syngenta

Genetic pest resistance in wheat ~ is it possible?

Tracy Creasy, Conventional Cereal Asset Manager, Europe North

OWBM – a success story

Orange wheat blossom midge larvae

Orange wheat blossom midge damage

Orange wheat blossom midge laying eggs

Resistant varieties

Wound plugs in developing grain of resistant variety

YIELD, AGRONOMY AND DISEASE RESISTANCE													
RECOMMENDED		С			C NEW NEW			NE			w c		
AHDB	Skyfall	KWS Barrel	KWS Basset	Zulu	LG Sundance	LG Motown	Leeds	Viscount	Myriad	KWS Kerrin	Reflection	KWS Santiago	KWS Crispin
End-use group		nabim								Hard (
Scope of recommendation	UK	UK	UK	UK	UK	UK	UK	N	N	E&W	UK	E&W	UK
Fungicide-treated grain yield (% treated control)													
United Kingdom (10.7 t/ha)	101	103	100	99	104	103	102	100	99	106	103	103	103
East region (10.8 t/ha)	100	102	101	99	103	103	102	99	99	106	103	104	103
West region (10.7 t/ha)	101	102	99	98	104	102	100	99	98	105	105	102	104
North region (9.9 t/ha)	101	109	101	102	[102]	[104]	104	103	103	[110]	104	104	98
Untreated grain yield (% treated control)			70	70			74	74	70		70		
United Kingdom (10.7 t/ha)	82	74	76	76	90	89	71	71	70	84	76	69	88
Agronomic features				_			_	_	_		_		
Resistance to lodging without PGR (1-9)	8	8	7	6	7	6	7	7	6	7	7	7	7
Resistance to lodging with PGR (1-9)	8	8	8	7	7	7	8	7	7	7	8	7	7
Height without PGR (cm)	82	83	85	89	87	84	86	81	89	84	81	86	85
Ripening (days +/- JB Diego, -ve = earlier)	0	+1	+1	+1	+1	-1	+2	0	+1	+1	-1	+1	+1
Resistance to sprouting (1-9)	4	[6]	[6]	6		-	6	5	[6]	-	[5]	5	[5]
Disease resistance						_	_		_		_		_
Mildew (1-9)	6	6	5	7	6	8	3	[7]	6	7	6	5	9
Yellow rust (1-9)	6	8	8	5	9	9	6	6	4	7	3	6	9
Brown rust (1-9)	9	6	5	4	6	7	5	8	5	7	9	5	5
Septoria nodorum (1-9)	[5]	[5]	[6]	[6]	[6]	[6]	[6]	[6]	[5]	[6]	[5]	5	[6]
Septoria tritici (1-9)	6.0	4.4	5.4	5.7	7.3	5.8	4.6	4.6	5.5	5.2	5.4	4.3	5.9
Eyespot (1-9)	6@	4	5	4	[3]	[3]	4	5	5	[5]	5	4	4
Fusarium ear blight (1-9)	7	6	6	6	6	6	7	6	6	6	6	6	6
Orange wheat blossom midge	R	R	R	R	R	R	R	R	R	R	R	R	R

- Resistant varieties in all quality groups
- All varieties have same resistance gene
- Risk if pest overcomes resistance
- Integrated control required for susceptible varieties

Other genetic resistances present in modern wheat

- Genetic resistance does exist for some other insect pests
 - Russian Wheat Aphid
 - Hessian Fly
 - Saw Fly
- There is no genetic resistance in modern wheat for two of the UKs most important pests

Aphid resistance – the challenge

BBSRC

Rhopalosiphum padi mean nymph weight (mg) after 6 days on T. monococcum parental lines and F₁ crosses

 F1 generations of crosses, MDR037 x MDR045, MDR049 and MDR657, tested in the phenotyping screen against both aphid species

Sitobion avenae mean nymph weight (mg) after 7 days on T. monococcum parental lines and F1 crosses

Lower feeding and nymph production

Reduced feeding by R. padi in EPG bioassays in WISP

Behaviours: np: not probing, C: pathway phase, E1: salivation, E2: phloem ingestion (feeding), F: derailed stylet mechanics, G: xylem ingestion (drinking)

60

50 40

30

20

10

0

Reduced fecundity of *R. padi* no nymphs produced on MDR045

Summary

- Genetic resistance does exist in modern UK wheat to some insect pests
- Insect resistance is not currently perceived to be a priority when choosing which variety to drill
- Some element of aphid resistance is possible but not in the immediate future
- Possible resistances identified so far lead to reduced feeding and reduced nymph production – but does not stop feeding entirely
- Virus transmission will still be a key problem
- There is no 'quick fix' from conventional wheat breeding
- UK wheat growers will continue to require chemistry to ensure adequate wheat supply

