Glyphosate resistance update Lynn Tatnell, ADAS

BCPC Annual Weed Review 2019

Glyphosate resistance risks?

- No known cases of glyphosate resistance in UK
- Essential component of many weed control strategies; need to keep it!
- Glyphosate resistance globally
- Lack of other actives
- Multiple resistance increases risk
- Over-reliance/use of glyphosate
- Post-em use increasingly considered an option

Minimising the risk of glyphosate resistance

Latest information

use and over reliance on

glyphosets by minimising Persistanton tiple.

givenouse.

the UK

increased risk is linked to repeated

Fletten the value and afficacy of

Carrently, there are no known.

Action

- Prevent survivors

- Meimise afficacy

- Line alternatives

Monitor aucusted

Weed Resistance Action Group WRAG

en foart privilent tabelli, servicelet ynat time conditions and consult a problematic agreemental, if terratery

The risk of glyphosate re-

The herbicide glyphosate has been commercially available for 40 years. It is one of the most frequently used herbicides in the UK in all crop production systems, including annual and perennial crops and non-cropped annias.

There are currently no known cases of glyphosata resistance in the UK. however, globally, resistance-tophysionate has exclused as a result of repeated use and overreliance.

Current changes in usage patterns in the UK are potentially increasing the risk of glyphosate resistance. development.

An overreliance on a limited group of herbicide modes of action has accelerated the development of herbicide-resistant grass weeds. particularly black grass. This has been mainly due to a lack of new herbicides, regulatory policy changes, a limited crop rotation and the under-exploitation of cultural control practices.

Factors affecting the risk

cases of gryphosate resistance in **4 key principles:**

- **Prevent survivors**
- maximise efficacy
- use alternatives

monitor success

Agronumic factor	Higher risk	Lower mak
Cropping system	Continuous monoculture or perennial crops	Varied rotation - winter and spring cropping
Cultivation	None or insufficient to kill weeds	Thorough disturbance to kill weeds
Weed Infestation level	High	Low
Control method	Chyphosata crity	Mixed use of glyphosate with effective use of other modes of action and cultural control
Number of glyphosats applications pre-drilling	More than two applications and no sufficient	Fewer than two applications and sufficient outivation
Target wood size for glyphosetis rate	Weeds too large for slose rate; reduced or less effective does rates used	Weeds at correct growth stage; full and effective dose rates used

Agronomic factor	Higher mik	Lower risk
Cropping system	Contrinuital interactuiture or perservial crops	Valued restation-women and spring stropping
Cultivation	None or insufficient to kill weeds	Thorough disturbance to 68 weeds
Week intestation level	Heli	Line
Carthol Rightoute any		Mixed use of gryphoses with effective use of other modes of action and cultural control
Number of glyphosate applications pre-drilling	More than two applications and no sufficient	Fewer that two applications and sufficient culturation
Target weed size for	Weeds too large for done rate; reduced or inco-effective done rates used	Weeks at consist growth stops: full and effective dole rates used

id an

nising the risk of ce in the UK		Ame 2015
is for 40 the UK is is crops, cales of therce to	The main threat glyphosate in th 2. Arread proble	a of resistance to e UK are in: t. crops. especially ed to restar grass

words that without resistance to many selective horseldes. Ferenzial cross and amenity use, where it is used on annual and permittal weeks where how

> otherstative modes of action are and balleting

Maximum efficacy Use the right door for the target want in actualy growing silents **Reduced rates increase** val of testand efficacy ides in intere and

Guidelines for mini glyphosate resistan

published 2015

Guidelines

instance.

horse mong

Fightine lost

rated the

my blackto a liach Links and Links

stance from the OTHER DRIVE

et al: althei and a

Minimising the risk of glyphosate resistance (2015-2020)

Aim

Practical management guidelines for farmers & agronomists reducing the risk of glyphosate resistance developing in grass-weeds in arable cropping in the UK

Key objectives

- 1. Risk of repeat glyphosate applications *in stubbles*
- 2. The use of glyphosate post-em **between crop rows**
- 3. Determining resistance status (seed + plant testing)
- 4. Agree & communicate practical management guidelines

Outcomes and Impact

• Improved management guidelines & resistance tests for seed & plants

To reduce the risk of glyphosate resistance:

Prevent survivors

 Repeat application to surviving plants presents the highest risk

Monitor success

- Consult your agronomist or supplier
- Remove survivors to prevent spread
- Test seed samples of survivors

Maximise efficacy

- Use the right dose rate for the target weed on actively growing plants
- Reduced rates increase risk of reduced efficacy

Use alternatives

- Use cultivation or other nonchemical control when practical
- Use other herbicides in sequence (or mixture only if recommended)

- Black-grass & Italian ryegrass
- Glasshouse Pots
- Containers
- Field

Basic UK data review summarycomparing existing glyphosate use data

- Data very variable and not all autumn applications
- Optimum glyphosate dose 1080 g a.i.
 - Rate generally split into two application timings
- No increase in control with > 3 glyphosate applications
- No increase in control above 1080g a.i.
- Lack of robust data on pre-drilling use
 - Majority of trials in fallow

How are risks are mitigated?

Container experiments (Years 1-2):

- 216 containers/experiment
- 3 populations of each species

Effect of glyphosate dose against weed growth stage

• Four doses and three weed growth stages

Effect of glyphosate dose, weed size and cultivation

- Two doses and two growth stages
- Two 'simulated' cultivation depths

Glyphosate @ 540g/ha+ at GS 12-13 most effective

Dose rate and timing are critical for control Effect of dose **Black-grass** Italian ryegrass 2-3 leaves 2-3 leaves 540 g/ha 360 g/ha 360 g/ha 540 g/ha Tillering Tillering 360 g/ha 540 g/ha 360 g/ha 540 g/ha

Effect of timing (540 g/ha)

Quantifying the need for repeat glyphosate

- Three sites 2016-18
- Plots (12m x 3m)
- 3 reps
- Post-harvest cultivation
- Plots split drilled
- Plant & head counts

Field trial treatments pre-drilling 2016-18

	T1	T2	Т3	Τ4	Τ5	Т6
No cultivation	UTC	540g/ha Early	540g/ha x2 Early	540g/ha	540g/ha x2	1080g/ha
			Mid	Mid	Mid Late	Late
Minimum cultivation	UTC	540g/ha Early	540g/ha x2 Early Mid	540g/ha Mid	540g/ha x2 Mid	1080g/ha
					Late	Late

Later glyphosate timings = better black-grass control

Mean number black-grass heads/m² 2016-17

Treatment 4 (Both years)

Application Timing		
Early	Mid	Late
-	-	-
х		
х	Х	
	х	
	х	х
		Х
	Appl Early - x x	Application Til Early Mid X - X - X - X - X - X - X - X - X

ADAS

Evidence of reduced efficacy due to large growth stage and shading?

Spring barley trials 2018-19

No cultivation	No glyphosate	720g/ha glyphosate autumn	720g/ha glyphosate spring
Autumn	No glyphosate	720g/ha glyphosate	720g/ha glyphosate
cultivation		autumn	spring

	Boxworth	Cambs H
Autumn glyphosate	19 October	17 October
Autumn cultivation	9 November	25 November
Spring glyphosate	22 February	14 February
Drilling	2 March	22 February

Spring barley Boxworth: post-drilling plant counts

Conclusions from field trials

- Cultivations are essential to reduce plant numbers
- Split dose (540g) most effective & less resistance risk
- Confirmation of delayed drilling = less black-grass!
- Spring crops- consider timing of cultivations and glyphosate applications to suit the season
- Consider weather conditions (moisture/temp)
- Dose and weed size important

WP2.1 Containers: Large growth stages Started year 3 repeated year 4

- Re-sown saved seed autumn 2018
- Two black-grass populations
- Three weed growth stages
 - GS23
 - GS25-28
 - GS32
- Two glyphosate doses 180g + 360g + UTC
- Three replicates
- Seed collected tested 2019/20

WP 2.1 Survival of large growth stage treatments at two glyphosate doses: Year 1

WP 2.1 Survival of large growth stage treatments at two glyphosate doses: Year 2

Selection containers

- Black-grass only
 - Resistant (other MoA) x2
 - Susceptible
- Pushing selection
- Glyphosate rates low
 - 90g a.i.
 - 180g a.i.
 - 360g a.i.
- Applied GS 14-21
- Seed collected
- Repeated over 4 years

WP 3.4 Selection containers

Selection containers: Black-grass heads 2018

Selection containers: BG heads 2019

Temperatures at application 2019

Mid-January

Mid-February

3.5 °C

17 °C !!

Improving resistance testing in the UK Syngenta RISQ test

- Pot and Petri dish methods currently
- Resistance In Season Quick (RISQ) test
- Comparable results to whole plant tests
- Suitable for all weeds and herbicide MOA
- Seedlings from field tested
- Quicker and space saving

Kaundun S.S. et al,. (2011) Weed Research. 51 284-293

Adapting the method with glyphosate

UTC

- Designed for GS12-14
- Most likely larger plants will be sent
- Tillered plants can be sectioned
- Black-grass and Italian rye-grass

Determining the discriminating dose for black-grass

35 mM

50 mM

75 mM

Italian rye-grass results 2018UTC50μM75μM

Susceptible

ALS resistant

Key messages: Overall project

- Slyphosate ideal **timing** GS12-13
- Glyphosate <u>dose</u> >540g critical
- Dose should be 720g on tillered plants
- > <u>**Temperature</u>** at application important</u>
- Cultivation in stale seedbed essential
- > Two applications timings for stale seedbed

> Optimise efficacy

Other species of concern for glyphosate resistance????

