

Economic impact of changes to pesticide legislation

Sarah Wynn ADAS

Legislation affecting pesticides

Wider economic impacts of legislation

Changes in availability – the effect on profitability & viability

Sustainable Use Directive

The Sustainable Use Directive 2009/128/EC

Overall objective is to establish:

"a framework to achieve a **sustainable use of pesticides** by reducing the risks and impacts of pesticide use on human health and the environment and promoting the use of **Integrated Pest Management** and of **alternative approaches** or techniques such as non-chemical alternatives to pesticides".

Regulations under the Sustainable Use Directive

Regulation (EC) No 1185/2009 concerning statistics on pesticides

Directive 2009/127/EC with regard to machinery for pesticide application-

Regulation (EC) No 1107/2009 concerning the placing of plant protection products on the market-

EU Impacts of SUD

National Action Plan

Integrated pest management – does it cost more?

Inspection of equipment

Cost of certification

Re-approval of active substances

Training

Cost of certification

Pesticide approvals (?)

- Legislation aims to drive improve standards
 - Environmental & human health
 - Tougher acceptance criteria at renewal & registration
 - Important to understand wider implications of change
 - Impact on crop production
 - Impact on target weed/ pest/ disease populations
 - Impact on cost of control

Impact assessment

- Developed a methodology to help...
 - The industry identify R&D priorities
 - Identify critical areas for government intervention - funding
 - Assess the impact of mitigation
 - Can product be applied differently to reduce particular risk -e.g. low drift nozzles - Say no to drift
 - Provide evidence of value of active substance
 - Support industry in maintaining crucial active substances
 - Support to registration or reregistration of active substances

Identify research priorities

Cereals and oilseeds: published

- Potatoes: published
- Grass and forage: published

- Peas and beans: completed
- Fruit and vegetables: published

- Non-edibles (plants and flowers): published
- Overall assessment of gaps and priorities: published

Identify research priorities

	Main source of loss	Crops affected	% reduction in margin	% reduction in production
1	Downy mildew	Onions	209%	46%
2	Weed control	Alliums	51%-86%	12%-31%
3	Volunteer potatoes	Vining peas	49%	35%
4	Downy mildew	Lettuce (outdoor)	46%	30%
5	BLW	Carrots	33%	17%
6	Black-grass	Cereals	28%	9%
7	Raspberry Beetle	Raspberry	25%	20%

Approvals legislation - costs

- More detailed dossier's for active substances
 - Cost more to provide evidence for approval / reregistration
- Increased cost of pesticide products to farmer (?)
 - To cover registration costs
- Reduced availability / range of actives

Support industry

Demonstrating value of active

- 1. Change cost of production
 - Can target pest still be controlled?
 - How much does it cost?
- 2. Yield impacts
 - Can the pest still be controlled as well as it was?
- 3. Impacts on resistance management
 - Is it a key active in resistance management programme?
 - Are there alternative modes of action?
- 4. Use of alternative products /control options
 - What are the risks?

1. Change cost of production

- Production can be more expensive
 - Switch to alternative, sometimes more costly products
 - Use increased cultural control
 - Barriers e.g. insect mesh
- Withdrawal can be associated with yield loss
- Can make growing a particular crop on some land unprofitable

2. Yield impacts

- Availability of alternatives
 - Are they as effective?
 - Are they as affordable?

- depends on season
- high vs low disease pressure
- Can businesses remain viable?

2. Yield impacts- Examples

Horticulture

- Allium Loss of mancozeb
 - 19% reduction in yield
 - £22M cost implication
- Soft fruit- Loss of iprodione (botrytis)
 - 6% reduction in production
 - £22M cost implication

Arable

- Wheat- loss of azole fungicides
 - 4% reduction in yield
 - £174M cost implication
- Oilseeds- loss metconazole & tebuconazole
 - 1% reduction in yield
 - £4M cost implication

3. Impacts on resistance management

Loss of active can:

- Reduce the range of modes of action
- Shorten the time to resistance development
- Increase the cost of control programmes

- Increase focus on other aspects of disease management
 - varietal control
 - good hygiene

4. Use of alternative controls

- Can be more expensive and/or less effective than withdrawn product
- CEREALS & OILSEEDS
 - Use of higher rates of more expansive active substances
 - Are the alternative active substances as effective?
 - Focus on non-cultural methods of control- varietal resistance, crop rotation, delay drilling, improving timeliness of pesticide applications

Support registration / reregistration

Title: The socio-economic value of mancozeb to the UK potato industry for the control of potato blight

Issued by: Sarah Wynn Date: 12 January 2015

Barnali James
EU Mancozeb Task Force
United Phosphorus Ltd / Inc

Indofil Industries Ltd.

Prepared by: Sarah Wynn, Faye Ritchie & Lottie Alves d, ADAS UK Ltd

- Understanding benefits or potential benefits
- Provide additional support to dossier
- Especially valuable where;
 - active is only one available for particular purpose or
 - strong component of resistance management strategy
- http://www.upleurope.com/press/Socioeconomic_value_of_mancozeb_UK_-FINAL_10-08-15.pdf

Endocrine disruptors

- Significant uncertainty over how they are defined
- Therefore unclear how many actives are affected
- Impact report collated for AHDB end last year

Actives categorised in 3 ways

Category	Level of risk
Likely to be lost	High - clear evidence for ED activity
Might be lost	Medium - some evidence for ED activity depends on definition
Unknown	? - Evidence is unclear — may be an ED

Implications of loss- ED example

Active	Risk	Crop	Impact		
Epoxiconazole	High	Cereals	Reduced rust control		
Prothioconazole	??	Cereals & oilseeds	Reduced disease control – increased reliance on fewer modes of action		
Metconazole & tebuconazole	High	Oilseeds	Loss PGR control		
Carbetamide & propoyzamide	Medium	Oilseeds	Loss black-grass control		
Cyproconazole & tebuconazole	High	Pulses	Reduced disease control & increased resistance risk		
Linuron	High	Pulses	Reduction in weed control		
Chlorothalonil	??	Cereals & pulses	Loss of multisite active – increased resistance risk		
ADAS					

ED Likely to be lost - horticulture

Largest losses

Thiacloprid – Soft fruit (£58M),

Field veg (£57M), Tree fruit

(£27M)

% shows the percentage of the total value of the sector that is lost Note not all assessed actives are shown – those with small impacts have been removed

ED Likely to be lost - arable / other

Largest losses

Linuron – Potatoes (£52M),

Pulses (£14M)

Cyproconazole – Pulses (£9M) &

Note not all assessed actives are shown – those with small impacts have been removed

Cost of pesticide legislation

- Definition of EDs least strict
 - Cost the arable & hortic industry £905M
 - 10% reduction in production
 - Plus additional cost of alternative controls
- At its most strict
 - Cost the arable & hortic industry £3,003M
 - 33% reduction in production
 - Business restructure, other cost changes for alternatives

Other influences are taking effect too...

Europe

TTIP controversy: EU drops pesticide laws because US says it should

European Commission denies that the TTIP had any bearing on the decision

Zachary Davies Boren | @zdboren | Friday 22 May 2015 15:10 B5T | \$\infty\$55 comments

EU dropped pesticide laws due to US pressure over TTIP, documents reveal

US trade officials pushed EU to shelve action on endocrine-disrupting chemicals linked to cancer and male infertility to facilitate TTIP free trade deal

Chief EU negotiator Ignacio Garcia-Bercero (R) and chief US negotiator Dan Mullaney hold a press conference in Washington, DC affer a new round of talks on creating a transatiantic free trade zone, 19 May. Photograph: Nicholas Kammi/AFP/GEIV Images.

Opportunities

- Pressure on pesticide actives
 - Need to identify alternative control strategies
 - Need to look at resistance management
 - Need to improve best practice
 - Affects wide range of crops
 - Arable, horticulture (edible & ornamental)
- Uncertain...

Summary

- Pesticide legislation driving improved standards for environmental and human health protection.
- This is resulting in tougher standards for existing pesticides at renewal and for new registrations.
- Need to consider the impacts of any changes and potential mitigation actions.
 - Cost of production
 - Yield
 - Business viability
 - Jobs

Thank you

Sarah Wynn Sarah.Wynn@adas.co.uk ADAS

