Overview

• Research often focused on understanding a single pathosystem
 • Biology, ecology and epidemiology of the pathogen
 • Host genetic tolerance and resistance
 • Environmental conditions
• Practical management on-farm
 • Detection in soil
 • Integrated methods for control
• Rotational soil management
 • Soil health and crop health
Developing targeted management methods for clubroot through pathotyping and field mapping

Prof. Fiona Burnett, SRUC
Dr Julie Smith, ADAS
Clubroot caused by *Plasmodiophora brassicae*

- Wide host range: oilseed rape, vegetable brassicas, cover crops, weeds
- Yield reduction = 0.3 t/ha for every 10% clubroot severity
- Inoculum can survive in soil for 15 years, half life of 4.5yrs
- Exacerbated by close rotations
- Often goes undetected at field and national level
- Cultivar resistance based on single dominant gene and is being eroded
- Fungicide and bio-control options not available
- Limited management from agronomic strategies
Prevalence of resistance breaking strains present in the UK

~75 commercial fields sampled

‘Mendel’ resistance breaking strains identified
Diversity of pathotypes in the UK

European clubroot differential set
Impact of inoculum density on yield - when would patch treatment be economic?
Integrated management for clubroot (OSR)

- Rotation planning – cover crop mixes often contain susceptible species
- Use field mapping to target control
- Keep accurate crop records of clubroot occurrence, location and intensity
- Frequency and detail of testing is key in susceptible rotations
- Buy certified seed; do not home-save resistant varieties
- Manage volunteers and susceptible weeds
- Long term planning should be based on the long-term profitability and sustainability of a field
Clubroot management in crops

Pathogen
Helminthosporium vestitum

Hosts
Clubroot affects all cultivated and wild cruciferous plants. In addition to oilseed rape, all vegetable brassica species are affected. Other susceptible broad-acre brassica crops include turnip, swede, Brussels sprouts, kale, cauliflower, cabbage and mustard. Numerous weed species, such as charlock and shepherd's purse, are also common hosts.

Symptoms
The first symptoms usually occur within six weeks of planting, provided soil temperatures are greater than 12°C. In oilseed rape, symptoms commonly start in late autumn. Roots become swollen and distorted, and develop small, irregular, white-coloured, swellings. These are present on taproots and/or lateral roots. As the season progresses, galls may enlarge and discolour, before starting to rot.

Above-ground symptoms do not usually develop until later in the season. Typical symptoms include stunting and yellowing. Under dry conditions, plants may wilt, especially when galling is severe. Distinct patches of poor growth are often visible. Plant loss occurs in the most severely affected areas, and, occasionally, the whole field may fail.

Life cycle
Clubroot is a soilborne pathogen that produces resting spores. These spores have thick walls and help the pathogen survive for up to 15 years in the soil. Chemicals released by the roots of host plants cause nearby resting spores to germinate and release infective spores (conidia). These move through soil water and infect the hosts root hairs, where a secondary spore stage occurs. These spores invade the outer layer of the root (the cortex) and form structures called secondary plasmoids. These structures cause the root cortical cells to enlarge and increase the rate of cell division. Ultimately, this results in the formation of the characteristic club root galls. These galls decay during the season and release large numbers of resting spores, which over winter in the soil.

Importance
Clubroot is a global problem and has increased in recent years. For example, many new UK cases were reported in 2016, after an absence with no history of the disease. The trend for shorter rotations, along with in reactor and higher winter, has probably...
Rotational soil management
Healthy soils, healthy roots
Soil Biology and Soil Health Partnership
Soil Biology and Soil Health Partnership

• Five years to deliver linked knowledge exchange and research on soil biology and soil health
• Building on work already carried out

Aims to:
• Improve on-farm understanding of soil health by sharing current academic and industry knowledge in usable formats
• Develop and validate indicators of soil biology and soil health in research trials and on-farm
All soils are different
Soil health assessment sites: Arable and ley/arable rotations

1. Harper Adams
2. Gleadthorpe
3. Terrington
4. Loddington - Tillage
5. Boxworth - Drainage
6. Craibstone
 a. Crop rotation x fertiliser; 90+yrs
 b. Crop rotation x pH; 60+yrs.

10-20 years of repeated organic material additions
Developing and validating indicators of soil biology and soil health

- Visual assessment of soil structure (VESS)
- Penetrometer resistance
- Bulk density

- pH
- Routine nutrient analyses (P, K, Mg)
- Soil organic matter / loss on ignition
- Total N
- Potentially mineralisable nitrogen

- Earthworms
- Mesofauna
- Nematodes
- Microbial biomass carbon
- Respiration: Solvita® test

- DNA measures of pathogens and soil health
Developing and validating indicators of soil biology and soil health

- Visual assessment of soil structure (VESS)
- Penetrometer resistance
- Bulk density
- pH
- Routine nutrient analyses (P, K, Mg)
- Soil organic matter / loss on ignition
- Total N
- Potentially mineralisable nitrogen
- Earthworms
 - Mesofauna
 - Nematodes
 - Microbial biomass carbon
 - Respiration: Solvita® test
- DNA measures of pathogens and soil health
<table>
<thead>
<tr>
<th>Attribute*</th>
<th>Field A; Farm 1</th>
<th>Field B; Farm 2</th>
<th>Field C; Farm 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOM (%)</td>
<td>3.4</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>pH</td>
<td>6.7</td>
<td>6.9</td>
<td>7.0</td>
</tr>
<tr>
<td>Ext. P (mg/l)</td>
<td>40.6</td>
<td>59.6</td>
<td>37.2</td>
</tr>
<tr>
<td>Ext. K (mg/l)</td>
<td>158</td>
<td>106</td>
<td>148</td>
</tr>
<tr>
<td>Ext. Mg (mg/l)</td>
<td>82</td>
<td>89</td>
<td>144</td>
</tr>
<tr>
<td>VESS score</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Earthworms (Number/pit)</td>
<td>13</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend:
- **Red**: Investigate
- **Yellow**: Monitor
- **Green**: No action needed
Assessing soil health using DNA

• Can we replace many of the biological assays with analysis of a single DNA sample?

• Sample size and cost evaluated in a comparative experiment

• Interpretation by analysing the same samples as the ‘traditional’ assays
In house, rapid extraction, 1 g soil → DNA → qPCR - Pathogens - 16S bacteria ; ITS fungi

In house, large scale extraction, 100 g soil → DNA → Metagenomics
Bacteria
Fungi
Metazoa

Commercial kit, 10 g soil → DNA
Research case studies

• The role of molecular indicators for measuring soil health
• Testing the soil health scorecard (on-farm monitoring 2018-2019)
• Testing the effect of organic material additions on soil health
• Testing the effect of pH on soil health

www.ahdb.org.uk/greatsoils
Integrated management for soil health and soil-borne pathogens

- Field mapping – ‘know your soils’
 - Investigate poor areas
 - Dig a hole
 - Soil testing and diagnostics
 - Pull up a plant to look at roots

- Cultural practices
 - Extend and diversify rotations
 - Cultivations
 - Organic amendments

- Varietal resistance/tolerance
 - Seed rate
Future

• Soil management to suppress disease
• Precision mapping of soil-borne pathogens (monitoring)
 • Soil sampling
 • Diagnostics
 • Targeted management approaches
• Thresholds for disease development and impact on yield or quality
 • Environmental conditions
• Varietal tolerance or resistance
 • Breeding: examining below-ground traits
• Seed treatments
‘Inspiring our farmers, growers and industry to succeed in a rapidly changing world’