

Disease Predictions

Dr Caroline Young

www.adas.co.uk

Outline

- Why? What?
- Forecasting & thresholds
- Practical use of disease forecasting in crops: issues
- Examples
- Project: Sclerotinia risk reporting in oilseed rape

Why predict plant diseases?

Economic and/or environmental benefits:

- Timing of fungicide applications to improve control
- Justify fungicide applications
- Reduce the number or dose of fungicide treatments

Forecasting or thresholds?

Forecasting

- Predicting inoculum production and/or plant infection from recorded weather data
- Forecast weather that results in inoculum and/or plant infection

Thresholds and risk factors

- How much disease or inoculum is present? Surveys; monitor plots
- Actual weather

Some overlap: forecasting/prediction/risk assessment

What is important to measure?

- Crop stage and disease
- Inoculum
- Weather:
 - Every variable In-field By location Regional Actual or forecast
 - If forecast, how far ahead

What measurements will give the best prediction of infection (1) risk or disease incidence/severity? **ADAS**

Assessing the benefits of disease forecasting

- Accuracy: false positives & false negatives
- Yield-loss disease relationship
- Expected price will influence treatment decisions
- Reduced yield or complete crop loss?

Lettuce: £10,000 ha⁻¹, fungicide spray £40 ha⁻¹

Oilseed rape:

	Approx. yield loss	Cost	
5% sclerotinia	0.1 t	£25	
10% sclerotinia	0.2 t	£50	
One fungicide trt (£28-45)		£37	(
Two fungicide trts		£74	AL

Examples: UK crop & disease models

CROP	DISEASE	Weather based, threshold or forecast	PROVIDED BY:
Potato	Late blight	Threshold	Potato Council Blightwatch.co.uk
Multiple	Various	Threshold & forecast	Agrovista <i>www.plantsystems.co.uk</i>
OSR	LLS, Phoma	Threshold + inoculum,	Rothamsted Research www.rothamsted.ac.uk/light-leaf- spot-forecast
wheat	Septoria in early season	Disease monitoring, risk maps	Fera www.cropmonitor.co.uk
Multiple	Multiple crops (30)	Forecast, 5 days ahead	WeatherOnline www.weatheronline.co.uk
Brassica	Ringspot & white blister	Threshold. Ringspot inoculum.	www.syngenta.co.uk/brassica-alert

Examples: European forecasting

COUNTRY	DISEASE	ACTIVITY	SUPPORT & IMPLEMENTATION
Norway	Multiple, diseases and pests,	Forecasts. 80 met stations	Government, advisory service to 50% of farms. <u>www.vips-landbruk.no</u>
Denmark	Phytophthora late bight	Forecasts. 7 demonstration farms practising IPM	Government <i>www.landbrugsinfo.dk</i>
Sweden	Multiple, diseases and pests	Thresholds. Monitor plots, 5 regions	Government. www.jordbruksverket.se
Germany	Multiple, diseases and pests	Forecasts.	PASO, government Blight: <u>www.phytophthora.de</u>
Poland	Light leaf spot	Thresholds. 10 spore traps.	Government <u>www.spec.edu.pl</u> and www.dupont.pl
Netherlands	Multiple diseases and pests	Forecasts. EPIPRE, online PlantPLus, online	Gov., <u>www.bdb.be/</u> Productendiensten/ Analysesadviezen/EPIPREadvies Commercial, Dacom

•Current activity with forecasting. Other systems exist, including projects at research stage.

• Limited accessible evidence to demonstrate benefits

Sclerotinia in oilseed rape: the problem

- Infection is sporadic; 18% crops affected with occasional major outbreaks with 50-80% losses
- Fungicide timing must be protectant
- Infection risk phase is longer than 3 weeks
- Flowering duration is variable
- No coordinated system of monitoring in UK
- Without forecasting, it is not clear if a fungicide treatment is timed correctly or will be necessary

Sclerotinia infection in oilseed rape

Apothecia

Sclerotia in stems

Lesion development

Airborne spores and infection

Forecasting sclerotinia in oilseed rape: what is important to measure?

Risk factors

Crop flowering stage Germinated sclerotia = inoculum Spore inoculum levels: on petals or in air Weather conditions for infection

Predictions

Date of first sclerotial germination Forecast weather

Sclerotial germination: observed

- 12 years of data, continuing 2017, weekly BASF/ADAS updates
- Shows onset of germination by region = first ascospores

Airborne spores: petal tests

Sclerotinia spores at UK sites

Sclerotinia infection decline from point source

Airborne spore levels, East

Forecast weather and infection criteria

- Previous LINK project weather analysis
- Temperature 48 hr prediction is good
- RH% prediction variable
- Use 48 hr forecast weather for alerts
- Infection criteria from SkleroPro (Koch *et al* 2006)
- At least 23 hr <u>></u> 7°C

and 80% RH

Predictors for sclerotinia stem rot in oilseed rape

Risk score for crop in flower is calculated from weighted scores for :

- weather based alert positive (increases infection risk)
- % of petals with sclerotinia positive
- Light rain positive
- Heavy rain negative (reduces infection risk)

Weather-based alerts Herefordshire 2016

Sclerotinia risk reporting system for oilseed rape

01/02/2015 to 31/01/2018 Dr Caroline Young

AHDB

CEREALS & OILSEEDS

ROTHAMSTED RESEARCH www.adas.uk

In-field and regional inputs

Objectives

Provide a sclerotinia disease risk reporting system for oilseed rape, to guide fungicide timing and improve control

In-field

Weather data, infection risk forecasts, flowering stage, petal tests, sclerotial germination, sclerotinia stem rot

Regional

Sclerotial germination, Burkard spore traps

	Number of sites
Field experiments	2 ADAS, 1 Velcourt
AHDB monitor farms	6
BASF sclerotia depots	7
Burkard spore traps	5

Weekly reports on AHDB website, 15 sites

Risk forecasts in AHDB reports

	Weather based infection alert	Petals testing positive	Spore trap positive
Crop not in flower	low	low	low
Crop flowering	moderate	high	high

15 sites (click on AHDB map)

- Data updated weekly: growth stage, petal test result, infection alert
- Added comments: wet/dry soil, frosts, heavy rain showers, petal stick

Example AHDB weekly report 2016

Sclerotinia risk report

Scientifice risk is calculated for specific also and should only be used as an indicator of potential risk on a regional or national scale.

Crop growth stages range from late-flower to start of pode in some southern crope to early flower in the North. Infected patiels which adhere to leaves are the main mute for infection,

Sclerotinia risk monitoring: key results 2015

Forecasting

- Where low risk for whole duration: all correct, no sclerotinia
- Where moderate risk: no stem rot
- Where high risk: 2 out of 5 sites had stem rot
- Assessment is risk-averse

Monitoring

- Locally, infection alerts (weather-based model) and petal tests are useful for spray guidance
- Regionally, spore trap & germination data are helpful
- Moderate risk can change quickly to high risk

Impact of sclerotinia risk monitoring and forecasting

- Provides evidence for the onset of the key riskphases by region
- Information on progress of infection conditions and risk at monitor sites
- Justify no fungicide treatments on low-risk crops
- Improved targeting or timing of the first spray
- If first spray can be delayed beyond early flower, a second spray may be unnecessary

Thanks to staff involved:

ADAS Frankie Paine, Geoff Bailey, Phil Walker, Jill Cunningham, Nicola Rochford, Jill England, Andrew Moore, Shaun Buck

Rothamsted Research Jon West, Gail Canning

SRUC Tracy Yoxall

Velcourt Andrew Mortimer

Warwick University John Clarkson

