Weed Seed Biology A ramble down memory lane

Bob Froud-Williams

Factors that compromise reduction of weed seedbank

- Vast reserves of seeds in soil seedbank
- Intensity and frequency of soil cultivation
- Somatic and genetic regulation of dormancy
- Seed polymorphisms that require different stimuli to alleviate dormancy

Constraints to Weed Seed Eradication

Fecundity

Dormancy

Longevity

• When do they germinate?

• How long can they survive?

Periodicity of Germination

Germination indifferent to Season

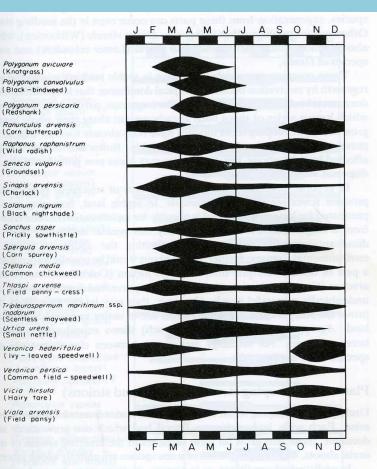
Bimodal germination in autumn and spring

Germination entirely in Spring

Germination mostly in autumn

Periodicity of Germination

inodorum


Aethusa cynapium (Fool's parsley) Alopecurus myosuroides (Black - grass) Anagallis arvensis (Scorlet pimpernel) Aphanes arvensis (Parsley - piert) Atriplex patula (Common orache) Avena fatua (Wild-oat) Avena ludoviciana (Winter wild-oat) Capsella bursa-pastoris (Shepherd's-purse) Chenopodium album (Fot-hen) Chrysanthemum segetum (Corn marigold) Fumaria officinalis (Common fumitory) Galeopsis tetrahit (Common hemp-nettle) Galium aparine (Cleavers) Matricaria matricarioides (Pineappleweed) Matricaria recutita (Scented mayweed) Medicago lupulina (Black medick) Papaver rhoeas (Common poppy) Plantago major (Greater plantain) Poa annua (Annual meadow-grass)

J F M A M J J A S O N D

Fig. 1.04. The main germination periods for some common annual weeds of arable land.

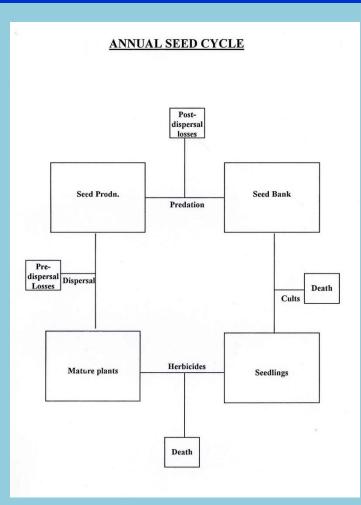
JFMAMJJASO

N D

Safe-sites

Stimuli required for alleviation of dormancy

Favourable conditions for germination


Resources consumed during germination

Free of specific hazards

Life history cycle and population dynamics

Seed production

- Seed rain
- Seed bank
- Seedling recruitment
- Establishment

Weed population dynamics

Intermediate phases

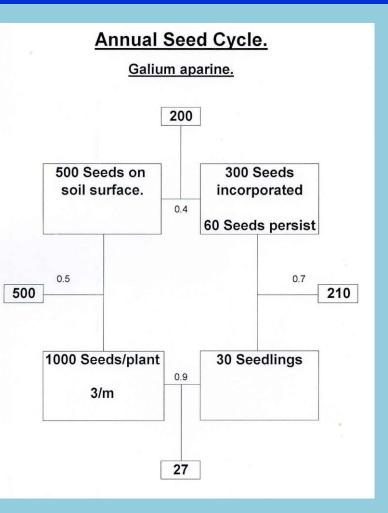
- Seed production
- Seed rain
- Seedbank
- Seedling recruitment
- Establishment

Interphase

Seed multiplication

Dispersal losses

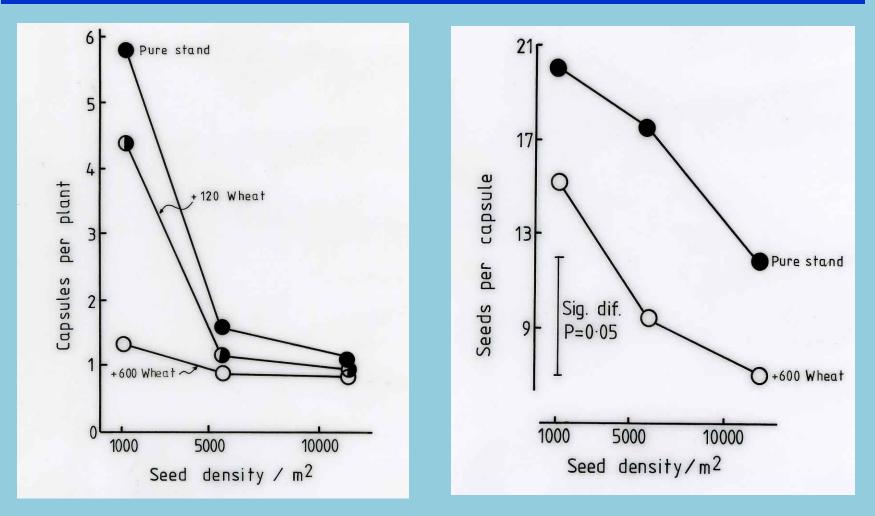
Fate of seeds on soil surface


Germination/Emergence

Post-emergence fate

After Sagar and Mortimer, 1976

Annual seed cycle of Galium aparine

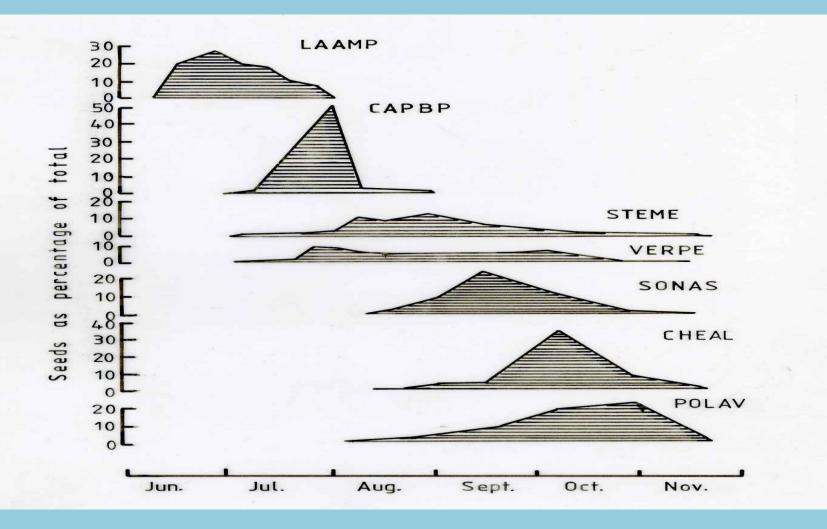


Reproductive output as number seeds per plant and seed weight (mg)

- Papaver rhoeas
- Matricaria perforata
- Stellaria media
- Viola arvensis
- Veronica persica
- Lamium purpureum
- Polygonum aviculare
- Galium aparine
- Bromus sterilis

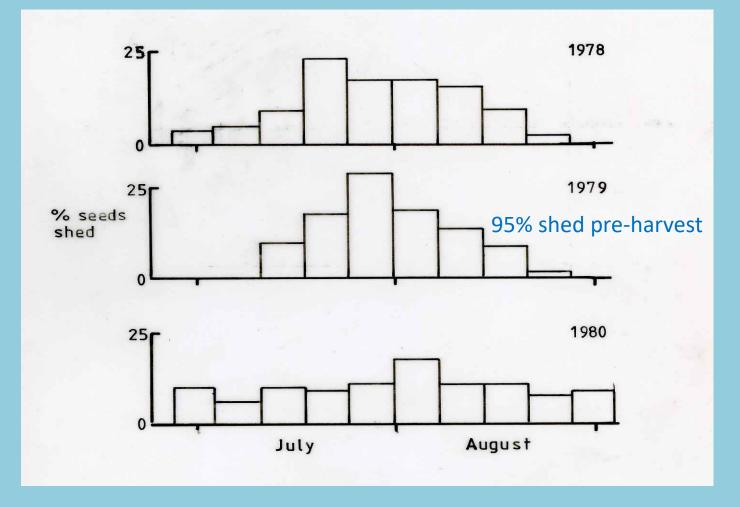
•	20,000	0.09
•	15,000	0.29
•	15,000	0.35
•	2,500	0.40
•	c.100	0.52
•	600	0.90
•	c.200	1.45
•	400	7.25
•	>200	8.37

The relationship between number of capsules/plant and seeds/capsule of *Agrostemma githago* in pure stand and in mixture with w.wheat at various seed densities

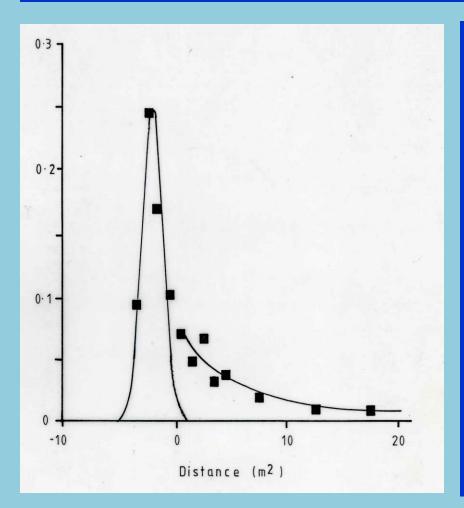

after Harper & Gajic, 1961

Effect of crop density (plants m⁻²) on seed production per plant

	0	40	114	206
Lamium purpureum	27634	4594	2022	1075
Viola arvensis	8944	967	562	354
Papaver rhoeas	531273	41059	12442	6221


after Wilson et al.,1995

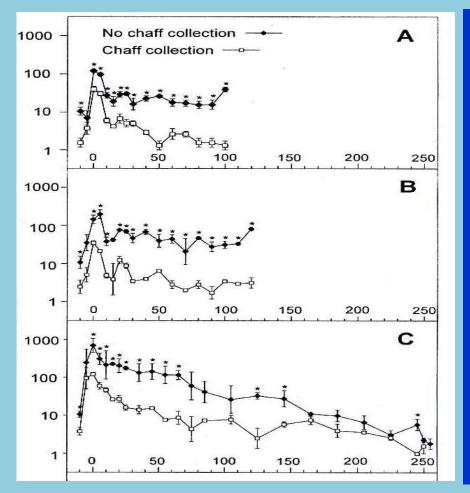
Seed rain patterns of selected weed species


after Leguizamon & Roberts, 1982

Seed rain pattern of *Alopecurus myosuroides* in w.wheat in three successive seasons

after Moss, 1983

Dispersal of *Bromus sterilis* by combine harvester

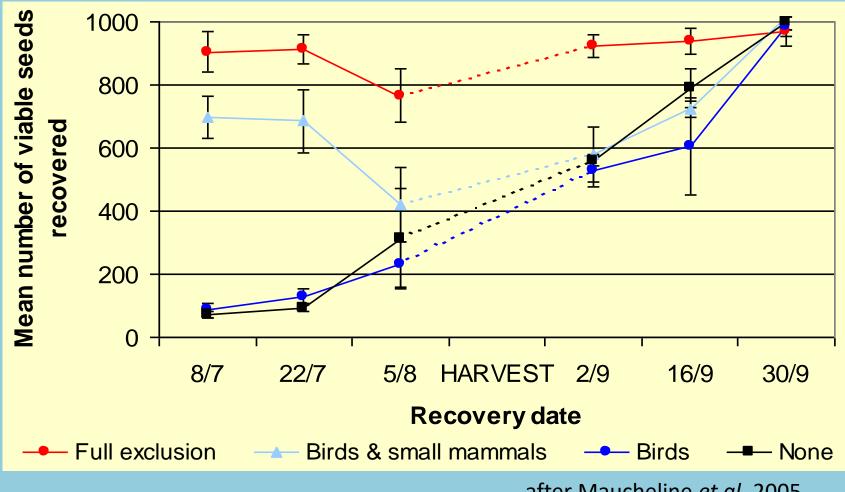

 Deposition at a modal distance of 3m behind

 Forward movement of harvester slower than plant material within

 Some seed discharged forward of the point of intake up to 20m distant

after Howard et al., 1993

Seed dispersal and the combine harvester



- Chaff collection reduced amount and distance that wild oats were dispersed.
- More than 74% of total wild oats ejected from combine in chaff.
- Chaff collection reduced wild oat dispersal to <10 seeds m⁻² at 45m from source in comparison with >10 seeds m⁻² up to 145m beyond source

Distance beyond source m

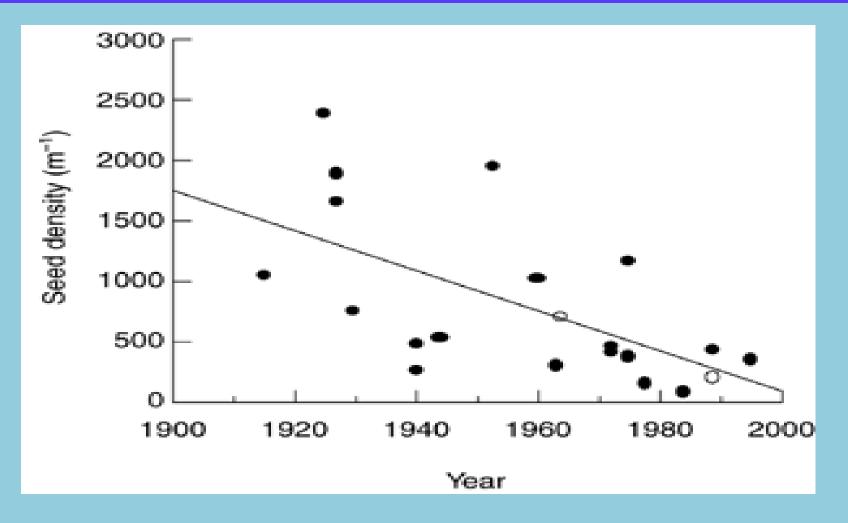
After Shirtliffe & Entz (2005)

Effect of seasonal predation on seeds of *Polygonum aviculare*

after Maucheline et al.,2005

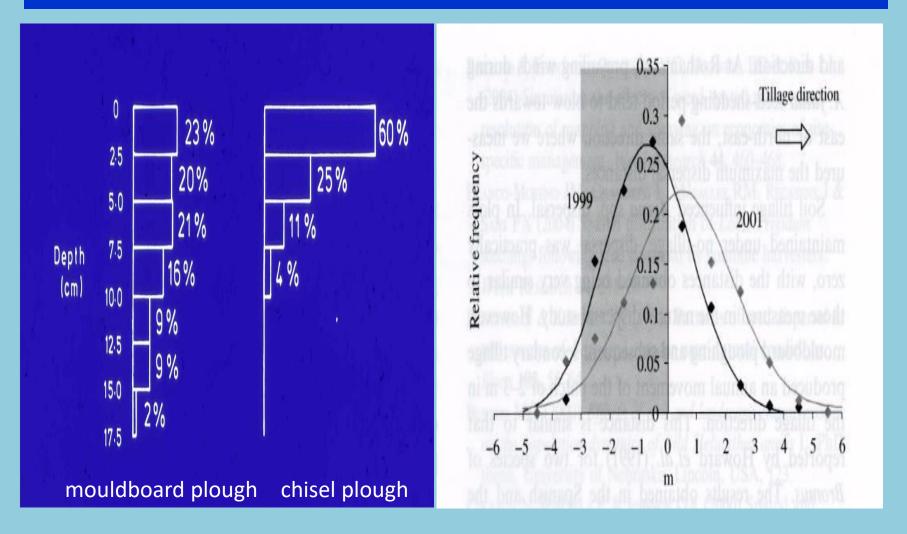
Seedbank Dynamics

- What prevents germination premature to incorporation in the soil seedbank?
- How are seeds incorporated?
- What factors facilitates re-exhumation?
- Once incorporated what factors regulate their survival and subsequent establishment?


Size of seedbank

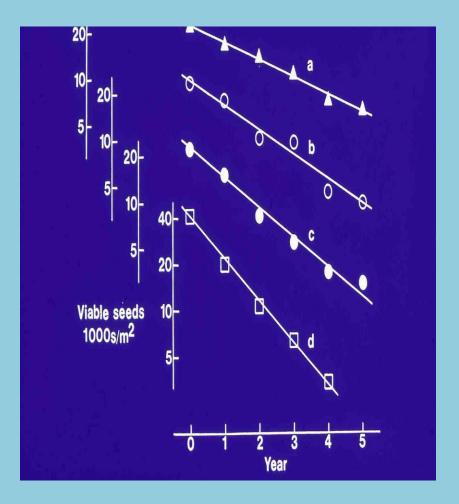
- Seeds m ⁻²
- 30-80,000
- 4900-57,500
- 1600-86000
- 1500-67,000

Authority


- Brenchley & Warington, 1930
- Jensen, 1969
- Roberts & Stokes, 1966
- Roberts & Chancellor, 1986

Changing status of arable seedbanks

after Robinson & Sutherland'02

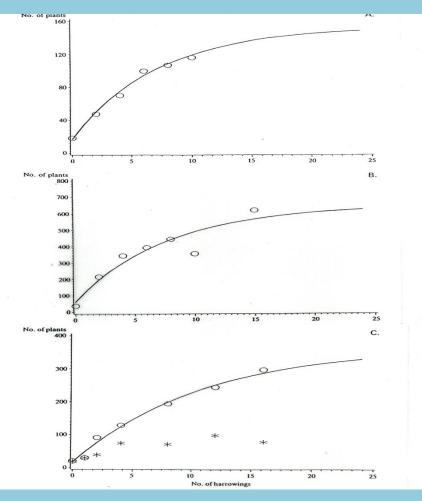

Effect of tillage on vertical and horizontal distribution of Avena fatua seed in soil

after Fay & Olson, 1978

after Barroso et al., 2006

Seed Decline

• a. undisturbed soil

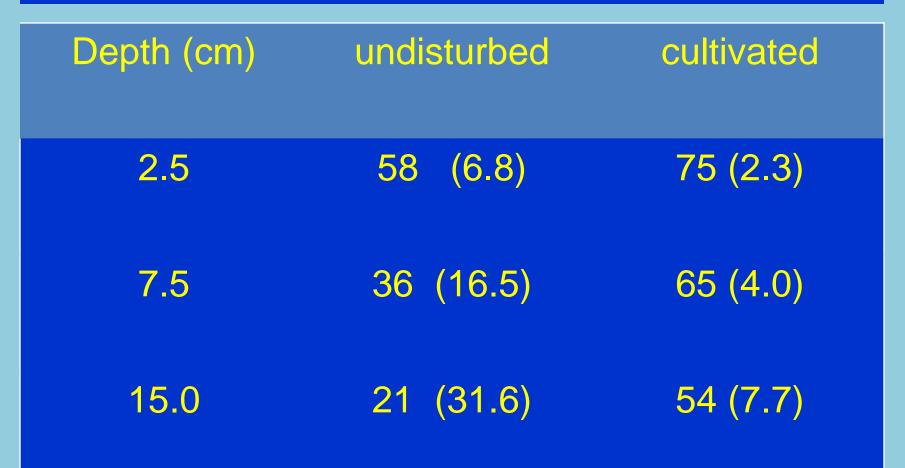

 b. cultivated twice per year

c. cultivated four times

 d. cultivations in vegetable crop sequence

after Roberts, 1970

Relationship between number of harrowings in daylight and *Chenopodium album* emergence m⁻² (observed values and predicted curve)*dark treatment.


- Exponential relationship between harrowing intensity (0-16 passes) and *C.album* emergence
- Daytime harrowing stimulate c.50% germn. after 4-7 passes, whereas in dark no further germn.after 4 passes
- Seedlings emerge from greater depth following cultivation in light

Longevity of seeds in cultivated and undisturbed soil

	undisturbed	cultivated
% mean seed decline annum ⁻¹	12	32
range	6-21	20-26
		44-48
% viable seed after 6 years	27.5	5.9

after Roberts & Feast, 1972

Emergence and survival of seeds sown at different depths in cultivated and undisturbed soil

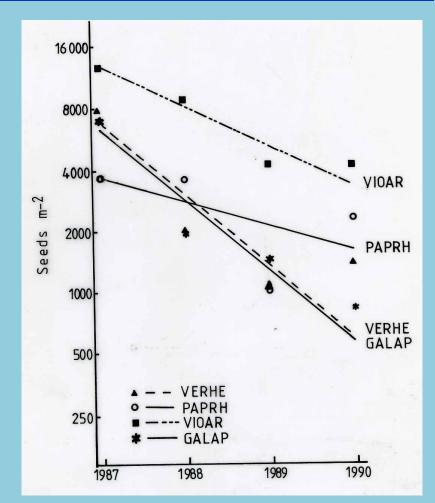
after Roberts & Feast, 1972

% seed survival after six year burial

	Undisturbed	Cultivated
Chenopodium album	53	9
Polygonum aviculare	39	8
Viola arvensis	38	7
Veronica hederifolia	35	1
Fumaria officinalis	31	10
Matricaria perforata	23	10
Stellaria media	22	4
Papaver rhoeas	21	7

after Roberts & Feast, 1973

Annual seed decline of various arable weeds (%)


35

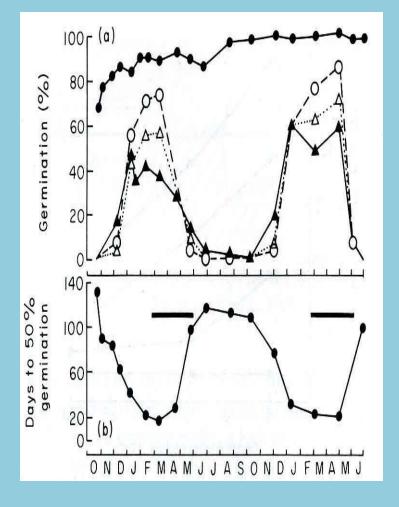
66

Papaver rhoeas

• Viola arvensis 36

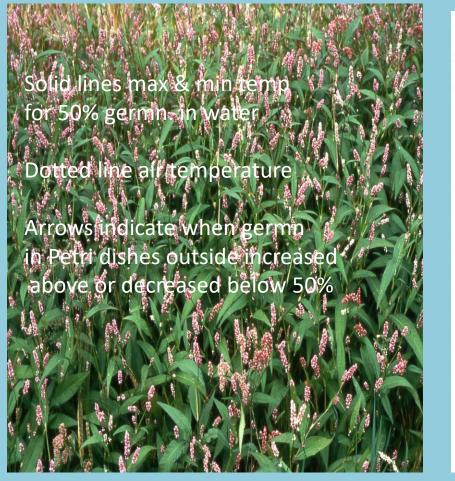
- Veronica hederifolia 57
- Galium aparine

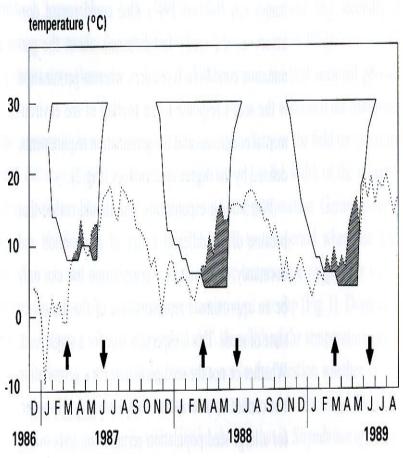
after Wilson & Lawson, 1992


Seed Dormancy

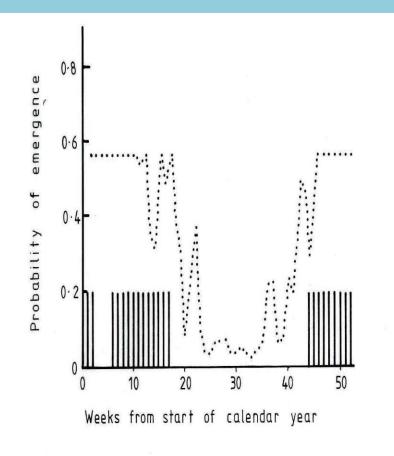
• Innate

Induced

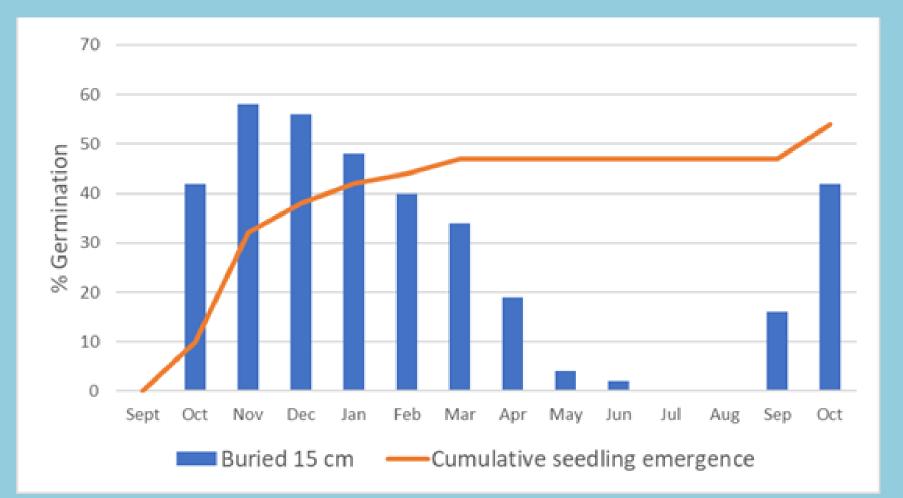

Enforced


Cyclic changes in dormancy

- (a) % germination of *Polygonum aviculare* at 4°C ●,8°C ○,12°C Δ and at 23°C Δ when recovered from the field at various times of year
- (b) number of days for 50% germn. at 4°C
- Horizontal bars denote field emergence


Simulated seasonal changes in the range of temperatures at which at least 50% of exhumed *Persicaria maculosa* seeds germinate

after Vleeshouwers et al., 1995


Modelling seedling emergence

Predicted possibility of an emergence event closely correlated with air temperatures above 14°C eronica hederifolia

after Grundy & Mead 2001

Periodicity of germination and effect of burial on cyclic changes in dormancy of *Galium aparine*.

after Froud-Williams

Effects of Maternal Environment on Seed Dormancy

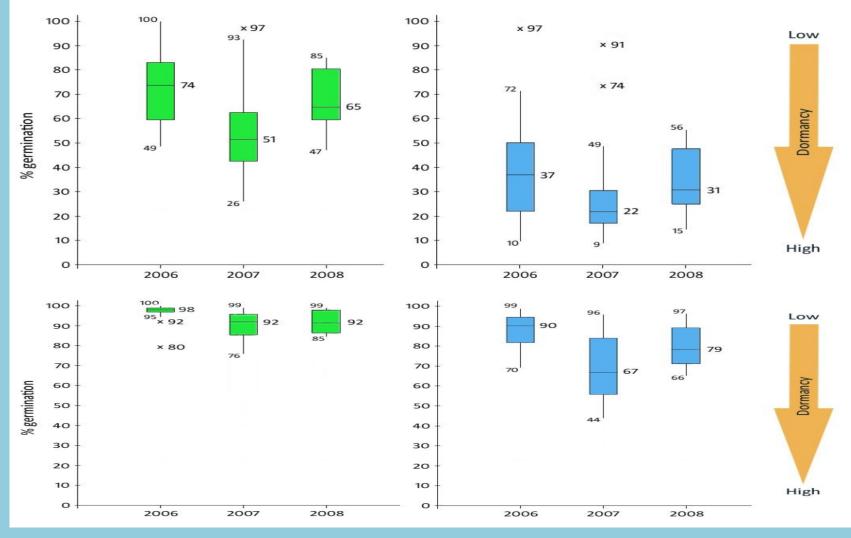
Water Stress

Temperature

Photoperiod

Effect of water stress on dormancy and germination of *Avena fatua*

		stressed	unstressed
% dormant		80	100
	25°	17	90
storage			
	5°	75	98
Seedling emergence		66	4


after Peters, 1982

Effect of temperature and water stress on dormancy and germinability of *Avena fatua*

	15°C	20°C
%dormancy	97	63
stressed	47	78
unstressed	10	30

after Peters, 1982

Seed dormancy and germinability of *Lolium multiflorum* 7 days and 2 months after maturation

Tests in Petri dishes with (green) and without (blue) KNO3 solutior

% germination of non-dormant *Lolium multiflorum* seed within 7 days of collection and after two months of storage with or without KNO₂

Year	dormancy test (7day)		germn test (2 months)	
	+KNO ₃	-KNO ₃	+KNO ₃	- KNO ₃
2006	72	29	97	88
2007	53	36	90	70
2008	68	35	92	80

after Alarcon Reverte, 2009

Identification of Avena spp. phenotypes

Avena fatua

Avena sterilis ssp. ludoviciana

Effect of timing and type of cultivation on density of Avena fatua seedlings m⁻²

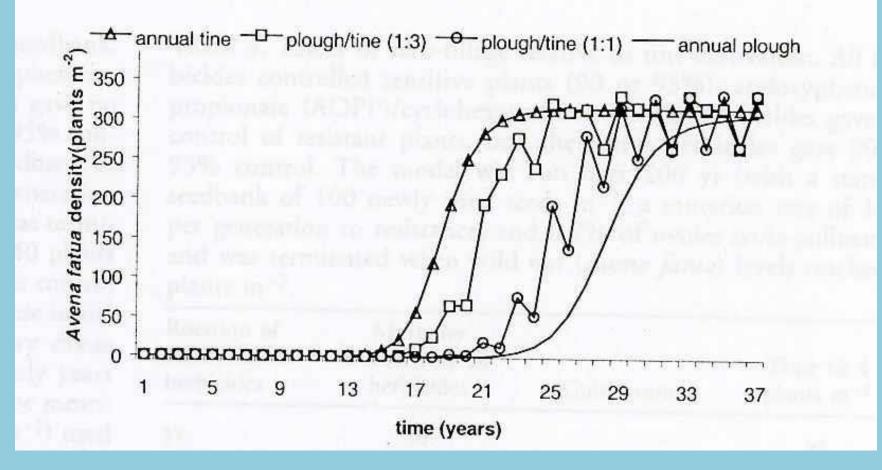
cultivation	timing	1972	1973	1974
autumn	winter			
september	plough	156	184	14
none		80	50	6
september	tine	221	158	14
none		110	43	7

after Wilson 1978

Effect of timing and type of cultivation on density of Avena fatua seeds m⁻²

cultivation		1972	1973	1974
autumn	winter			
september	plough	256	53	1
none		138	22	1
september	tine	283	41	1
none		56	11	0

after Wilson, 1978


Effects of cultivation regime on long-term decline of *Avena fatua* seedbank in spring barley

	1975		1976		1977
	Feb	June	Feb	June	
Shallow till	580	371	320	9	1
plough	556	528	483	56	12
Direct drill(1)	750	561	450	25	2
Direct drill(2)	614	542	470	88	17

(1) Seeds sown 5cm (2) or 25cm

after Wilson, 1981

Effect of different cultivation regimes on the increase in resistant wild oats assuming annual application of AOPP/CHD herbicides

after Cavan et al.,2001

Effect of seed position in spikelet and cultivation on seedling emergence of *Avena fatua*

	1 st auti	umn	1 st sp	ring		2 nd at	utumn		2 nd sp	oring	
Seed position	proxim	al /distal	proxii	mal /d	istal	proxi	mal /di	stal	proxir	mal /d	listal
cultivation	14	5	34		26	16		7	23		51
Mean		9		30			11			37	
No cultivation	13	3	26		9	11		2	32		46
Mean		8		17			6			39	

after Peters 1979

Effect of somatic polymorphism on seed germinability in *Chenopodium album*

		20°C	chill 5ºc	chill +NO₃
brown	retic round	>90		
black	retic	62	64	90
black	round	32	61	95

After Williams & Harper, 1965

Effect of photoperiod on germination (%) and seed coat thickness of *Chenopodium album*

Incubation temperature 23 °C	Long day 18h light	Short day 16h dark	Short day 16h dark night break 1h ight
Incubation in light	10	92	24
Incubation in dark	0	77	12
Seed coat thickness (µ)	36.8	13.8	14.7

after Karssen, 1970

Seed dynamics summary

	Seed prodn.	Periodicity	annual decay (%)	Survival (yr)
Avena fatua	<200	Sep-May	50/90 (yr1/yr2) 83/96	3-6
Lolium multiflorum	2000	Oct-Apr	>90	2-7?
Anisantha sterilis	200-400	SeptMar	90	1-2
Galium aparine	300-400	Oct-May	62-66	1-2
Chenopodium album	3000-20,000	Apr & Aug/Sep	27	7+