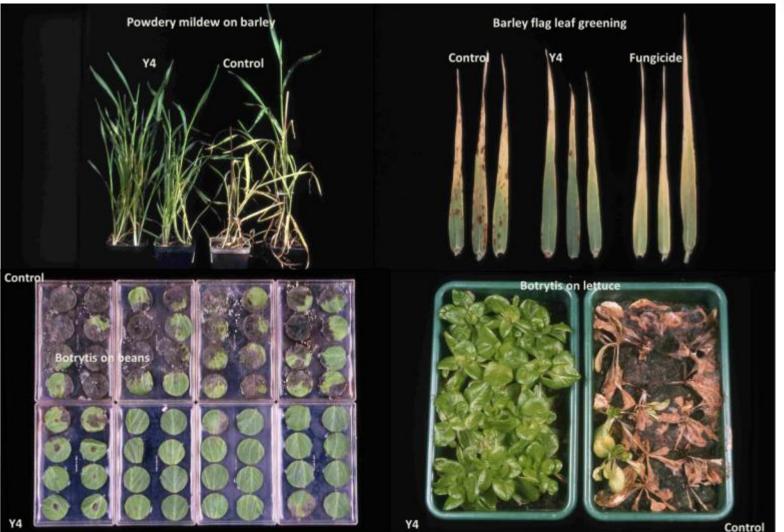
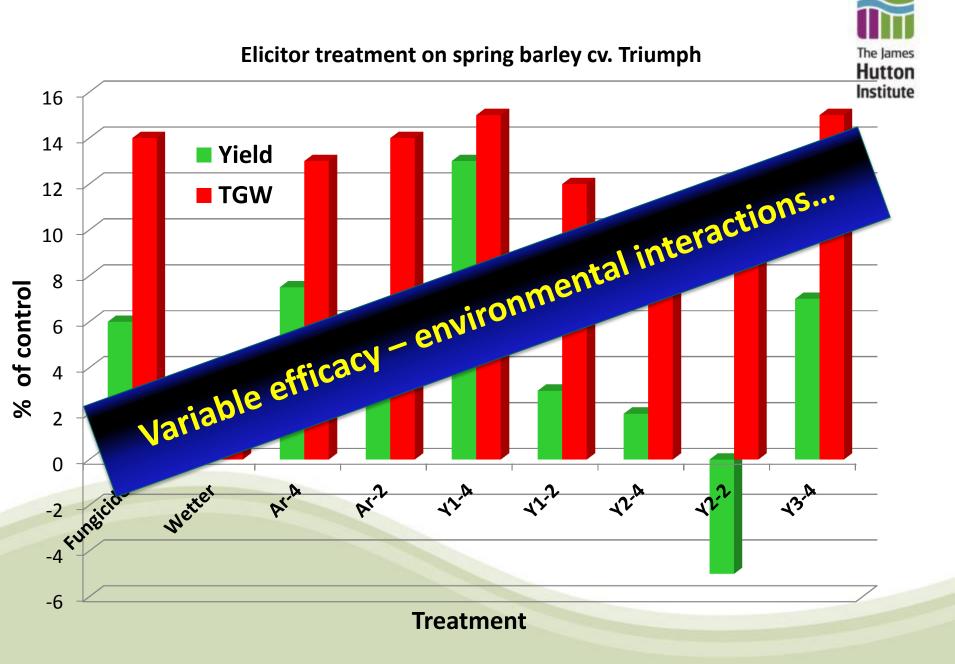
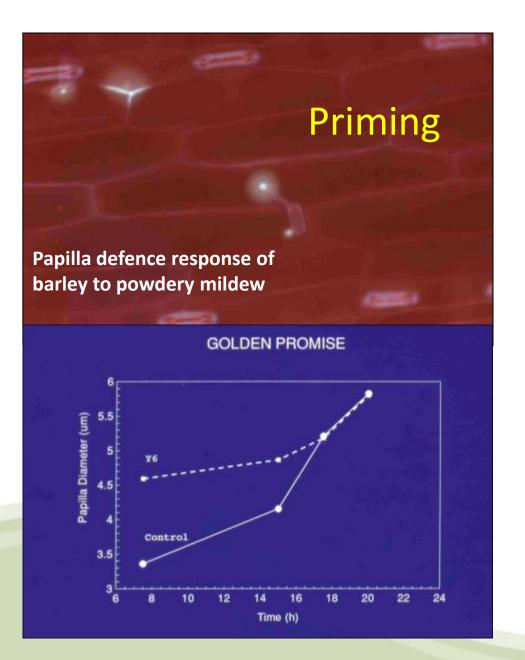
Elicitors: What is available and can we optimise their potential benefits?


Adrian C Newton^{1,2}, Tony Reglinski³, Daniel De Vega Perez¹, Nicola H Holden¹, Lea Weisel¹, Clement Gravouil², Ruairidh Bain², Neil Havis², Dale R Walters²

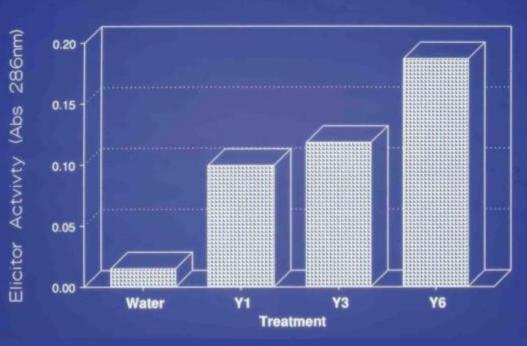
¹The James Hutton Institute, Dundee, Scotland UK; ²SRUC, Edinburgh, Scotland UK; ³Plant & Food Research, Canterbury, New Zealand




Yeast-derived elicitor: efficacy

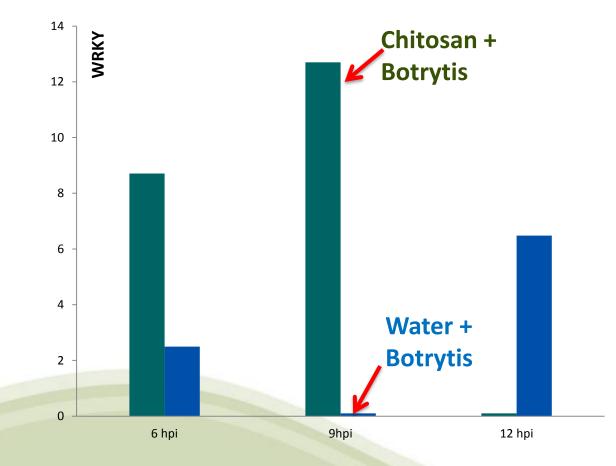
Recent AHDB Projects: Botrytis on tomato – mechanisms
Commercial products on field vegetables

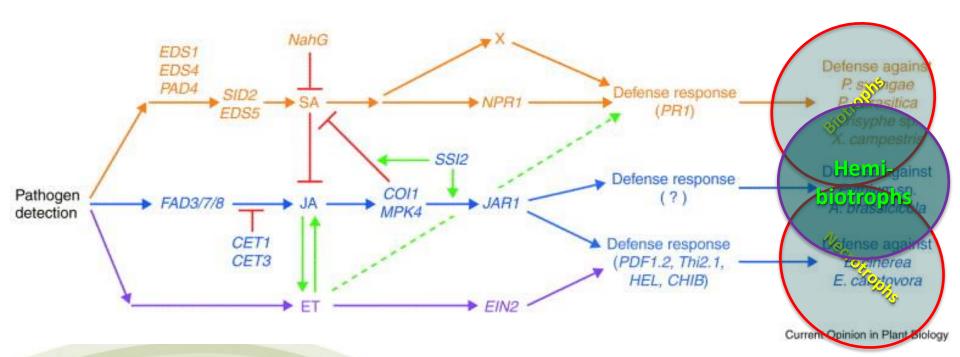



All about response speed

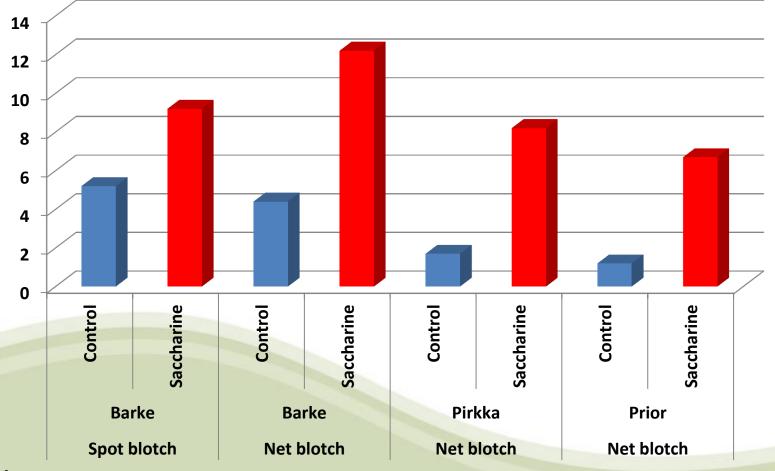
Tony Reglinski

Resistance corresponds with ability to induce phytoalexins

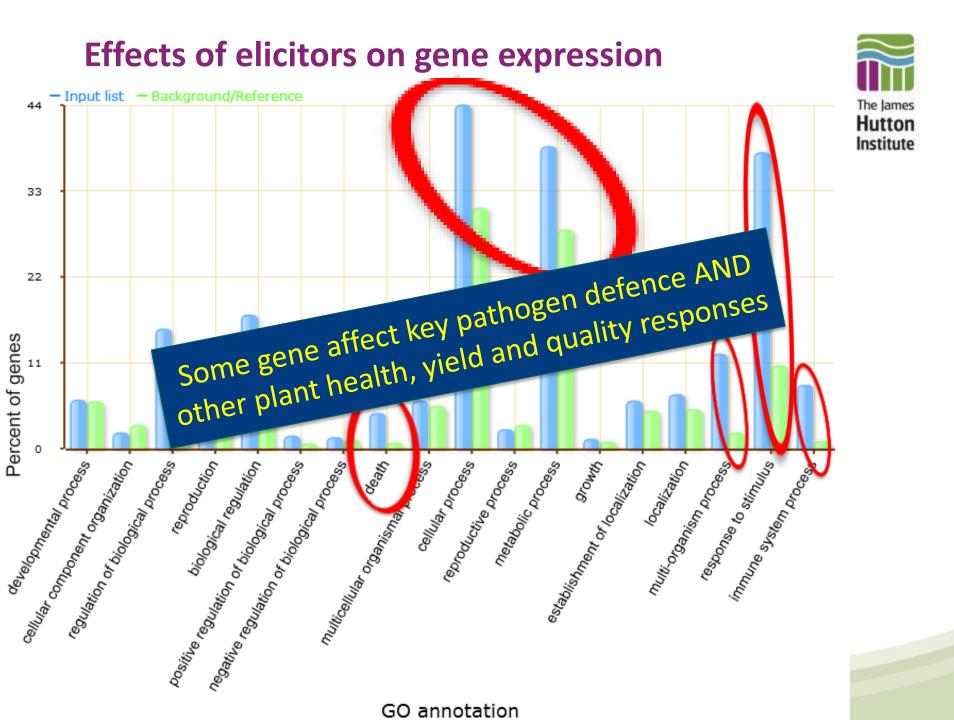

Soyabean cotyledon phytoalexin elicitor test


Differential gene expression of regulatory (priming) (from microarray)

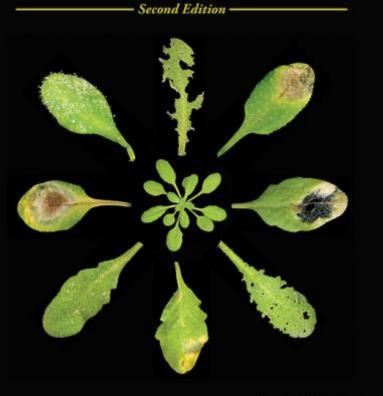
Which pathway(s) to induce for practical use?



Biotrophs and necrotrophs respond differently


Saccharin induce resistance to *Blumeria graminis* f.sp. *hordei* and *Rhynchosporium commune* in barley (Boyle & Walters, 2006; Walters et al., 2009),

but induces susceptibility to the host-specific necrotrophic fungi *Pyrenophora teres* and *Cochliobolus sativus*.

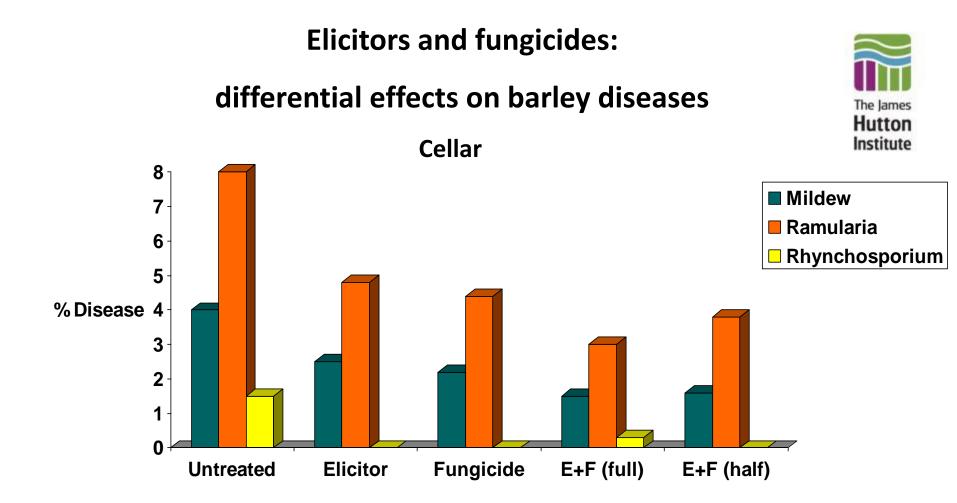

Inger Åhman, 2013. Breeding for inducible resistance. Proceedings of the meeting at Avignon, France, 10-13 June 2013, IOBC-WPRS Bulletin 89, 311-317.

Edited by Dale R. Walters, Adrian C. Newton and Gary D. Lyon

INDUCED RESISTANCE FOR PLANT DEFENSE

A Sustainable Approach to Crop Protection

WILEY Blackwell

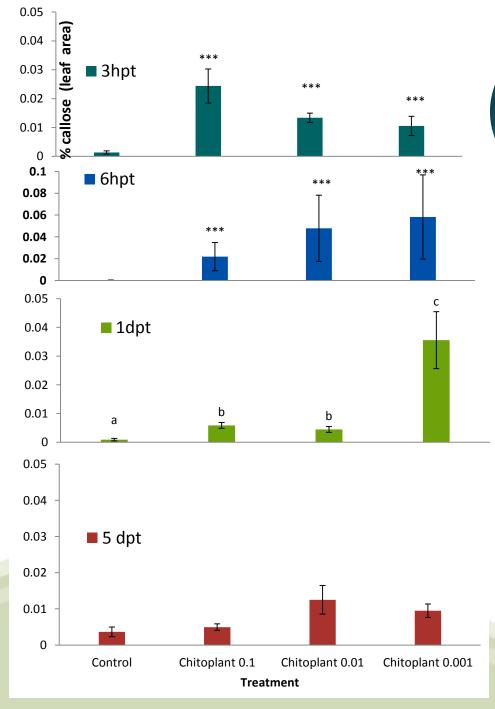

INDUCED RESISTANCE For plant defence

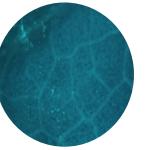
IDITED IN DALE WALTERS • ADRIAN NEWTON • GARY LYON

Elicitor class	Elicitor	Crop class	Crop species	Type of pathogen	Pathogen species	Reference
Signalling mimic	INA Dion	Dicots	Brassica oleracea	Biotrophic oomycete	Peronospora parasitica	(van der Wolf et al., 2012)
	e.g. Bion втн	Dicots	Vitis vinifera	Biotrophic oomycete	Plasmopara viticola	(Perazzolli et a.,. 2008)
		Dicots	Capsicum annuum	Biotrophic bacterium	Xanthomonas axonopodis	(Yi et al., 2012)
		Dicots	Capsicum annuum	Virus	Cucumber mosaic virus	(Yi et al., 2012)
		Dicots	Cicer arietinum	Necrotrophic fungus	Didymella rabiei	(Sharma et al., 2011)
	BABA	Dicots	Solanum lycopersicon	Biotrophic fungus	Oidium neolycopersici	(Worrall et al., 2012)
	A	Dicots	Solanum lycopersicon	Necrotrophic fungus	Botrytis cinerea	(Worrall et al., 2012)
PAMP mimic	Chitosan	Dicots	Vitis vinifera	Necrotrophic fungus	Botruti 2a	(Trotel-Aziz et al., 2006)
(Bacterial extract	Dicots	Brassica oleracea	are and t	heir arasitica	(van der Wolf et al., 2012)
voc	Nonanal	esista	nce elicit	iciency	ringae pv.	(Yi et al., 2009)
	Limonene, Linalool Nonanal	pectr	Vitis vinifera Brassica oleracea ance elicit um of eff	nembiotrophic fungus	Colletotrichum lindemuthianum	(Quintana-Rodríguez & Heil 2013)
Plant extract	of Datura metel	Monocots	Pennisetum glaucum	Biotrophic oomycete	Sclerospora graminicola	(Devaiah et al., 2009)
	of Ascophyllum nodosum	Dicots	Cucumis sativus		Alternaria cucumerinum, Fusarium oxysporumg	(Jayaraman et al., 2011)
	of Vitex negundo	Monocots	Oryza sativa		Xanthomonas oryzae	(Nisha et al., 2012)
	of 'Zimmu' (Allium sp.)	Monocots	Banana fruits		Lasiodiploida theobromae, Colletrotrichum musae &	(Nisha et al., 2012)


Elicitor = *cis*-jasmone + BABA; associated with > activities of defence enzymes

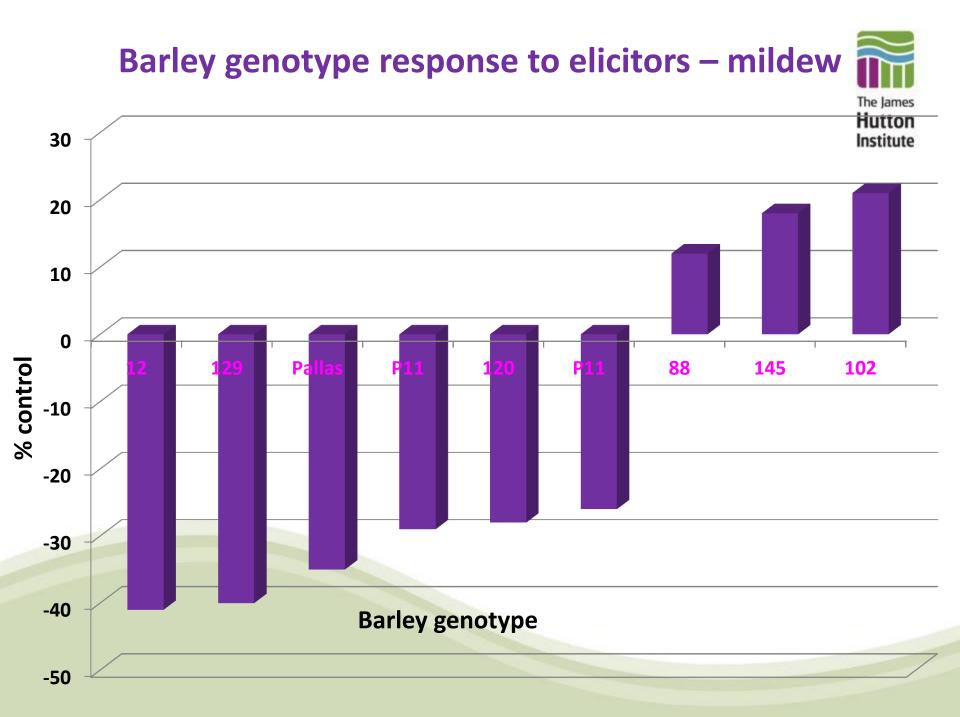
Mildew – E applied GS24; F at GS31+39; E+F together at GS24; E+F (0.5) together at GS39

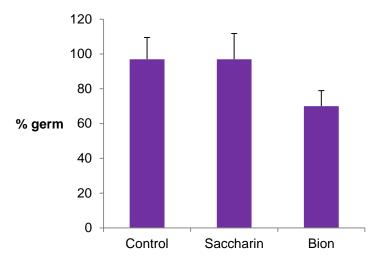

Dale Walters, SRUC, Edinburgh

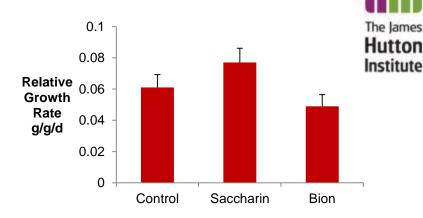

Delivery of the effect in planta

Detached barley leaves

Tony Reglinski

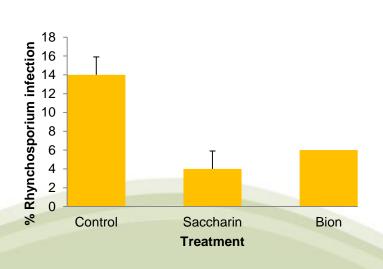



Basal callose deposition induced by Chitosan-IR in tomato cv. Money-Maker



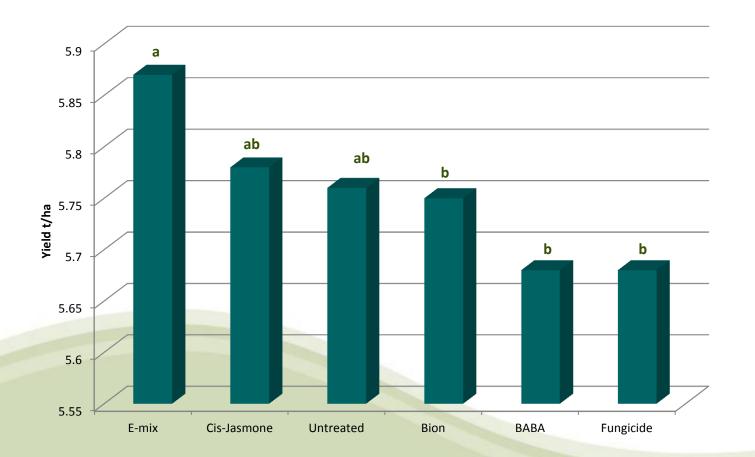
Daniel De Vega Perez

Trans-generational effects of elicitors



- First generation plants treated with saccharin or Bion
- Saccharin had no effect on seed germination or seedling growth rate of progeny (but Bion reduced both)
- Treatment of parents with saccharin or Bion led to reduced Rhynchosporium infection in progeny

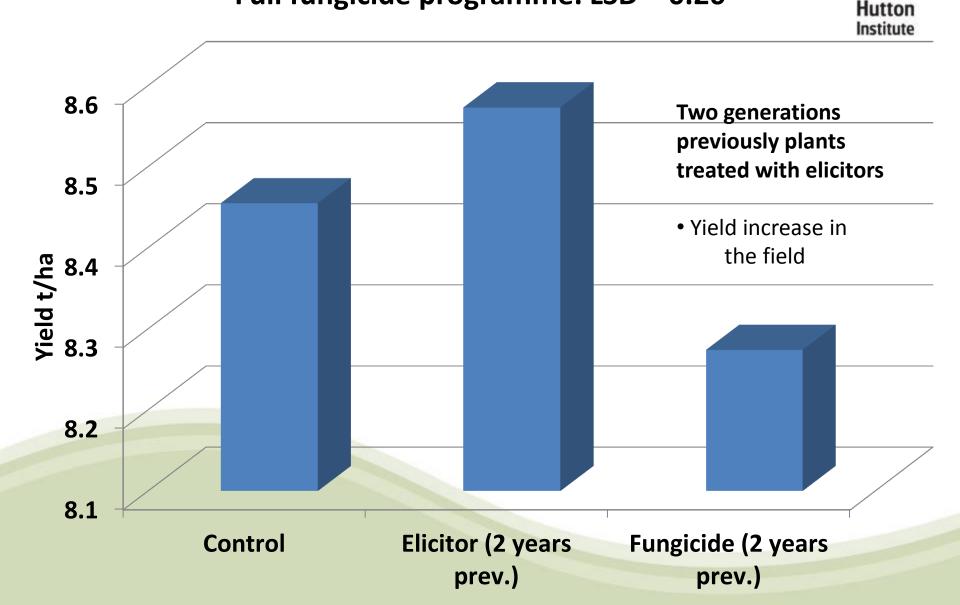
Epigenetic mechanism: DNA methylation (Jurriaan Ton *et al*. with BABA induction)


Dale Walters, SRUC, Edinburgh

Trans-generational effects of elicitors

First generation plants treated with elicitors

• Yield increase of winter barley in the field

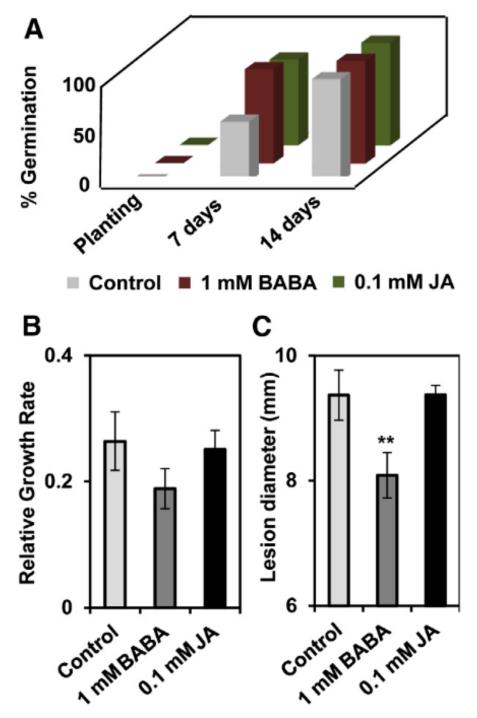

The James Hutton Institute

Gravouil & Newton, JHI

Trans-generational effects of elicitors: wheat 2015

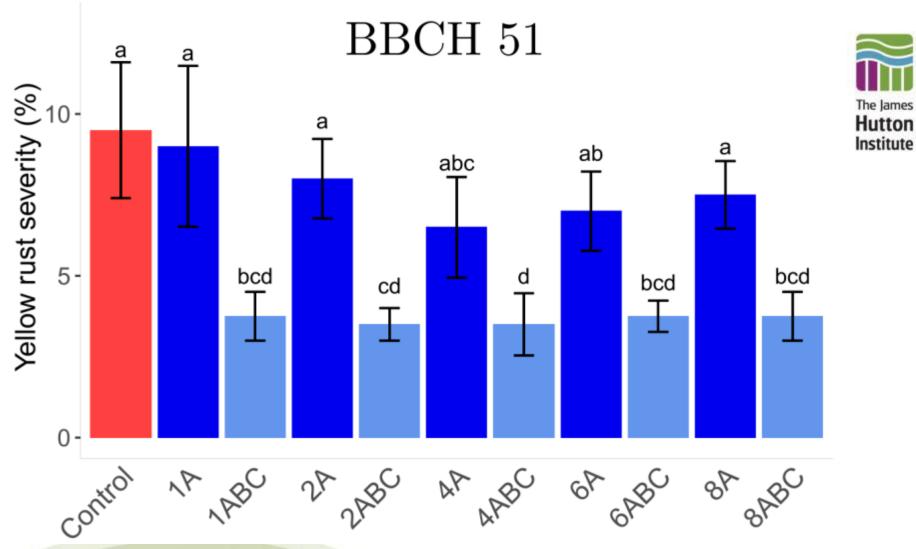
Full fungicide programme. LSD = 0.26

The lames



Spring barley trials 2014

WP 6.4 Lanark S Barley (Overture)



Seed coating?

Estrella Luna and Emily Beardon, 2016. Optimizing chemically induced resistance in tomato against *Botrytis cinerea*. Plant Disease 100, 704-710.

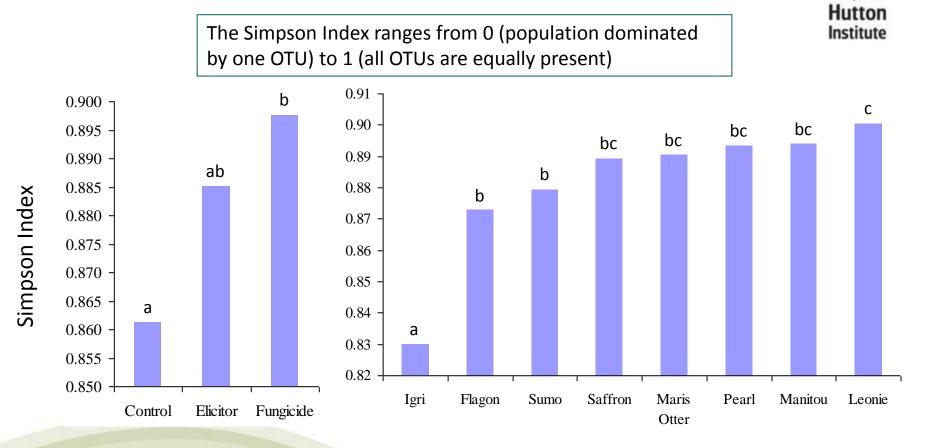
Fig. 3. Effects of seed coating with β-aminobutyric acid (BABA) and jasmonic acid (JA) on soil-grown tomato. Seed were coated in 2% carboxymethyl cellulose (CMC) solution containing water (control), 1 mM BABA, or 0.1 mM JA. Two days later, seeds were planted in soil and plants were grown for 3.5 weeks until challenge inoculation with *Botrytis cinerea*. **A**, Percentages of germinated seeds at 0, 7, and 14 days after planting. No statistically significant differences in germination efficiency were detected between treatments (Fisher's exact tests, $\alpha = 0.05$; n = 12). **B**, Average relative growth rates (in centimeters per centimeter per week; ± standard error of the mean [SEM]) between 2 and 3 weeks after planting of coated seed. No statistically significant differences were detected between treatments (*t* tests, $\alpha = 0.05$; n = 8). **C**, Average lesion diameters (in millimeters; ± SEM) at 2 days after inoculation of 4-week-old plants with *B. cinerea*. Seeds were coated with CMC containing water (control), 1 mM BABA, or 0.1 mM JA. Double asterisk indicates a statistically significant difference compared with control-treated plants (*t* tests, P < 0.01; n = 8).


Severity (%) of yellow rust on winter wheat during the 2014 growing season, observed at growth stages 51. X axis labelling: numbers indicate the amount of biofungicide (Bayer: Serenade) applied (I/ha); capital letters from A to D indicate application time point. Error bars represent standard errors and different letters represent significant differences between treatments (P ¼ 0.05). Log transformation was applied prior to statistical analysis.

Antje Reiss and Lise N Jørgensen, 2017. Biological control of yellow rust of wheat (*Puccinia striiformis*) with Serenade [®] ASO (*Bacillus subtilis* strain QST713). Crop Protection 93, 1-8.

(Bayer: "Serenade Max is a bio-fungicide/bactericide to aid in the control and suppression of powdery mildew and botrytis and sour rot in grapes, fireblight in pipfruit, botrytis on berryfruit, kiwifruit, persimmons and onions, and various diseases on avocados, citrus, lettuce and turf.")

Inhibitory and cultivar effects of some elicitors


2-week-old tomato cv. Motelle and Money-maker seedlings 1 week after elicitor treatment. BABA-treated plants were smaller than the rest of the treatments and Motelle-BABA treated plants were even smaller than Money-maker BABA-treated seedlings.

Recent reports on: Costs of resistance induction with elicitors

Elicitor class	Elicitor	Crop class	Crop species	Environment	Τγρε of cost reported	Reference
Signalling mimic	втн	Monocots	Zea mays	Field	Reduced ear filling and yield	(Small et al., 2012)
		Monocots	Hordeum vulgare	Field	Reduced germination rates in seeds from treated plants	(Walters & Paterson, 2012)
		Dicots	Cicer arietinum	Field	Yield reductions after multiple BTH application	(Sharma et al.,. 2011)
			Arabidopsis	Laboratory	Reduced growth rate and yield	(van Hulten et al., 2006)
	SA	Dicots	Vicia faba	Field	Reduced number of pods and yield	(El-Hendawy et al.,. 2010)
	BABA	Dicots	Arabidopsis	Laboratory	Reduced growth rate and yield	(van Hulten et al., 2006)
	JA	Monocots	Zea mays	Pots in laborator	ry Transient decrease in root growth	(Feng et al.,,2012)
		Dicots	Glycine max	Greenhouse	Reduced seed production and germination rates	(Accamando & Cronin, 2012)
	MeJA	Dicots	Hamelia patens	Field	Reduced fruit palatability and removal rate	(Whitehead & Poveda, 2011)
		Dicots	Solanum lycopersicon	Greenhouse	hytotoxicity and delayed flowering	(Boughton et al., 2006)
РАМР	Fungal	Dicots	Pinus sylvestris	Laboratory	Reduced rooting and survival of seedlings	(Lu et al., 2011)

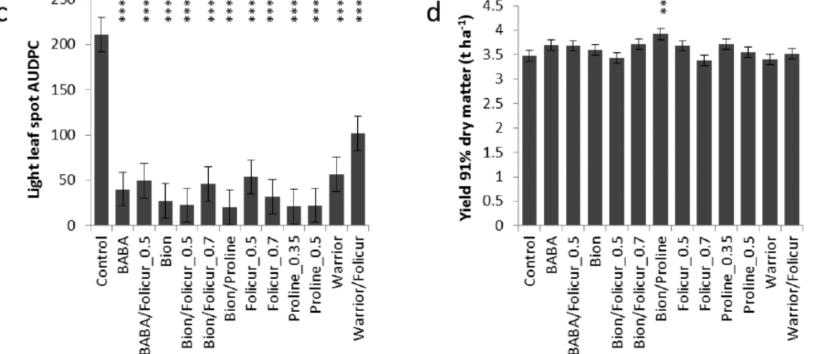
Microbial Diversity: the Simpson Index

The lames

- Treatments significantly (P=0.047, LSD=0.027) affect the microbial diversity by levelling the relative abundance of present OTUs.
- Similarly, there is a significant (P<0.001, LSD=0.021) cultivar effect on the microbial diversity

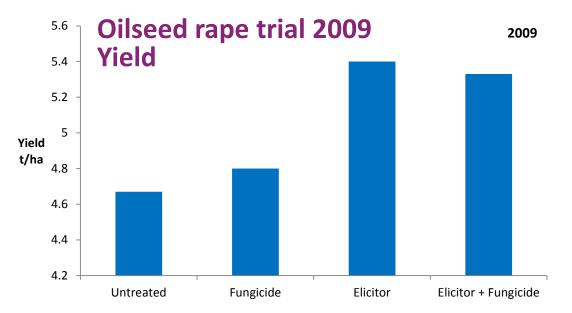
Gravouil & Newton, JHI

Quick examples...



Using elicitor combinations 14 12 **Elicitor combination** 10 controls light leaf spot on winter oilseed rape 8 % light leaf spot 6 4 2 0 FUND 10.61 Untreated 1 FUND 2 10,61 FUND 3 10,151 FUND 4 10,151 FUND 5 10,351 FUND 5 Flicit

Elicitors applied in autumn and early spring


Oxley & Walters (2012) Crop Protection 40, 59-62

c 250 , 10

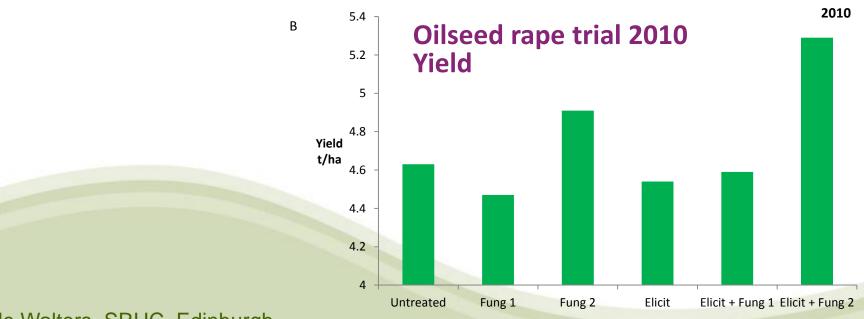
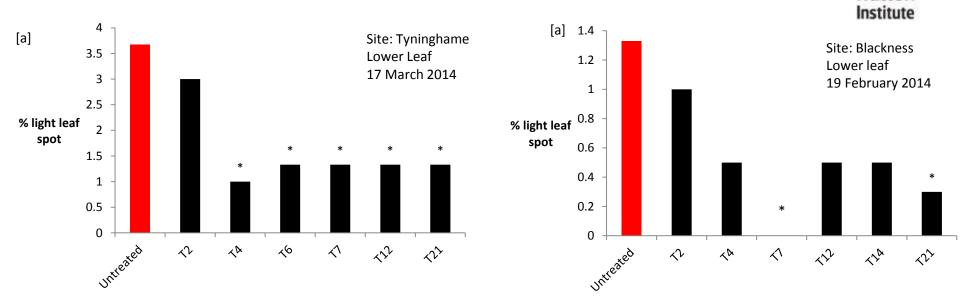
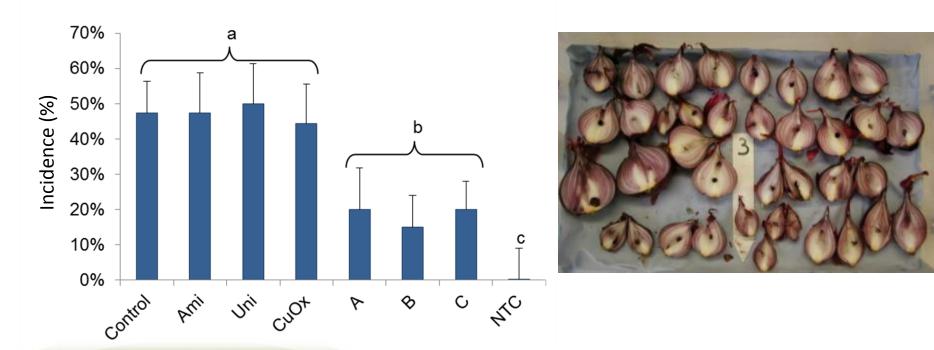


Fig. 1 Field performance of elicitor treatments on winter oilseed rape (WOSR) crops. Effects of elicitors on light leaf spot development measured as the area under the disease progress curve (AUDPC) in 2012-13 (a), 2013-14 (c), 2014-15 (e) and WOSR yield at 91% dry matter in 2012-13 (b), 2013-14 (d), 2014-15 (f). Bars indicate standard error. *** = P <0.001; ** = P <0.01; * = P <0.05.



Dale Walters, SRUC, Edinburgh

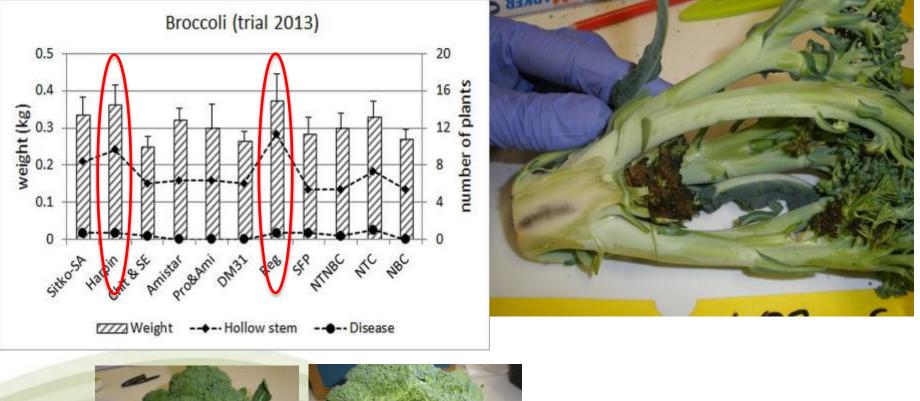
Brussel-Sprouts var. Aurelius



The James Hutton

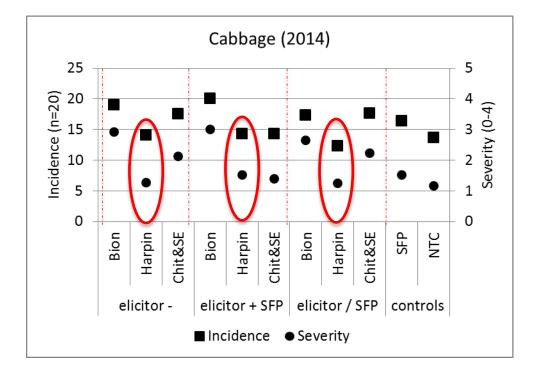
- T2 = fungicide programme
- T4 = alternate Bion + fungicides
- T6 = alternate SiTKO-SA + fungicides
- T7 = Bion only 6 applications
- T12 = Bion only 3 applications
- T19 = Bion + Companion 3 applications
- T21 = Bion + Regalia only 3 applications

Control of *Bga* in red onion bulbs with fungicides and elicitors

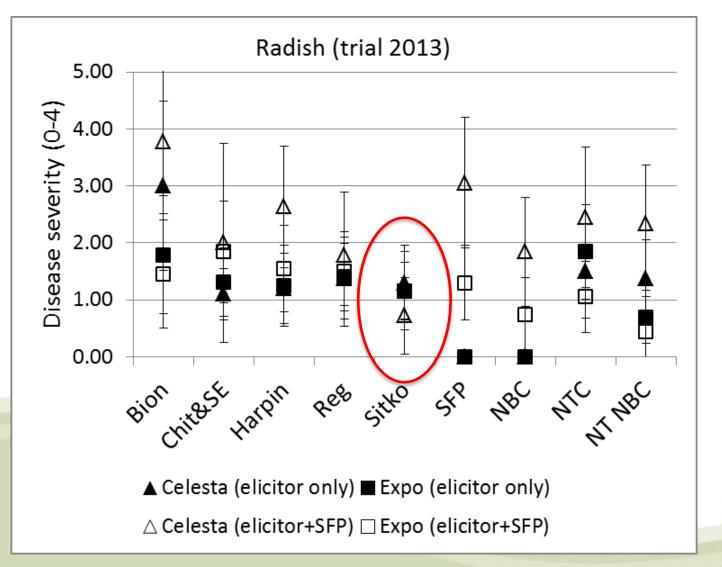


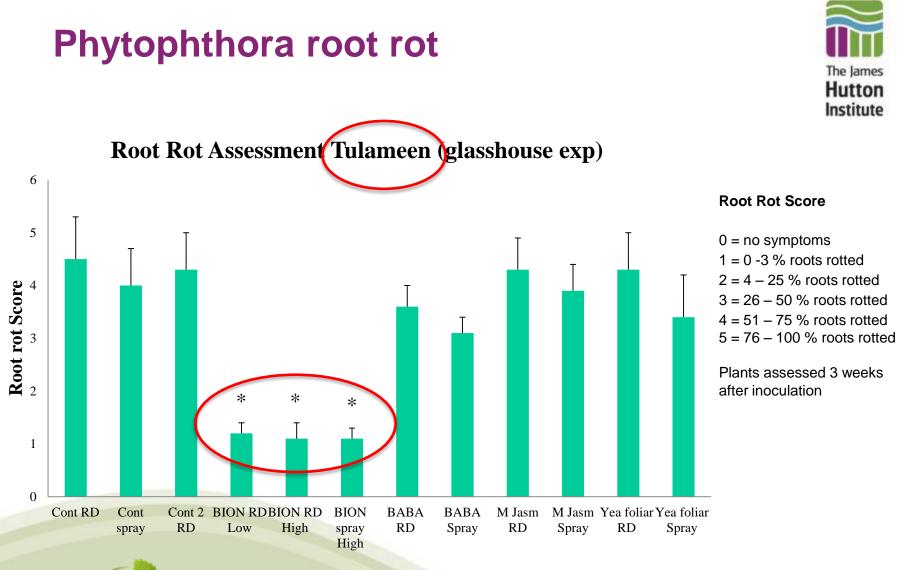
Significant decrease in the incidence and the extent of *Bga*-infected onion bulbs for elicitor treatments compared to fungicides

Hollow stem & stem rot in broccoli



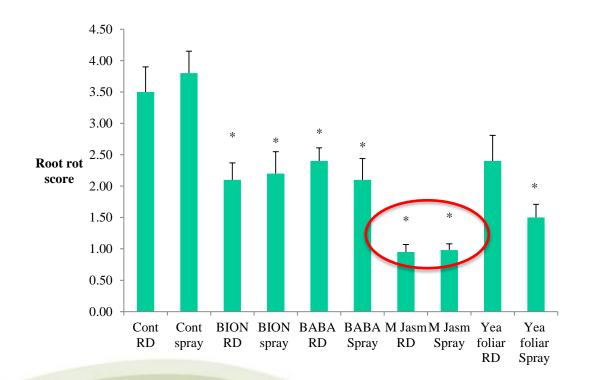
Cabbage – bacterial rot





Radish

Dale Walters, SRUC



Elicitor Treatment by Root Drench

Root Rot Score

0 = no symptoms 1 = 0 -3 % roots rotted 2 = 4 - 25 % roots rotted 3 = 26 - 50 % roots rotted 4 = 51 - 75 % roots rotted5 = 76 - 100 % roots rotted

Plants assessed 3 weeks after inoculation

Potato blight control - 2014 Lesion size (cm²) King Edward

- Two treatments with significantly smaller lesions than Dithane with C50:
 - Bion + Dithane (p<0.001)
 - BABA + Warrior + Dithane (p=0.019)

Lesion size for these two treatments was also significantly smaller than for Electis (p<0.001 and 0.047 respectively)

 Bion + Dithane resulted in significantly smaller lesions than Regalia + Bion + Dithane (p<0.021)

Treatment x 6	cymoxanil x 4	25 Sep
Dithane	C50 x 4	1.19
Bion Dithane	C50 x 4	0.84
BABA ⁺ Warrior + Dithane	C50 x 4	1.01
Regalia + Bion + Dithane	C50 x 4	1.07
Electis	C50 x 4	1.10
Regalia + Dithane	C50 x 4	1.43

Ruairidh Bain, SRUC

Research Review No. 89

A review of the function, efficacy and value of <u>biostimulant</u> products available for UK cereals and oilseeds

Kate Storer, Sarah Kendall, Charlotte White, Susie Roques and Pete Berry

Table 2a. Non-microbial products containing a single active ingredient.

Product	oduct Company Target Crop Product Contents		Product aim (as described on product label)	Product type category	Application type	
Atonik	Arysta	OSR	Synthetic nitrophenols - sodium 5- nitroguaiacolate, sodium o-nitrophenolate, sodium p-nitrophenolate	Higher yields, improved quality, reduce pod shatter, frost tolerance	Other (nitrophenols)	Foliar spray
ALGAFlex	Biotechnica	Cereals & OSR	Concentrated seaweed extract, principally derived from Ascophyllum nodosum	Increase yield, strengthen root system development. Improve tolerance to environmental stresses and diseases and increase activity of beneficial microbes	Seaweed extract	Soil drench or follar spray
BlaminoAM3	Biotechnica	Cereals & OSR	L-amino acids	Strong and sustainable vegetative growth, increase crop yield and quality, improve resistance to environmental stresses, enhanced disease resistance.	Amino acids	Foliar spray
SAPONite	Biotechnica	Cereals & OSR	Plant extract containing active plant saponins	Improve water and nutrient intake, and speed and success of germination.	Other (plant extract)	Seed dressing
BioSilicate	Biotechnica	Cereals	Biologically available silicon	Stronger stalks and stems, reducing lodging, better photosynthesis from extended leaves and extra chlorophyll, reduced heat and drought stress, better resistance to fungal pathogens and sucking insects such as aphids, improved resistance to high salts or toxins	Non-essential chemical elements	Foliar spray

Table 2b. Microbial products.

Product	Company	Target Crop	Product Contents	Product aim (as described on product label)	Product type category	Application type
Mycortex	Biotechnica	Cereals	Mycorrhizal fungi, <i>Trichoderma</i> fungi, beneficial bacteria, humates, saponins	Improve root growth, plant nutrition, N fixation, disease resistance, stress resistance, increase soil microbes, improve soil quality and structure	AMF, PGPB, humic acids, fulvic acids	Granular or liquid - apply at sowing
Symbio liquid endo mycorrhizal inoculant	Symbio	Cereals	Arbuscular mycorrhizal fungal inoculant	Increases plant growth in poor soils, increases yield, healthy plants are nore resistant to stress and disease, reduces need for fertiliser and water	Arbuscular mycorrhizal fungi	Seed coat, soil drench or mixed with compost teas

Table 2c. Non-microbial products containing multiple active ingredients.

Product	Company	Target Crop	Product Contents	Product aim (as described on product label)	Product type category	Application type
C Weed 50	Micromix	Cereals & OSR	50% w/v seaweed concentrate produced at lower temperatures utilising only <i>Ascophyllum</i> <i>nodosum</i> - formulated with Humic acids and harvested only during selected periods of growth	Earlier establishment, increases early rooting, photosynthetic area, leaf and shoot growth and plant carbohydrate production, improves sugar content in treated crops resistance to disease and pests, storability of treated crops, improves shelf-life of plants and flowers	Seaweed extract	
Matrix/Radical	Micromix	Cereals & OSR	Undisclosed, 'synthhormone', mix of components that have a syngergistic effect when put together	Supports growth and root development, drought amelioration strategy	Other - Growth hormone pre- cursors and analogues	
Optiphite GP	Micromix	Cereals & OSR	N, Phosphite, K, Phosphate, amino acids, humate-lignate active- uptake formulation technology	Reinforces plant disease defence and enhances root development	Phosphite, amino acids, humic substances	
Patron Z	Micromix	Cereals & OSR	N, Zn, Ammonium Acetates, Amino acids (wide range) with alkyl polyglucoside surfactant (with humic acids)	Enhances root and seedling development, increases root mass and length, improves seedling disease resistance, improves nutrient uptake efficiency	Amino acids, humic acids	
VitAmix	Micromix	Cereals & OSR	K, phosphite, humic and fulvic acids, chelated Cu, Mn, Zn, Fe, + Bo, Mo	Improves seedling establishment, promotes root development, reduces disease, corrects deficiencies and prevents physiological disorders	Phosphite, humic substances	
C-Weed AAA	Micromix	Cereals & OSR	A. nodosum concentrate produced from a cool extraction process, plus a wide range of L-amino acids from fermentation of plant extracts.	Earlier establishment, increases early rooting, photosynthetic area, leaf and shoot growth, plant carbohydrate production, improves sugar content in treated crops, improves resistance to disease and pests, storability of treated crops	Seaweed extract with L- amino acids	

Table 20. A summary of the evidence for positive biostimulant effects on plant nutrition, growth and stress tolerance, based on published and unpublished information analysed by this review.

*Low level of evidence: principally laboratory experiments, including little or no data on cereals or oilseed rape;

**Moderate evidence: greater number of experiments including some that were field-based and/or on cereals or oilseed rape;

***Good evidence: wide evidence base including multiple field-based experiments on cereals or oilseed rape.

Effect Category Nutrient uptake or access			Plant function & Growth				Abiotic stress tolerance			Biotic stress tolerance					
Product type	z	L	Other	Hormonal	Growth⁺	Yield	Reduced Transpiration	Delay senescence	Improved photosynthesis	Salt	Alkaline	Drought	Cold	Pathogen ^{††}	Pest ^{t†}
Seaweed extracts	*	*	*	**	**	**			*	*		*	*	\bigcirc	*
Humic substances	**	*	*	*	**	**			*	*		*			
Phosphite & inorganic salts				*	**	**								**	
Chitin & chitosan derivatives					**	**	*			*		*	*	***	*
Anti-transpirants				***		**a	***		*			**			
Protein hydrolysates & amino acids	*		*		*	*				*		*	*		
Non-essential chemical elements	*	*			*	*		*	*	*	*	*		**	**
Plant growth promoting bacteria	**	**	*	*	***	***				*		*		**	*
Non-pathogenic fungi	*	*	*	*	**	**				*		*	*	**	
Arbuscular mycorrhizal fungi	*	**	*		**	**						*			*
Protozoa & nematodes	*			*	*	*									

[†] Above and/or below-ground growth

^{††} Resistance or tolerance of pathogen/pest, induced or physical

^aYield and other benefits depend on severity of drought conditions; yield penalties may occur when water is plentiful.

Conclusions

- Potential: <u>Products and priming</u>
- **Constraints**: <u>Mechanisms</u> of pathogenicity
- **Potential**: <u>Combinations</u> of resistance elicitors
- Constraints: Environment, nutrients and formulation
- Constraints: Plant genotype interactions
- Potential: <u>Trans-generational effects</u>
- Constraints: <u>Trade-offs</u>
- Potential and constraint: <u>Phyllosphere</u> and rhizosphere organisms
- Potential and constraint: Meeting practical demand

Thanks to:

Scottish Government (RESAS)

Scottish Enterprise Tayside, Scotia Pharmceuticals, Norsk Hydro, <u>AHDB</u>, EU...

Thank you.