

Virus Yellows – an increasing threat to future sugar beet production?

Dr Mark Stevens Head of Science 12/10/18

Virus Yellows

Classic Virus-Vector-Host Interaction

Virus Yellows

Aerial view of symptoms

- At least 3 viruses involved.
- Yield loss = up to 49%
- Worldwide distribution.
- No commercially resistant varieties.
- In 2018, 99% of UK crop protected with neonicotinoid seed treatments
- Preventing yield losses of up to £51M in high risk years.

Impact of yellowing viruses on yield

Average effect of BMYV and BChV on root yield at Broom's Barn 1997, 1999, 2000

Inoculation date

(numbers above bars indicate % decrease in yield)

Virus Transmission

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Winter hosts	Weeds, Brassicas, Winter OSR											
Migration					Migration of winged aphids				Migration			
Summer hosts			Brassicas, sugar beet, lettuce, potatoes									

Virus Yellows remains a threat:

B

- Aphid resistance (MACE, kdr, neonicotinoid)
- Lack of new/novel active ingredients
- Changing insecticide use in other arable crops
- Climate change mild winters?
- Loss of neonicotinoid seed treatments

Options for control

Decision Support

Provisos:

Conserve aphid predators Beware resistant aphids

Decision Support Current **General farm hygiene** Removal of sources of infection Seed treatments **Risk maps** •Chemicals applied as: → *Granules at drilling* **Risk maps +Forecast Forecasts + Spray** *Post-emergence* **Warning Scheme** sprays **Provisos: Conserve aphid predators Beware resistant aphids** Cost **Future: Risk maps** •Resistant varieties **Performance**

Modelling virus yellows in sugar beet **BBRC**

Winter temperature

Growth stage (planting date)

Seed treatment

$$\frac{dy}{dt} = (r_p P(1-Y) + r_s Y(1-Y)) z(t) Q(x) G(x)$$

Qi, A., Dewar, A.M. and Harrington, R. (2004) Pest Management Science 60, 727-732

Virus Yellows Forecast for 2017

Factory		Virus yellov	ws (%) on So of	wing Dates	Intended use	Mean	
Area	Option	15 March	30 March	15 April	of insecticide treated seed*	Temperature (Jan/Feb)	
Bury	No Pest Control	17.7	23.9	35.2	-	4 6600	
	+ Pest Control	0.7	0.8	1.0	99.5%	4.00 C	
Captley	No Pest Control	14.5	19.8	29.5	-	4 500	
Cantley	+ Pest Control	0.6	0.7	0.8	99.3%	4.5*C	
Wissington	No Pest Control	17.7	23.9	35.2	-	4.66%	
Wissington	+ Pest Control	0.7	0.8	1.0	98.0%	4.00°C	
Newark	No Pest Control	19.8	28.3	43.3	-	4.46%	
	+ Pest Control	0.5	0.6	0.7	99.4%	4.40°C	

*source: British Sugar

Virus Yellows forecasts

Monitoring

Aphid trapping

BBRÖ

2017 aphid monitoring data

Monitoring aphids and their infectivity

M. persicae distribution 3 May -19 July

13 - 19 July

- Used by Industry as warning system
- Adopted in other crops
- Prevents prophylactic insecticide use.

BBR

Evaluating Myzus persicae distribution and subsequent Virus Yellows incidence.

Myzus persicae field samples containing MACE, kdr and super-kdr_{ne} aphids

FUTURE CONTROL Is it possible?

Virus Yellows: current options

- No foliar insecticides currently registered for *Myzus persicae* (one appl. of Teppeki in 2019 permitted)
- Resistance to pyrethroids and carbamates is a major issue (often impacting beneficial insects if applied)
- No resistant varieties currently available
- On farm crop hygiene crucial

Protecting the UK sugar beet crop

- Importance for alternative strategies:
 - New/novel insecticides
 - Resistant/tolerant varieties
 - Maximising beneficials
 - Biocontrol

Green aphid control

Treatments

Autumn aphicide trial: Morley 2017

Developing disease resistance strategies

- Conventional resistance
 - Beta germplasm evaluation and analysis

- Alternative resistance
 - Pathogen-derived using Arabidopsis as
 - model system.
 - CRISPR-cas9

BBRO priorities

- Accelerate virus breeding work
- Enhance pest monitoring network
- Further assess foliar treatments as seed treatments
- Evaluate plant resistance to aphids
- Field trials to study push-pull and aphid barrier strategies
- Real-time data on dedicated BBRO webpage to assist growers.

South Lincolnshire: mid-1970s

Questions?