ca 300 plants/m* in October 1996,
immediately after Brassica napus L. (the model weed) were hand-sown. Target densities of
B. napus were 0, 25, 50 and 100 plants/m?. Metsulfuron-methyl (Ally®, DuPont,
recommended dose 6.0 g a.i./ha) was applied at 0.375, 0.75, 1.5, 3.0 and 6.0 g a.i./ha in 250
litres/ha of water using a CO-pressurised sprayer in April 1997. Grain yield per 1 m’ plot
was measuredin July 1997. There werefour replicates in a split-split plot design.

Model for emergence

For each soil depth, non-linear regression analyses were used to fit the Gompertz curve
(equation 1) to the emergence data for each plant species. This demonstratedthat soil depth
affected parameters C and M (Figure 1) but not B (data not shown). As B did not change with
soil depth, it was assumed to be constant. The fit of equation 6 was notsignificantly worse
than equation 2, so equation 2 was reduced to equation 6 with B constant.

y _ c,/e" My) (6)
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Figure 1. The relationships between soil depth and parameters M and C in the
Gompertz curve. Parameters were estimated using equation 2 for rice
(@) and Echinochloa crus-galli vars. crus-galli (@).

Parameter M increased exponentially with soil depth (Figure 1), so M, in equation 6 was
replaced by exponential curve gr’ (both g and r are unknown parameters). F-tests revealed
that the fit of equation 7 was not significantly worse than equation 6, so the exponential
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increase ofM wasused forthe delay in seedling emergence with increasing soil depth.

y=C,/e"”” (7)
Fitting equation 7 showed thatC still decreased with soil depth in a logistic form. Similarly,

Prostko et al. (1997) applied the Fermi-Dirac distribution function (a type of logistic

function) to model percentage weed emergence as affected by burial depth. Thus, C; in

equation 7 wasreplaced bythe logistic curve to give equation 8. Thefit of equation 8 was not

significantly worse than equation 7, so equation 2 was successfully reduced to equation 8.

ys [© oa /( + (ery Ve’ we) (8)

Model for crop-weed competition

In aninitial analysis, the weed-free crop yield (Y,) and weed competitivity (f) were estimated

at each dose (/) of metsulfuron-methyl by fitting equation 4 to grain yield using non-linear

regression. There was no evidencethat weed-free crop yield (Y,) was significantly affected

by metsulfuron-methyl, so equation 4 was reduced to equation 9 with Y, constant.

y =Y,/(1+B,x) (9)

The fit of equation 9 was not significantly worse than equation 4, so there was no evidence

that Y, varied with dose(/). However, it was clear that weed competitivity (2) decreased with

increasing herbicide dose in a logistic function (Figure 2). As £ depends on weed biomass,

we assumed that the relationship between herbicide dose and # can be modelled by the

standard dose-responsecurve (Streibig, 1980) (equation 10).

B,= A/\i (4)| (10)

Here f, is weed competitivity at no herbicide treatment, LDsp is the log of the dose required

to reduce weed competitivity by 50%, and 4 is the response rate or steepness ofthe curve.
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Figure 2. The relationship between weed competititivities (2) and metsulfuron-

methyl for Avalon (@) and Spark (O).The continuous lines are fitted

using equation 10. Weed competitivities are from separate analysis of

grain yield byfitting equation 4 at each dose of metsulfuron-methyl.

The plot of # and herbicide dose (Figure 2) also suggested that the response of f to

metsulfuron-methyl could be explained by the standard dose-response curve. Equation 10

could then be incorporated into equation 9 to give equation 11.
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y=Y, b+ f }) | (11)
e 0

The fit of equation 11 was not significantly worse than equation 9, so the relationship
between f and herbicide dose could be explained by the standard dose-response curve
(equation 10). Thus, equation 4 was successfully reduced to equation 11, which can predict
crop yield as affected not only by weed density but also by herbicide dose.

MODEL APPLICATION

Using equation 8 and its parameter estimates for rice and Echinochloa spp, emergences of
rice and Echinochloa spp. were simulated (Figure 3, experimental data in Kim, 1993; Kim er
al., 2003). The maximum percentage emergence (Cmax) for rice was greater but decreased
more rapidly with increasing soil depth than for Echinochloa spp. This new model
successfully incorporated the effect of soil depth on emergence and can be usedto predict
emergencesof rice and Echinochloaspp.seeds buried atdifferent soil profiles.
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Figure 3. Simulated seedling emergences ofrice (O. sativa cv. Dongjin) (A) and
Echinochloa crus-galli vars. crus-galli (B) as affected by soil depth,

using equation 8 and the parameterestimates.

For crop yield as affected by weed infestation and herbicide application, equation 11 and
estimated parameters successfully simulated grain yields of two winter wheat cultivars,
Avalon and Spark (Figure 4, experimental data in Kim, 1999; Kim er al., 2002). There was
no significant difference in weed-free grain yield of the two cultivars, while the decrease in
grain yield for Spark was greater than for Avalon. At doses above 0.3 g a.i./ha the effect of
weed competition was totally eradicated; equation 11 clearly simulated this aspect as well.
For herbicide dose decision-making equation 11 can also be applied to determine herbicide

application dose. For a given threshold of acceptable percentageyield loss (p %) equation 11

can be rearranged to give the dose (D,) required to keep yield loss belowp % (equation 12).

D, ~exp(LDg{$00.21} (12)
P 
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Figure 4. Predicted grain yield of Avalon (A) and Spark (B) as affected by crop-

weed competition and sub-lethal doses of metsulfuron-methyl, using

equation 11 and the parameter estimates.
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