

Dr Sacha WhiteADAS

Drilled with neonicotinoid treated seed

Type	Number
Split field	11
Strip within field	27
Adjacent field	9
Paired field (same farm but not adjacent)	1
Total	48

Plant counts – cotyledon stage

Difference in plant numbers per site (46 sites)

Crop establishment was higher in neonicotinoid seed treated crops at 76% of sites

Plant counts – 3-4 true leaf stage

Difference in plant numbers per site (47 sites)

Crop establishment was higher in neonicotinoid seed treated crops at 62% of sites

Plant damage – cotyledon stage

Mean 18.4% leaf area lost in untreated crops and 8.9% in neonicotinoid seed treated crops

Plant damage – 3-4 true leaf stage

Mean 23.3% leaf area lost in untreated crops and 22.7% in neonicotinoid seed treated crops

Conclusions and outcomes

- Trend for higher plant counts in NNI seed treated crops at cotyledon and 3-4 leaf stage.
- Trend for lower plant damage in NNI seed treated crops at cotyledon.
- In line with label claims.
- Relate CSFB numbers and their impact on plant populations and damage to yield.
- Contribution of factors (e.g., cultivations, drilling date, seed rate, insecticide use, resistance) to crop resilience and pest pressures.

