How can we help growers get the most out of bio-fungicides? The AHDB AMBER project.

Dave Chandler1, Elysia Bartel2, Jude Bennison2, Clare Butler Ellis3, Roma Gwynn4, Rob Jacobson5, Andrew Lane3, Aoife O’Driscoll2, Christine O’Sullivan3, Gill Prince1, Sacha White2, Erika Wedgwood2

1University of Warwick UK; 2RSK ADAS UK; 3Silsoe Spray Applications Unit, Silsoe UK; 4Rationale Biopesticides, UK; 5Rob Jacobson Consultancy Ltd, Bramham UK.
contents

• Background context to the AMBER project.
• Project aims.
• Work areas.
• 2 areas relevant to biofungicides: spray application & timing.
• What messages are we giving to growers?

Creating effective production systems

- **Precision Agriculture for Input and Water Use Optimization**
 - Reduce farmers’ costs by up to $100 billion
 - Increase production by up to 300 million tonnes
 - Reduce freshwater withdrawals by up to 180 billion cubic metres

- **Gene-Editing for Multi-Trait Seed Improvements**
 - Generate up to $100 billion in additional farmer income
 - Increase production by up to 400 million tonnes
 - Reduce the number of micronutrient deficient by up to $100 million

- **Biological-Based Crop Protection and Micronutrients for Soil Management**
 - Increase production by up to 50 million tonnes
 - Reduce GHG emissions by up to 5 megatonnes of CO$_2$ eq.

- **Off-Grid Renewable Energy Generation and Storage for Access to Electricity**
 - Generate up to $100 billion in additional farmer income
 - Increase production by up to 530 million tonnes
 - Reduce freshwater withdrawals by up to 250 billion cubic metres

- **Microbiome Technologies to Enhance Crop Resilience**
 - Generate up to $100 billion in additional farmer income
 - Increase production by up to 250 million tonnes
 - Reduce GHG emissions by up to 30 megatonnes of CO$_2$ eq.
Biologics / biopesticides in horticulture: UK grower experience

- Increasing products on market
- Growers want to use them
- Test them out
- Some products useful
- Others poor / inconsistent
- Reasons unknown
- Lack of knowledge on how best to use
The AMBER project: an overview

- Application & Management of Biopesticides for Efficacy & Reliability.
- PE, PO & HNS crops. Microbial biopesticides.
- Identify the reasons why biopesticides can be inconsistent.
- Develop generic management tools and practices to improve performance (all crops, all pests / diseases!) –
 - a very broad project.
Biopesticides in commercial practice: benchmarking trials

Observed growers using microbials on crop scale.

• Natural P&D outbreaks.
• Followed best practice guidelines.
• Compared to standard treatment if possible.

5 fungal BCA products

6 commercial growers

7 crops (pepper, cucumber, 5 ornamentals)

3 pests (aphids, thrips, whitefly)

3 diseases (mildew, botrytis, root rots)

Detailed quantitative & qualitative information on biopesticide / grower performance

Product storage; sprayer performance, pressure, water volume, concentration; deposition on the crop; effect of spray on product viability; persistence; amount of P/D control; environmental conditions; non-target effects; phytotoxicity.
Observations of biofungicide performance in Amber

Cucumber: *Ampelomyces* vs powdery mildew; Vertical boom, manually operated.

- Acceptable disease suppression on variety with intermediate resistance only.
- Concerns about tank residue effects on biofungicides?
- High volume application. Uneven distribution on crop.
Cyclamen: *Gliocladium* vs *Botrytis*; Ripa gun; Brinkman 200l tank sprayer

- *Gliocladium* gave more control than fungicide standard. Control could be better in both cases.

- Week 1 (plants with *Botrytis*): Standard = 60%; *Gliocladium* = 28%.

- 2 weeks after 3rd spray: Standard = 84%; *Gliocladium* = 56%.

- Estimated vol. 3000 l per ha.
Dianthus & Choisya: *Trichoderma* vs root rots; Drench with a hand lance.

- No difference in *Trichoderma* and fungicide standard.
- High volume application (10% pot volume).
- Better root growth with Previcur Energy.
Overall, across all biopesticides, what did we learn?

• Performance varied, from zero control, to better than conventional pesticides.

• All products had potential to give much better control.

• Application was poor (with 1 exception). Targeted, precision application needed, but the tools / knowledge are not yet available or in use (deliver effective dose, right time, right place).
What else did we find?

- Labels hard to follow.
- Lack of accessible ‘underpinning’ information (effective dose, persistence, environmental conditions etc.). *Companies addressing this now.*
- Growers need better knowledge (mode of action, storage, preparation, compatibility etc.).
- Spray equipment not fit for purpose (1 exception).
- Water volumes too high (run-off, inefficient).
AMBER: work areas

• Making *spray application* more efficient.

• Measuring biofungicide *persistence* to improve timing of application.

• A Boxcar *model of insect pest growth to* inform bioinsecticide use strategy.

• *Thermal time model* to predict bioinsecticide efficacy at fluctuating temperatures.

• Improved *data recording template* for biopesticide trials.

• Forward look – how decision support & precision application will impact on biopesticide management.
Knowledge exchange

• Grower articles.
• Talks and workshops for 9 crop sectors.
• Application workshops (> 100 growers / agronomists).
• Website, YouTube
Biopesticide spray application workshops

• Correct storage, mixing, tank washing.
• Principles of good spray application (water volumes).
• Peer to peer discussions led by grower ‘pioneers’.
Spray application is a critical factor

- Biopesticides are not ‘forgiving’. If spray application is poor, they are likely to fail.

- Water volumes are usually too high: inefficient to apply, with loss of product through run off.

- For best results, control the water volume to achieve the highest concentration of biofungicide on the leaf surface.

- Many people still believe high water volume is best. The truth is more complex.
Silsoe Spray Applications Unit: spray water volumes (tracer dye, track sprayer, constant dose) – short crop

- Dye is more dilute at higher volumes.
- Deposit = mean amount per g leaf tissue.
- V low volumes, not all leaves are sprayed.
- Higher volumes, leaves are saturated & run off occurs.
Tracer dye studies: On short crops, horizontal boom

• Amount of active substance deposited on the plant is sensitive to volume.

• Product applied at a constant dose: maximum active substance = lowest water volume (but do not exceed max label concentration).

• Product applied at a constant concentration: the max volume = 1000 L/ha, but for smaller plants it is better to go 500 L/ha.
Tracer dye: On tall crops, vertical boom

• Amount of active substance deposited on the plant is relatively insensitive to volume.

• Product applied at a constant dose: choose low water volume to make application time efficient.

• Product applied at a constant concentration: the max volume = 1000 - 1500 L/ha.

• Silsoe calculator: converts volume needed for vertical crop into volume applied per floor area. Ensures label recommendations aren’t exceeded.
Biofungicide persistence determines application strategy

- CFUs of *G. catenulatum* on foliage of tomato plants.
- Sampled for up to 14 days after application of Prestop WP to leaves with no host disease present.
Poor survival of *Ampelomyces* in absence of host

- Used to inform a smart decision support system

Some grower users thought *Ampelomyces* was a true preventative

Narrow use window
Integration with conventional fungicides

• Not stand-alone products. Use them to reduce conventional fungicide applications.

• Knowledge gaps about fungicide compatibility.
 • Safer to have separate tanks.

• But there are reports from scientific literature of co-application with compatible fungicides, giving superior control:
 • Trichoderma.
 • Bacillus and azoxystrobin
 • These are experiments. We need to check them out.

• Use biofungicide in a programme to reduce the number of conventional fungicide applications.
Biopesticides have a critical role in future crop protection – but we must use them better

- Assess performance under real world conditions. Why do they work / not work?
- We still think of them as like-for-like replacements of conventional pesticides.
- Precision spray application. New equipment. Deliver effective dose, right place, right time.
- Smart decision support (predictive modelling, IoT sensors, cloud computing, dashboards).
- Identify synergies within IPM (e.g. with durable plant resistance, plant vaccination, natural enemies).
Advice for growers & agronomists

- Use biofungicides in a programme to reduce total number of conventional fungicide applications.

- Measurable, incremental improvements in management practice rather than a ‘giant leap’.

- Combine with other IDM tools (cultural control, environment management). Smart decision support.

- Biofungicides work differently to conventional fungicides. They are less forgiving and require much more attention to detail.

- Take into account the modes of action. Consider compatibility with other products.

- Good spray application is critical. Efficacy is dose dependent; deliver highest dose of product per unit area of foliage. Lower water volume is best. Label reform needed.
Don’t forget why we are doing this...

- Helping growers achieve sustainable production of quality food & ornamentals.
Thankyou

Google ‘amber biopesticides’