

Harvest Weed Seed Control – the value of chaff tramlining?

Dr Paul Fogg – Frontier

Outline

- Resistance need for novel approaches
- Harvest Weed Seed Control
- Chaff Tramlining
- Trials
- Summary

Need for novel approaches

Current status of herbicide resistant weeds

- Black-grass 20,000 farms in 35 Counties
- Ryegrass >475 farms in 33 Counties
- Wild oats >250 farms in 28 Counties

Economic Significance

- 100 black-grass plants / m2 yield penalty
 1 t/ha + can increase lodging risk
- All crops affected not just cereals
- Herbicide costs <£100/ha limited effectiveness

Counties (35) with herbicide resistant black-grass. Hull et al., 2014

Need for novel approaches

Source Stephen Moss & Tom Allen-Stevens

Harvest Weed Seed Control

Harvest weed seed control (HWSC) exploits the high proportions

of seed retained at maturity by some weed species

Species	Country	% retention at harvest	HWSC potential
Avena fatua	Australia	69-84	High
	USA/Canada	39	Low
	UK	4-20	Low
Bromus sp.	Australia	77	High
Lolium rigidum	Australia	85	High
Lolium multiflorum	USA/Canada	58	Intermediate
Chenopodium album	USA/Canada	90	High
Galium sp.	USA/Canada	74	High
Sinapis arvensis	USA/Canada	70	Intermediate
Alopecurus myosuroides	UK	10-50	Low

Walsh et al., 2018

Black-grass seed retention

- Ca. 10% per week seed shedding from early July
- 10-30% retained at wheat harvest
- More in winter barley and OSR

Neve & Hull (unpublished data)

Harvest Weed Seed Control

95% of the weed seed entering the combine exists in the chaff making HWSC and obvious area for further investigation

- Options include:
 - Chaff carts
 - Narrow windrow burning
 - Bale direct
 - Weed seed destruction
 - Chaff tramlining

Chaff Tramlining

- Placement of chaff into narrow rows 20 – 30cm wide
 - Wheel tracks chaff tramlining
 - Single row chaff lining
- Looking to create a "hostile" environment for germination
 - Mulch effect to prevent germination
 - More compacted soils tramlines
 - Different micro-climate
- Suited to both CTF and non-CTF system
 - Does require consistent combine lines year on year

UK trials 2017

- Objectives
 - Would it physically work under UK Conditions?
 - Would it consolidate black-grass seeds?
- Would it work under UK conditions?
 - 1250 ha cut, wheat, OSR, barley, oats, linseed beans – No problems
- Would it consolidate black-grass seeds?
 - Trial field winter barley CV. Volume
 - Average black-grass population 219 heads/m2 prior to harvest
 - Crop harvested on 14th July 2017 estimated 30-50% black-grass seed retained
 - Following crop OSR
 - Black-grass assessed early October

UK trials 2018

- Background black-grass population 512 plants/m2
- 77% black-grass seed shed pre-harvest winter wheat

Distribution of black-grass seed post harvest

UK trials 2018 – could we delay frontier seed shed?

UK trials 2018 – could we delay frontier seed shed?

Black-grass seed retention pre -harvest

UK trials 2018 – could we delay frontier seed shed?

Distribution of black-grass seed post harvest

Longer term benefits

- Main aim is to try and consolidate the weed seeds being returned to the field
 - 100 heads/m2 = 1t/ha
- Full benefits likely to be realised across the rotation – greater weed retention depending on crop
- Subsequent management of chaff tramlines?
 - Do nothing
 - Treat separately
 - Key area for further study

Summary

- Herbicide resistance is an ever increasing problem
- New herbicide MOA are rare
- Long term integrated approaches are required
- 95% of the weed seed entering the combine exists in the chaff
- HWSC exploits the high proportions of seed retained by some weed species at maturity
- Chaff tramlining has proved to consolidate blackgrass seeds – great benefits observed for brome spp.
- Full benefits from chaff tramlining will be realised across the rotation combined with other approaches

Acknowledgments

Gary Davison – Greenend Farm Charlie Reynolds – Courteen Hall Farm Will Goff – Foxborough Farms