DEPHY and the IPM monitoring lessons learnt in France

Nicolas Munier-Jolain, INRAE, Dijon, France
The National Action Plan following the EU SUD Directive 2009/128/EC
- Launched in 2009
- Objective: halving pesticide use by 2018 >> 2025 (ECOPHYTO 2+)

>> not a success so far!

French agricultural area: 29 Million ha
>> ≈ 3.8 standard dose of active ingredient per ha
The **ECOPHYTO** plan launched a unique tool: the DEPHY network

- **3000 volunteer farmers** all agricultural sectors arable crops, vineyards, orchards, vegetables...

- **Large agricultural partnership** chambers of agriculture, cooperatives, farming organizations, research...

- **Explicit objective:** decrease pesticide use
good way to decrease exposure to pesticide

- **Explicit approach:** cropping system re-design
holistic view of IPM
“find my own solutions adapted to local context!”

- **Role of advisors coaching farm groups**
 network engineers, 10-15 farms per group
 funded by a specific tax on pesticides

- **A shared information system to collect data**
Changes in pesticide use 2010 > 2017

Indicator: Treatment Frequency Index

-14% Arable crops
 Including mixed farming with livestock
 IFT 2017 = 2.6*

-25% Orchards
 IFT 2017 = 14.3*

-17% Vineyards
 IFT 2017 = 10.2

-38% Vegetables
 IFT 2017 = 3.4*

-43% Horticulture
 IFT 2017 = 8.5*

-37% Tropical crops
 IFT 2017 = 4.5*
Changes in pesticide use

Indicator: Treatment Frequency Index

with a huge diversity across farms!
The DEPHY’s communication and dissemination activities

- Leaflets describing IPM strategies
- Leaflets describing farming system trajectories: “success stories”
- Booklets describing “families” of successful adoption of IPM
- Thematic booklets e.g. glyphosate use and alternatives, biodiversity
- Local ‘open-farm’ days and dissemination events
 > 2,000 yearly
- Conferences (local, national, by agricultural sectors...)
- Videos testimonies of farmers

Everything available (in French !) on the National Portal

https://ecophytopic.fr/

Nicolas Munier-Jolain, BCPC Pests & Beneficials Review 2020
Analysed the huge diversity of DEPHY farms

Context, management strategies, reliance on pesticides
... at the network launching [2009-2011]

1012 arable cropping systems DEPHY

1. What are the technical strategies
 of farmers using little amounts of pesticides?

2. Low TFI = low productivity? Low profitability?

3. Scenario of general adoption of IPM-based systems at the country level – what consequences?

TFI: Treatment Frequency Index
Profiling management strategies with low pesticide use

Clusters of production situations

6 groups of production situation

Main factors
• Livestock
• Local markets: Industrial crops
• Climate: radiation, rain, temperatures...

Management strategies (MS) with low TFI

Ex: 21 MS profiles identified in PS2

• Profiles with low TFI always combine several management measures
• Main management measures
 ✓ Temporary grasslands
 ✓ Crop diversification: rustic crops, sowing seasons
 ✓ Cultivar diversification, disease resistant cultivars
 ✓ Cereal delayed sowing dates
 ✓ Reduced doses
 ✓ Soil tillage – alternating ploughing
 ✓ Moderate fertilisation

IPM allows reducing the reliance on pesticides
Lechenet et al., Agricultural Systems, 2016
Correlation between pesticide use and performances

a statistical method considering explicitly the interactions with soil, climate, context...

Scale = Cropping system

<table>
<thead>
<tr>
<th>Pesticide use x Productivity</th>
<th>Pesticide use x Profitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils with high yielding potential sugar beets, potatoes</td>
<td>Mixed farming Medium yielding potential grasslands + maize</td>
</tr>
<tr>
<td>6%</td>
<td>39%</td>
</tr>
<tr>
<td>No antagonism for 94% of sites</td>
<td></td>
</tr>
</tbody>
</table>

Soils with high yielding potential sugar beets, potatoes	Cereal based systems Low yielding potential
22%	11%
No antagonism for 78% of sites	

Lechenet et al., Nature Plants, 2017
Correlation between pesticide use and performances

a statistical method considering explicitly the interactions with soil, climate, context…

- Pesticide use x Productivity
- Pesticide use x Profitability

Scale = crop wheat

In most cases (73%), wheats with low pesticide inputs have lower yields:
- Cultivars chosen for disease resistance
- Delayed sowing
- Moderate fertilization

In most cases, reduced input costs offset reduced yield

In 24% of sites (rather soils with low potentials) wheats with low TFI have better semi-net margins
Scenario of general adoption of IPM at the country scale

What if ??

...all French farmers would adopt cropping systems (and performances) of the DEPHY farm with the lowest pesticide use in the same context (soil, climate, environment)?

What consequences for French agriculture?

- Pesticide use
- Production volumes, relocation of productions
- Trade balance, energy inputs, autonomy for plant proteins
Scenario of general adoption of IPM at the country scale

What if ??

...all French farmers would adopt cropping systems (and performances) of the DEPHY farm with the lowest pesticide use in the same context (soil, climate, environment) ?

What consequences for French agriculture?

- Pesticide use
- Production volumes, relocation of productions
- Trade balance, energy inputs, autonomy for plant proteins
Scenario of general adoption of IPM at the country scale

What if ??
...all French farmers would adopt cropping systems (and performances) of the DEPHY farm with the lowest pesticide use in the same context (soil, climate, environment) ?

Pesticide use

≈ - 40 %
Scenario of general adoption of IPM at the country scale

Production volumes (country scale)

- Increase in overall productivity
- Decrease in cereal production
 - lower yields
 - lower acreage
- Increase in diversity
 - At the farm scale
 - At the regional scale
 - At the country scale

- temporary grasslands
- grain legumes
- sugar beet
- oilseed rape
- grain maize
- silage maize
- barley
- wheat
Scenario of general adoption of IPM at the country scale

Positive impact on trade balance

Production volumes (country scale)

- temporary grasslands +107%
- grain legumes +51%
- sugar beet +13%
- oilseed rape -22%
- grain maize +8%
- silage maize -32%
- barley -3%
- wheat

Current ECOPHYTO

Decrease in soybean import
Decrease in energy import
Increase in maize export
Decreased in the production of rape-based energy
Decrease in barley export
Decrease in wheat export

Average price scenario 2010-2015

Positive impacts on trade
Negative impacts on trade

Nicolas Munier-Jolain, BCPC Pests & Beneficials Review 2020
Take home messages

- Promote a holistic view of IPM / agroecology

 Scale matters! Don’t think at the crop scale, but rather at the farm/landscape/region scale

- IPM-based strategies enhance sustainability

- Transition requires education and peer-to-peer learning

- Upscaling IPM / agroecology at the country/global level would have consequences on trades
Thanks for your attention

Action pilotée par le ministère chargé de l'agriculture et le ministère chargé de l'environnement, avec l’appui financier de l’Office national de l'eau et des milieux aquatiques, par les crédits issus de la redevance pour pollutions diffuses attribués au financement du plan Ecophyto