

Original thinking... applied

New frontiers in plant movement: The use of high throughput sequencing in plant virology

Adrian Fox^{1,2}

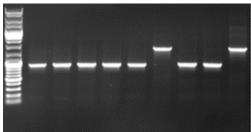
Fera Science Ltd
Life Sciences, University of Warwick

Overview

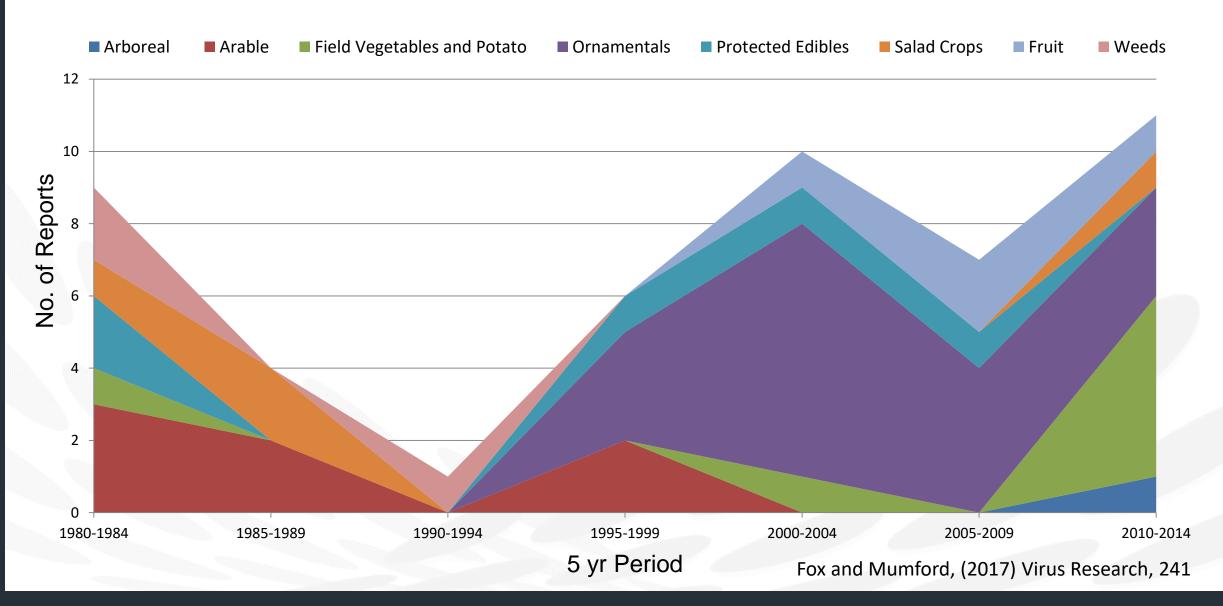
- Diagnostics as a driver of new species discovery
 - What technologies are available?
 - Developing high throughput sequencing (HTS) for frontline sample diagnosis
- Applying HTS in plant health
 - Investigating causation
 - New trade pathways and niche crops
 - Surveillance and the importance of baseline data
- What's next?

Long road of diagnostic development

Source http://wellcomeimages.org



Source:https://commons.wikimedia.org/wiki/File :Ouchterlony_Double_Diffusion.JPG

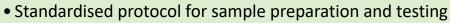


Factors driving virus discovery (UK 1980-2014)

High throughput sequencing in plant pathology

- Range of platforms and approaches...
- Key applications investigated:
 - HTS informed diagnostics
 - Unknown aetiology
 - 'Megaplex' screening
 - Improving targeted diagnostics
 - Disease monitoring (population genetics)
- Few studies on:
 - Equivalence
 - Standardisation
 - Validation
 - Controls

International plant health authorities have concerns about reporting of findings from 'stand alone' use of technology



Developing HTS for frontline virus diagnostics

- Symptomatic sample assessment and/or
- ELISA/PCR screen positive (generally a generic test positive)
- Negative screen for knowns, but recognised virus in host with no other test available
- Negative screen for knowns/expected, but bioassay shows symptoms

- Samples spiked with suite of synthetic RNA controls
- 'Negative' tobacco included in run
- Quality check of data

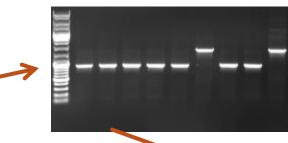
Sample

Assessment

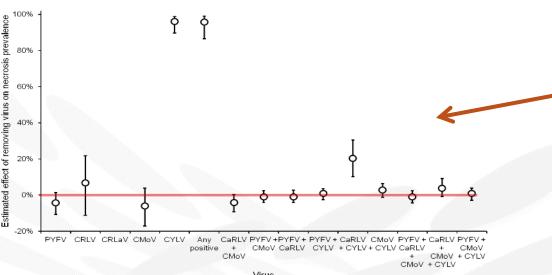
HTS

- De novo assembly initial quality check of assembled sequence
- Reference mapping
- Initial taxonomic assignment of findings
- Known virus: Existing test available Where possible use a different biological principle (ELISA?); as a minimum use previously published primers
- Known virus: No existing test available Design primers to consensus sequence
- **Confirmation** Novel virus Design primers to sequenced isolate

Where to put the HTS in the workflow...


Unknown aetiology : Viral necrosis of carrots (AHDB FV382a)

Stocks of carrots rejected due to the presence of internal necrosis linked to viruses.

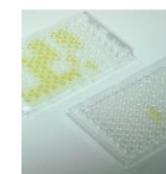


Conventional PCR of affected & unaffected carrots showed no association with expected viruses

MiSeq sequencing identified *Carrot yellow leaf virus* in necrotic samples. Sequencing also detected a Closterovirus (CtCV-1) and a Torradovirus (CaTV-1) plus several other viruses which were new to science.

Real-time PCR demonstrated a strong association between CYLV and necrosis, suggesting that removal of this virus would reduce necrosis by 96%

Adams et al. (2014) PLoS ONE 9(11)


Ulluco: HTS in an outbreak reveals novel viruses (Defra)

Summer 2017: NPPO notified of crop of U. *tuberosus* being grown for seed without certification

Initial screen suggests presence of quarantine viruses but this could not be confirmed

Genetic sequencing revealed 6 viruses new to science and non-native pathogens.

Two novel viruses considered to be

high risk

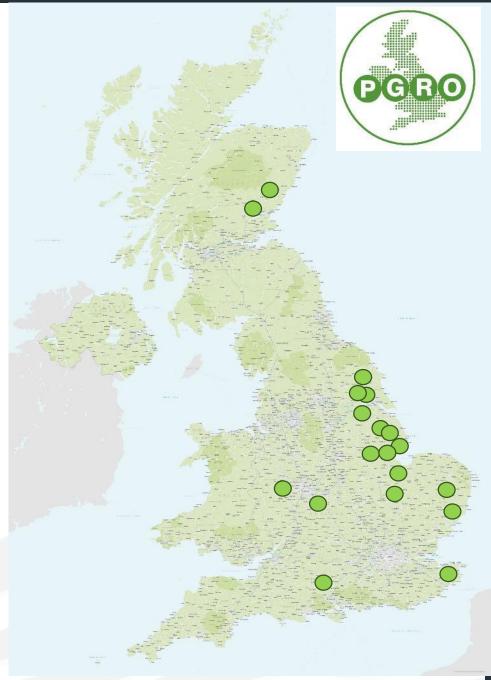
- NC 020471 1 Andean potato mild mosaic virus isolate Hu complete geno NC 014127.1 Chiltepin yellow mosaic virus complete genom UTyV1(Devon) - 21715442 UTyV2 (Lincolnshire) 21715443 UTvV2 (Lincolnshire JX508291.1 Andean potato latent virus complete gene KT834406.1 Tomato blistering mosaic virus isolate SP-01 complete genor KJ940970.1 Tomato blistering mosaic virus isolate BR001 complete genom EU779803 2 Tomato vellow blotch virus strain Minnesota complete ge NC 003634.1 Physalis mottle virus complete ge NC 002588.1 Chayote mosaic virus complete genome 100 r- NC 011086.1 Diascia yellow mottle virus complete genome - KY569402.1 Diascia yellow mottle virus isolate 21005322 complete genome NC 011538.1 Nemesia rino necrosis virus complete genom NC 011559 1 Anagyris vein vellowing virus complete genome Ononis vellow mosaic virus complete genom NC 011539.1 Plantago mottle virus complete geno AY789137 1 Dulcamara mottle virus complete genome NC 001746.1 Kennedya yellow mosaic virus complete geno

EUROPEAN

2019: ulluco included in European legislation as a high-risk plant species

New sequences

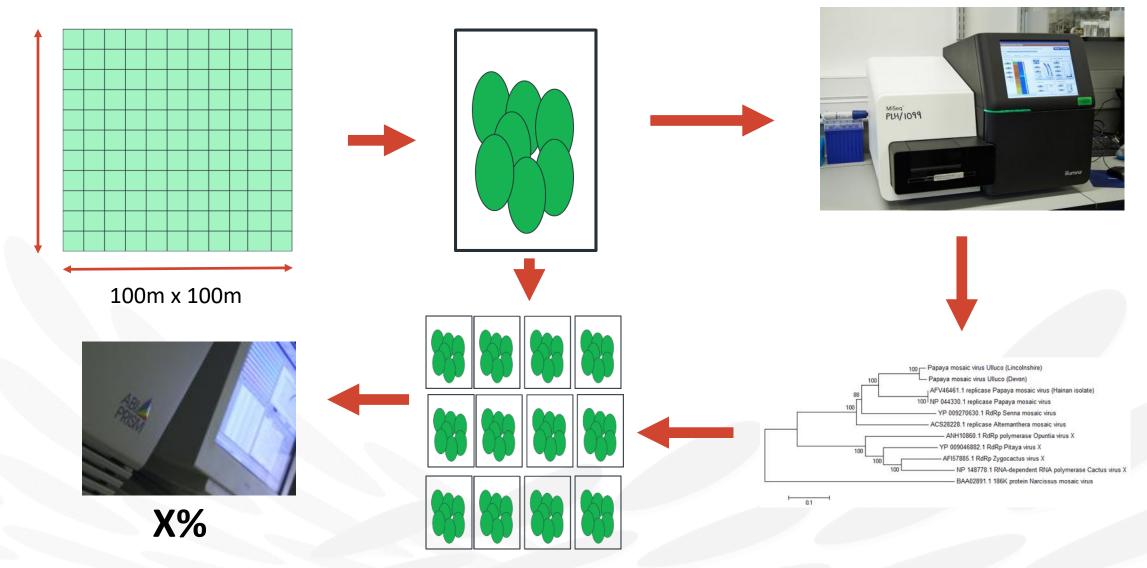
Old viruses?


	88888888		
Fox et al (2019) ELISA	Fox et al (2019) HTS	Previous reports from Ullucus (No Sequence data reported)	Source
Andean potato latent virus	Ullucus tymovirus 1 (Devon) Ullucus tymovirus 2 (Lincolnshire)	Andean potato latent virus	Lizaragga et al, 1996
Potato leaf roll virus	Ullucus polerovirus 1	Potato leafroll virus	Lizaragga et al, 1996 k
Potyvirus / Potato virus Y	Ullucus potyvirus 1	Ullucus mosaic virus	Brunt et al, 1982
	Papaya mosaic virus-Ulluco strain	Papaya mosaic virus - Ulluco strain	Brunt et al, 1982
	Ullucus tobamovirus 1	TMV-U Ullucus mild mottle virus	Brunt et al, 1982 Offei et al, 1995
	Ullucus comovirus 1, 2, ?	Ullucus virus C (UVC)	Brunt et al, 1982 b
	Broad bean wilt virus 1 + 2		No previous record

Usding HTS for field survey: Pea viruses in the UK (AHDB FV 459)

- 3 yr AHDB funded project
- PGRO as collaborative partner
- 20 field crops per year
 - National coverage
 - 1 visit per field
 - Bulk 'random' sample for HTS screening and virus incidence
 - Symptomatic individual plants
 - Yield loss (if possible...)

Using peas as a model crop


- Over 120 viruses known to infect peas
 - 43 recorded from natural infections
 - 27 viruses recorded from UK that will infect peas
 - 7 recorded from UK pea crops
- No recent surveillance work in the UK
 - Most recent work in 1970's and many reports based on symptomatic disease descriptions
- Major issues in Germany with emerging viruses of legumes (nanoviruses)
 - Pea necrotic yellow dwarf virus

Generic surveillance approach

Overview of year 1

- 20 crops sampled in year 1 from East of England up to Central Scotland
- 121 'random' leaves per bulked sequencing sample, plus C.30 individual symptomatic plants
- 7 viruses detected:
 - Pea enation mosaic virus 1 (PEMV1), *Enamovirus*
 - Pea enation mosaic virus 2 (PEMV2), Umbravirus
 - Pea enation mosaic virus satellite
 - Pea seed-borne mosaic virus (PSbMV), *Potyvirus*
 - Bean yellow mosaic virus (BYMV), *Potyvirus*
 - Turnip yellows virus (TuYV), Luteovirus New host record for UK
 - Soybean dwarf virus (SbDV), *Luteovirus* First record for UK
- 'Control' Samples stored since 2007 have tested positive for TuYV and SbDV....

First year results...

- 13 / 20 (65%) crops with virus infection
- 12/20 crops infected with TuYV
- 5/20 crops single infection (TuYV)
- SbDV First record for UK
- Early crops less infection and fewer viruses

Sample	HTS Candidate viruses	TuYV Estimate	PEMV1 Estimate	SbDV Estimate
1	Negative			
2	Negative			
3	Negative			
4	Negative			
5	Negative			
6	TuYV	12.46		
7	Negative			
8	PEMV1 PEMV2		27.44	
9	TuYV	1.71		
10	TuYV	6.76		
11	TuYV	60.62		
12	TuYV PEMV2	9.7	0.85	
13	TuYV PEMV2	21.8	0	
14	TuYV PEMV2 <mark>SbDV</mark>	93.33		1.71
15	TuYV PEMV1 PEMV2 <mark>SbDV</mark>	2.64	0.85	4.53
16	TuYV PEMV1 PEMV2 PEMV Sat	8	3.72	
17	TuYV	6.98		
18	TuYV PEMV Sat	93.33		
19	TuYV PEMV2	80.01		
20	TuYV PEMV1 PEMV2 PEMV Sat	14.29	30.09	

What's next?

iKnife : GC-MS linked to a cauterising scalpel

SHERLOCK : CRISPR Cas13 based isothermal nucleic acid detection

SHERLOCK

Specific High-sensitivity Enzymatic Reporter unLOCKing

Sumary

- HTS offers unparalleled potential for detection and diagnosis of plant pathogens
- Moving beyond research into frontline 'routine' diagnostics
 - Increased number of 'novel' pathogens
 - How do we assess risk of the novel?
 - Increased focus on baseline data (What is already here?)
- New technologies could revolutionise rapid detection
 - Less invasive, more rapid, non-targeted
 - Sensitivity and specificity of targeted 'in-field' diagnostics

Acknowledgements

- Fera NGS team
 - Ian Adams
 - Chris Conyers
 - Hollie Pufal
 - Sam McGreig
- Roy Macarthur
- PGRO
 - Becky Howard
 - Shona Duffy

- Fera Virology Team
 - Aimee Fowkes
 - Rebecca Weekes
 - Anna Skelton
 - Val Harju
 - Stephen Forde
 - Adam Buxton-Kirk
 - Richard Ward
 - Leanne Frew

