Challenges with Managing insecticide resistance in UK pests

Steve Foster

Rothamsted Research
Peach-potato aphid
Myzus persicae
MACE (pirimicarb)

kdr and super-kdr (pyrethroids)
Myzus persicae field samples containing
MACE, kdr and super-kdr\textsubscript{ne} aphids

<table>
<thead>
<tr>
<th>Year</th>
<th>MACE</th>
<th>kdr</th>
<th>super-kdr\textsubscript{ne}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tested from 2011 onwards
Loss of Pirimicarb

Important Aphox Changes

We are writing regarding the important changes for Aphox (Pirimicarb) that should be immediately considered by you for this season. Syngenta wish to expand and provide you with detail regarding label changes during re-registration. This season there will be two MAPP numbers in the market (old and new). Therefore there are different aspects for you to consider, dependent upon the MAPP number.

MAPP number 10915 (old label)

The European Food Safety Authority (EFSA) has reviewed the Maximum Residue Levels (MRLs) currently established at European level for the pesticide active substance Pirimicarb. We anticipate this will be voted on in the first quarter of 2016, and is likely to come into force. Should it come into force, the MRLs for the below crops would drop to the limit of determination.

Syngenta has been verbally advised by CRD that should the anticipated changes come into force, a 6 month use period for the below crops would likely be given. However, this is yet to be announced. In practical terms such a period would typically enable growers to use up product in their stores. Aphox could then be applied to the below crops during the use up period and prior to the updated MRLs coming into force.

However, should Aphox be applied after any such transition period (or prior if no transition period is given), there is a significant risk that the new MRLs would be exceeded.

As a result, despite being permitted by this label, we recommend that growers carefully consider prior to applying Aphox (Pirimicarb) to the following crops:

- Brassica: Cauliflower, Broccoli, Chinese Cabbage, Kale and Cabbage
- All Fruit
- Sweetcorn
- Protected lettuce

Note: Crops remaining on the label for MAPP 10915 may only receive one application of Aphox. Always follow label requirements.

MAPP number 17803 (new label)

All new product delivered to growers by Syngenta in 2016 will be under this label and have the following crops only. As the crops are different, the MRL issue outlined above in relation to MAPP 10915 is not relevant for use of this product. Always follow label requirements.

<table>
<thead>
<tr>
<th>Crops</th>
<th>Maximum individual dose (g product/ha)</th>
<th>Maximum Number of treatments</th>
<th>Latest time of application (days before harvest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broad bean - fresh</td>
<td>100</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Vining pea</td>
<td>100</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Combining pea & field bean</td>
<td>200</td>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>

If you require any further clarification please contact myself or your Syngenta representative.

Rebecca Stilson - Campaign Manager - Vegetables and Insecticides
Response to neonicotinoids
Neonicotinoid Resistance Categories

Nic-S Susceptible
Nic-R Low resistance
Nic-R⁺ Moderate resistance
Nic-R++ Strong resistance
Nic-R++
100 ppm imidacloprid
% of English *Myzus persicae* field samples containing aphids with low (Nic-R) neonicotinoid resistance

The good news continues..
No Nic-R\(^+\) or Nic-R\(^++\) found
EU restriction on neonicotinoid seed treatments
Initially from December 2013 to December 2015
Now extended.....
English suction trap sites

http://www.rothamsted.ac.uk/insect-survey/STTrapSites.php
English *Myzus persicae* field population

>85% of aphids collected in suction traps

MACE-SR/super-SR_{ne}

Super-clones
Myzus persicae samples collected from Field vs Protected crops
Grain aphid,
Sitobion avenae
Diversity/clonal nature of UK *Sitobion avenae* population?
Sitobion avenae asexual aphid reproduction

Predominant Super-clone with kdr

kdr-SR SA3

kdr-SS

kdr-SS

kdr-SS kdr-SS kdr-SS kdr-SS kdr-SS kdr-SS
Sitobion avenae 2016 sample from Forfar in Scotland

“We are seeing some issues with grain aphids that are resistant to pyrethroids this Autumn. I have a grower who sprayed some early-sown winter barley and wheat soon after emergence to control aphids. I am assuming that we have a resistant population present.”
kdr-SRs present

Sprayed with 30 mls Hallmark Zeon (60% rate)
Cabbage stem flea beetle (*Psylliodes chrysocephala*)
Adult damage
Management options (autumn 2014 onwards)

- PYR foliar spray
- NNI seed treatment
“Play dead….make them think that their pyrethroid sprays are working...”
Resistance to lambda-cyhalothrin (7.5 g ai/ha) in CSFB samples (2016)

Response to field rate
- 0% resistant beetles
- >0%-50% resistant beetles
- >50% resistant beetles

Map showing distribution with the following markers:
- No Mobiles
Resistance to lambda-cyhalothrin (7.5 g ai/ha) in CSFB samples (2016)

Response to field rate
- 0% resistant beetles
- >0%-50% resistant beetles
- >50% resistant beetles
Resistance to lambda-cyhalothrin (7.5 g ai/ha) in CSFB samples (2016)

Response to field rate
- 0% resistant beetles
- >0%-50% resistant beetles
- >50% resistant beetles

Map showing distribution of resistance levels across different regions in the UK.
Pea and bean weevil

Sitona lineatus
Pollen beetle (*Meligethes aeneus*)
Diamond back moth (*Plutella xylostella*)

Courtesy, Mark Mallott
UK *Plutella xylostella* samples (2016)

Px1 (30 adults, Great Saxam, Suffolk). Collected 14/6/16 (Alan Dewar, Dewar Crop Protection).

Px2 (Eggs/larvae on leaves, Kirton, Lincs). Collected 11/7/16 (Simon Jackson, Allium and Brassica Agronomy Ltd.).

Px1 (Eggs/larvae on leaves, St Monans, East Fife). Collected 28/6/16 (Jeff Layton, Kettle Produce).

Pyrethroid resistance.
No resistance to diamides or spinosad.
Leaf-dip bioassays exposing L2 larvae to insecticides
No resistance
Some resistance
Strong resistance
Other pests where pyrethroid resistance is looming?

- Bruchid Beetle
 Bruchus rufimanus

- Grain Weevil
 Sitophilus granarius

- Saw-toothed Grain beetle
 Oryzaephilus surinamensis

- Seed Weevil
 Ceutorhynchus assimilis

- Striped Flea Beetle
 Phyllotreta striolat